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An irreversible thermodynamic description of analytical ultracentrifugation (AUC) applied to

a solution of the time- and gravitational-potential-space-dependent Lamm equation

Introduction

Irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962;
Katchalsky and Curran, 1965], also known as nonequilibrium thermodynamics, is a

theoretical framework that has been used to describe a variety of transport processes. The
theory is generally applicable to coupled flows in multi-component systems, and is applied
here to analytical ultracentrifugation (AUC). (The cgs system is typically used to express all

parameters in AUC, and is the default system used here.)

Along with presenting the relevant theoretical context, this work presents a method of
simulation that is built on that which Claverie, Dreux and Cohen [1975] described in their
solution to the Lamm equation, but differs in several respects. To correctly implement their
concentration dependence, the transport coefficients are defined as spatially-independent
parameters. To correctly evaluate the concentration-dependent transport coefficients at the
time to be evaluated, the concentrations are calculated iteratively. By such an evaluation of
the concentration-dependent transport coefficients at both the time already evaluated and
the time being evaluated, the accuracy of each new set of concentrations is maximised.
Computational artefacts are reduced by first calculating all concentrations in one order,
then recalculating all concentrations in the opposite order, and averaging the results.
Simpler results of integration are obtained by using one-half the square of the radial
position, rather than the radial position, as the spatial parameter of the continuity equation.

Additionally, a simple coupled-flow equation has been implemented.

The application of irreversible thermodynamics (Sections A, I and G) provides a proper
description of molar flows in the system. Mass flows are calculated from the molar flows
(Section I), and these mass flows are used in the applicable continuity equation (Section A).
An integral, finite-element approach then yields a numerical solution to the continuity
equation (Sections B and C). The solution presented here is referred to as a “second

1



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

approximate solution,” to distinguish it from the type of approximate solution previously
obtained by similar finite-element approaches. The aim of all of these solutions is to
calculate solute concentrations throughout the system sequentially from one point in time

to the next.

The second approximate solution can be used non-iteratively, but is then expected to
gradually accumulate errors that, depending on the system, may become significant after
many time increments. An iterative application of the second approximate solution (Section
]) yields a general solution to the continuity equation. The time taken to calculate a set of
results with the iterative approach will be proportional to the average number of iterations
per time increment. Concentrations and concentration-dependent transport coefficients
change very little from one time point to the next, however, so convergence, as judged by a
marked decrease in change with further iterations, is likely to take just a few iterations per
time point, provided that the acceptance criterion is not set too stringently. When analysing
a system with highly concentration-dependent transport coefficients and high solute

concentrations that change rapidly, the iterative process should be most advantageous.
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Section A: An application of irreversible thermodynamics to analytical ultracentrifugation
(AUC)

The application of irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot
and Mazur, 1962; Katchalsky and Curran, 1965] to AUC yields the flow equation. Given the
flow equation, the coupled flow diffusion and sedimentation coefficients can be defined. The
flow equation requires a description of the conjugate molar forces in the system. For AUC,

those forces are due to gravitational and chemical potential gradients.
The sum of the gravitational and chemical potential gradients equals VU

The molar flow of solute component k in the system frame of reference is

n

Ji =Ji+ I\C/I_I;Eo = Z Lk,q)?q +1\C/I_I;50’

q=1

(A1)
where]Tf is the molar flow of component k in the solvent frame of reference, 7, is the
velocity of the solvent flow through the system, My is the molar mass of solute componentk,
ck is the mass concentration of solute componentk, )?q is the conjugate molar force
(Equations A2, A14 and [16) of solute component q, Lkq is the coupled-flow-
phenomenological coefficient linking the molar flow of solute component k to the conjugate
molar force of solute component g, and n is the total number of solute components. (Each
solute component is indexed by an integer that is greater than or equal to 1, and less than or
equal to n. With the exception of its velocity through the system, the solvent component is
treated implicitly, and by implication, is assigned an index of 0.) The molar flow of

component k in the system frame of reference bears a somewhat complicated relationship

to the mass flow, fk, of component k in the system frame of reference. (See Section I:
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Calculating molar mass, chemical potential and partial specific volume for a multi-species
component.) The molar flow of component k in the solvent frame of reference is discussed
further in Section G (The dissipation function and the Curie-Prigogine principle), where vo is
shown to be negligibly small in AUC. The molar mass of a component is discussed below,

and described in detail in Section I.

In an AUC system at a fixed point on the surface of the Earth, the gradient of the total molar
potential of solute component q is

VU, = —X, = Vi, —M,w?Vé + M, Vgzh,
(A2)
where Uq is the total molar potential of solute component g, |4 is the chemical potential of
solute component q, Mg is the molar mass of solute component q, gg (the standard
acceleration due to gravity) is the magnitude of the gravitational field at the Earth’s surface,
h is the height above the Earth’s surface, w is the angular velocity of the centrifuge rotor,
and & = r2/2, for which r is the radial position in the centrifuge. The component parameter
Hq is equal to (pq)n, which is the number average of the chemical potentials of all species of
component g, but in general, V(pq)n does not equal (Vpg)n, which is the number average of
the chemical potential gradients of all species of component g. In general, Mg is equal to
(Mg)g which is the §-dependent molar mass of component q. (For the definitions of pq and
My in the general case, see Section I: Calculating molar mass, chemical potential and partial
specific volume for a multi-species component. In the limit as all concentration and pressure
gradients approach zero, the component parameters, Vg and Mq become the number
averages of the corresponding species parameters of component g. A detailed examination
of Mg is presented in Section M: Effects of solvent density on (apparent) reduced buoyant
mass.) The molar gravitational potentials of component q due to angular acceleration and
the Earth’s gravitational acceleration are -Mqw?2¢ and Mqgeh, respectively. It will be shown
that MqVgeh is negligible in most cases in AUC. (See Section H: The contribution of the
Earth’s gravitational field to transport in AUC.)

(It is assumed that the system has sufficient concentrations of small, rapidly diffusing ions
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that no significant electrical fields develop due to charge separation, which the
redistribution of macro-ions in experimentally attainable gravitational fields might
otherwise be expected to produce. Thus, in Equation A2, VUq does not include any
contribution from z,FVW¥, where zq is the valence of solute component g, F is the cgs
Faraday, and W is the cgs electrical potential, as V¥ is assumed to equal zero everywhere at

all times.)

Each chemical potential is a function of time, t, and spatial position. Each molar
gravitational potential, whether arising from angular acceleration or the Earth'’s
gravitational acceleration, is dependent on spatial position. In the case of Mqggh, the
potential varies spatially with h, but as (dh/0dt)space = 0, can only vary temporally if Mq
varies temporally. In the case of -Mqw?¢, the potential varies spatially with &, but as (9¢/dt)n
= 0 (aside from negligible rotor deformation when (dw/dt)space # 0), -Mqw?2E can only vary
temporally if w or Mq vary temporally, and except for periods of rotor acceleration or
deceleration, (0w /dt)space = 0. Thus, at constant w, the time dependence of each molar
gravitational potential is proportional to the time dependence of M. For a single-species
component, (0Mgq/0t)space = 0. For a multi-species component in a system that has not yet
reached equilibrium, if Vuq # 0, 1q is almost certain to vary with time, in which case, where
(Opg/0t)space # 0, (0Mg/0t)space # 0. (See Section I: Calculating molar mass, chemical potential
and partial specific volume for a multi-species component. Also see Equilibrium at the end of

this section.)

The gravitational field due to angular acceleration in the centrifuge is
—V(—w?¢) = w?V¢ = w?r,
(A3)
where 7 is the radial vector, and -w2€ is the gravitational potential due to angular

acceleration.

In AUC, the sample occupies a closed system with the geometry of a cylindrical sector,

which usually ensures that all flows of solute components within the system are laminar

and, assuming that MqVggh is negligible, radially directed. Thus, each VU is significant in
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the radial direction only, and vector notation can be neglected. This permits a single spatial
variable, such as r or §, to be used to describe all spatial dependencies of interest in the

system. Henceforth, therefore, with a few exceptions, vy, Ji, Ik and r are used in place of vy,

fk, fk and 7, respectively, where vy, is the velocity of component k in the system frame of

reference.

By convention, the meniscus of the solution is defined as the innermost point of the system,
and its radial position is denoted as rm. (If the location of the innermost wall at the top
(with respect to w?r) of the assembly containing the sample is defined as r, then r¢ < rm.
The space between r: and rnm is typically occupied by air.) The outermost point of the
solution is defined as the base of the system, and its radial position, denoted as rv, is located
at the outermost wall at the bottom (with respect to w?r) of the assembly containing the
sample. As the radial position of the axis of rotation is 0, 0 < rm < r within the system < ry,.
In terms of one-half the radial position squared, the system is located within the range of &

to &, where &m = rm2/2 and &, = p2/2.

On the basis of the relationship described by Equation A3, € can be considered the natural
independent variable of choice in AUC, as the derivative of the gravitational potential with
respect to € is a constant: d(-w2¢€) /d€ = -w2. In contrast, the derivative of the gravitational
potential with respect to r is a function of r: d(-w?2¢) /dr = d(-w?r2/2)/dr = -w?r. Hence, & is

the parameter associated with the gravitational-potential-space in the title of this work.
Chemical potential

The chemical potential of component k is given by

tr = (U)o + RTInycy

(A4)
where R is the ideal gas constant, T is the absolute temperature, yx is the activity coefficient
of solute component k, and the constant ()0 is the standard-state chemical potential of

solute component k. Given that px is a function of the temperature of the system, the
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pressure of the system and the concentrations of all solute components in the system,
Vi, = (%) (ﬁ)
e =\ ) \ar),

5, G0+ G, G0+ 26 (5|6,

t w=1 t,T,P,Cazw

(A5)
where P is the pressure of the system, and cw is the mass concentration of solute component

W.

Temperature control ensures that

(A6)
A standard thermodynamic relation, when applied to a multi-species component in the
presence of concentration and pressure gradients, yields

Ok

e =M, 7, ,

( aP )t,T,C kvk

(A7)
where v, = (¥4)pg4 (defined in Section I) is the §-dependent partial specific volume of the
system with respect to solute componentk, and M, = (M), (also defined in Section I) is

the same molar mass parameter that applies to Equation A2.

Applying a convenient form of Bernoulli's equation to the AUC system, which, despite the
flow of matter within it, is treated as if it were hydrostatic, yields
¢a
P=P0+w2f pdé ,
$m
(A8)
where p is the solution density, P is the pressure at § = €, and Py is the pressure at &y, =

rm?/2. Given that (0w?/0¢): = 0 throughout the system,
7
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oPy
(3) =
(A9)
Thus,
(57, G), = pverar.
(A10)

where p is a function of § and t. Contributions to p include gradients in solute
concentrations and §-dependent compression of the solvent, which can be expressed as
(0po/0%)t # 0, where po is the solvent density. Expectations for a system with a
compressible solvent include the likelihood that, when dw/dt # 0, (dpo/0dt)s # 0 and d&§m/dt
* 0.

Given that (9€/dr): = r throughout the system,
7)., 57). = 7). (5e), ), = mvero
9P ) p. \or 0P ) 7o \0E KVp@T

(A11)
For the remaining part of Vy,

D) () (e e () (B

w=1 w=1 t.T.P.Ca¢W]

t,T,P,Ckzw

(A12)

The term in square brackets describes the deviation of pk from van ‘t Hoff behaviour.

The sum of the above descriptions of the various parts of Vyy yields the gradient of the

chemical potential of component k in the system. Thus,

n
_ (Ou 05) o 5 <Olnck> Z (ch> (6lnyk>
Vi = ( o0& )t (6r - Mvepw™r + RT dc,/, \ dc,

w=1 t'T'PrCaxw]
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(A13)

Applying the above descriptions of the various parts of VU, the gradient of the total molar

potential of solute component k in an AUC system can be written as

n
B dlnc dc din
VUi = =X = =My (1 — pp)wr + RT( k) 1+a Z < W) < m)
or t wel ack t aCW t.T,P,Cazw

)

(A14)
where )?k is the conjugate molar force (Equations A2 and 116) of solute component k. Using
Equation A14 to describe the conjugate molar force of solute component g, the molar flow

of solute component k in the system frame of reference, given in Equation A1, can be re-

written as
n
dlnc dc dln
]k_zl‘kq q(l—vqp)a)r—RT< q> qz< W> ( )/q> :
t - acq 0cy t,T,P.c
q= w=1 1P, Cazrw
(A15)

For the effect of component g on component 4, the coupled-flow-sedimentation coefficient

is defined as

M
Skaq = c_: Lk,qu(1 - ﬁqp)’

(A16)

and the coupled-flow-diffusion coefficient is defined as

n
dc dlny,
ted (5) (5, |
! acq t Ocw t,T.P,Cquw

w=1

Mq
=—2L L, RT

Dy
Cq

q

(A17)
so that
n
Cq alncq
=S (252
q:
(A18)

Like Lig, Skqand Diq4link the molar flow of solute component kto the conjugate molar force

of solute component g. Unlike Lxg, Skq # Sgi and Dig # Dy
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An application of irreversible thermodynamics to the Lamm equation

Equation A18 describes the molar flow of one solute component in a multi-component
system in the analytical ultracentrifuge, and derives from the application of irreversible

thermodynamics to AUC [Williams et al., 1958; Fujita, 1962; Fujita, 1975].

Each coupled-flow-sedimentation (Equation A16) and coupled-flow-diffusion (Equation
A17) coefficient is described in terms of its corresponding phenomenological coefficient,

Lk q. In the absence of magnetic fields or Coriolis forces, the reciprocal relations give Liq =
Lqx but for q not equal to k, there is no equation that describes Liq in terms of
independently determinable parameters. (In the presence of magnetic fields or Coriolis
forces, resort must be made of the more general form of the reciprocal relations mentioned

in Section G: The dissipation function and the Curie-Prigogine principle.) For Lk,

Ck
lim Lk k= " 7
Cq#k>0 NyM, fi,

(A19)

where Nj is Avogadro's number and fx is the frictional coefficient of solute component k, but
this equation only applies in the limit as all solute concentrations other than that of solute
component k approach zero. Nevertheless, if there are no solute components other than k,
and if fx, ck and Mg are known, Lkk is the one phenomenological coefficient that can be

calculated.

For a system of n components, there are nLy - valuesand (72 - n)/2 Ly g2k = Lgzkk
values (assuming the absence of magnetic fields or Coriolis forces). Given nlinearly
independent equations in the form of Equation A1, in which the nvalues of Ly 4, the n
values of )?q, and the nvalues of fk are known, the remaining unknowns, which are the

(12 - n)/2 Ly g = Lqzik values, could be calculated for any part of the system in which n

did not exceed 3, as for n> 3, (- n)/2 > n.

Of all the parameters needed to calculate Lk, fk is the most challenging to determine. In the
absence of solute components other than 4 £ can be calculated from the Stokes equation,
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fr = 6mRy,
(A20)
if Ry, the Stokes radius of an equivalent sphere of solute component 4, and 7, the solution
viscosity, are known. The applicability of the Stokes equation, however, is questionable
except as cxapproaches zero, at which point, 7becomes identical to the solvent viscosity.
Given the restricted applicability of Equation A19, the prospects for calculating Dk q or skq
would hardly be less promising if Lxx could not be calculated under any conditions.
(Nevertheless, for a practical approach to using such coefficients, see Section N: A simple
coupled-flow equation for AUC.) The main utility of Equation A19 is to show that
hydrodynamic parameters appear in the denominator of the one phenomenological
coefficient that can be calculated. Thus, if expressions for other phenomenological
coefficients were found, it would not be surprising if they too included hydrodynamic
parameters in their denominators. (It should thus come as no surprise that no
hydrodynamic parameters are found in Equation N10, from which the phenomenological

coefficients of its sources cancel.)

In general, for n > 3 at least (see the discussion following Equation N44), Lk q, Dxq and skq
cannot be calculated from other experimentally determinable parameters, and cannot be
determined directly by any practical or routine approach. Informative parameters derived
from Lk g, Dkq and skq can be determined experimentally, however. These experimentally
determinable parameters are the apparent diffusion coefficient, the apparent sedimentation
coefficient, and the apparent reduced molar mass coefficient. (In reference to these
coefficients, the word “apparent” is dropped henceforth, except parenthetically in the three

definitive descriptions that immediately follow.)

The (apparent) diffusion coefficient of solute component k is
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n n
D, — M, cq (9dlnc, D - M, 1 [0cq D
k= <6lnck> ZM_ or ) k4T (ack) ZM_q or ) 4
Ck t t
t t

or ) =1 )
n n
dlnc dc diny,
(a_k) RTZLk'q( or > 1+qu (aC‘Z>t( ocy >tTP ]
ar ¢ q=1 vt e
1 alncq dc 6ln)/q
MkRng—lqur< ar ) Il a 21 (a_c‘:;)t( dcw >tTPC
= 1(%)
r\or ),
= Mk o S L Incg " (26 ol
& 2., o g 2,(5) (G |
Sk q=1 w=1 t b Cazw
¢ ),

(A21)

and the (apparent) sedimentation coefficient of solute component k is

n n
M, 1 M;, _
Sk = —Z M—cqsqu = —Z Lk,q Mq(l — vqp) ,
Ck — q Ck —
q=1 q=1

(A22)

where, for a multi-species component, Mx = (Mk); is the molar-flow-average molar mass of
component k. (See Section I: Calculating molar mass, chemical potential and partial specific
volume for a multi-species component.) Resort to (My)) is necessary for the definition of the
mass flow of component k in terms of the molar flow of component k. As mass is conserved
but molarity is not, the mass flow of component k is preferable to the molar flow of
component k when casting the continuity equation, the solution to which provides the

sought-after description of transport in the system.

The (apparent) reduced molar mass coefficient of solute component kis defined as

12
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2 1 1 s lwz dincy, n s
w?sy qlM a°kq r or ), 4a=11, “aka
o- = = =
e (),
<6ck> a=1]M, \ or k.a r~a=tM,\dr ) ~ka
or

dlnc 1 dlnc 1
( 3 k) w? n_ 1M CqSk,q (_afk)t 3=1M_ank,q Dy 4
B dcg B dcg
3=1M (af) Diq 3=1M (af) Diq
(alnck) W2 Yy LigMy (1= 5,p)
a¢é :

= dlnc, dlny, '
RT Xg=1Lkq (T) l a2 (acq) ( dcw )f'T*P’Caiwl

where, for the effect of component g on component 4; gx4 is the coupled-flow analogue of

(A23)

ok As shown in Section N, oxg = @?Skq/ Drg (Equation N10). Like sxq and Dxg, okqlinks the
molar flow of solute component kto the conjugate molar force of solute component g. Also
like sxq and Dig, oxq # 04k While ox cannot be completely defined without specifying w?, on
which it explicitly depends, this might be viewed as a virtue, as unlike si, ox preserves
information regarding the field dependence of transport, including some effects that might

be expected in cases of field-dependent solvent compression.

Because ok is proportional to the ratio of sk and Dy, and because both sk and Dy, are
proportional to the highly fraught parameter, (Mk); (see Equations 113 to I15), the two
(My); terms cancel in ox. As shown in Section I, however, Mj and other parameters
pertaining to multi-species components are no less inconvenient. Such issues are rendered
moot, however, by working, as in Section C (A solution to the t- and §-dependent Lamm

equation in terms of species), with species rather than components.

Along with Dy, either sk or ok are the transport coefficients needed to describe AUC results
or simulate transport in AUC. In principle, for each solute component, all three of these
parameters can be determined experimentally, though in practice, for complicated systems,

it can be difficult to obtain more than an average or approximate value of some parameters
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by analysis of experimental data.

The coupled flow coefficients, Dxq and skq, are distinct from Dy and sk, respectively, which,
respectively, are the t-dependent, §-independent scalar coefficients derived from Dy and sk
in Section B (Steps taken to solve the t- and §-dependent Lamm equation), and are also
distinct from Dye and ske, respectively, which, respectively, are the diffusion and
sedimentation coefficients of species e of component k in Section C. To highlight their

distinction from similarly denoted parameters, Dxq and skq are shown in bold typeface.

The relationship between Jx and Ik is given by Ix = MyJx, the derivation of which is shown in
Section I (Calculating molar mass, chemical potential and partial specific volume for a multi-
species component). Thus, in terms of Dk and sk, or Dk and ok, the mass flow of solute

component k can be written as

dinc
JikMy, = I, = ¢ [sszr — Dy ( k) ] ,
t

or
dincy,
JkMy = I, = ¢ Dy [Ukr - ( ar )t]
or
JkMy = I, = ¢ Dy lffk - (alar;Ck) l\/Z_g‘
t
(A24)

The total mass flow is

n
I:ZIR
k=1

(A25)
As a function of t and r, the Lamm equation [Williams et al., 1958], which is the continuity

equation for sedimentation, can be written as
(6c> 1 <6r1 )
at),  r\or/,
or
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>3, -2 G,

and as a function of t and §, the Lamm equation can be written as

@) -(57),

a¢
or
= /9, . <aj_ 1k>
2,502 550,
(A26)
where
C:;Ck
(A27)

is the total solute concentration.

Applying the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981],
a numerical solution to the t- and r-dependent form or the t- and §-dependent form of the
Lamm equation can be obtained. (See Section B: Steps taken to solve the t- and §-dependent

Lamm equation.)
Averages
Equations A24 and A25 can be combined to yield

I= \/2_5,(2 [C"Dk(’k ~ D (af)_?)tl

or

15
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I = \/Z_EZ lckska)z — Dy, (%)tl )

(A28)

which is the equation of total mass flow.

The most useful averages that can be applied to the total mass flow equation are the overall
gradient-average diffusion coefficient, Dg, and the overall weight-average sedimentation
coefficient, sw. The diffusion coefficients and concentration gradients of all solute
components are used to calculate Dg, while the sedimentation coefficients and
concentrations of all solute components are used to calculate sw. Respectively, these

averages can be calculated as
dc dc
oo (GE), 2o (G),

De =—, (o) (%)
k=1\"9% ), k=1\"gr ),

(A29)
and, in terms of its product with w2,
2 w? Y= SkC _ Yik=10kDyci _

w*°s,, = = = (aD)
v 713:1 Ck 1]:=1Ck v

(A30)
where (oD)w is the weight average of the product, oxDy, for all solute components. Applied

to the flow equation, D¢ and sw yield

I=.[2¢ lcswcu2 - Dg <g—g>tl :

(A31)

In general, at any time up to and including equilibrium,
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n a&)
ZSW_leZZﬂSkal k=1<af ¢ _<6lnc w? Yi=1 Sk
D, n_ dc ~\ 9 ) dc
Bt Aane(GE) ) s (Ge),

D;
_ (alnC) Z;(l=1 O'kaCk
~\ 0 oc '
Folmand(5),

(A32)

Though general, this equation cannot be applied to the case of all (dck/d¢): = 0, except by
taking the limit as all (dck/d€): become vanishingly small after having first been perturbed
from zero. Such a limiting case pertains in the approach to equilibrium at zero field,
provided that a field has been applied long enough to perturb (dcx/0%): from zero.

Equilibrium is dealt with next.
Equilibrium

Throughout an AUC system (hence, at all §) at equilibrium, (dc/dt)s = 0,1 =1sx = 0, and all
derivatives of I equal zero, where I« is the total mass flow of all solute components at
equilibrium. Furthermore, at equilibrium, all system properties become t-independent, so
that all partial differentials with respect to all spatial dimensions, including &, become
ordinary differentials. Additionally, it is assumed here that all partial differentials with
respect to the spatial dimensions other than & are zero. For the equilibrium condition, then,

Equations A24 and A25 yield

n n
de
Z [CkaUk - Dkd_f] = Z Ieo =1 =0,

or, applying the definition of ok in Equation A23,

n n
5 dck
CpSpw™ — Dkd_f = Ik,oo = Ioo = 0,
k=1

k=1
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(A33)

where the expression in square brackets is equal to Ixw, which is the mass flow of solute
component k at equilibrium. Due to conservation of mass, at equilibrium, throughout the
system, each Ixw = 0 and each dlx«/d§ = 0. (Conservation of mass ensures that (dck/0t):
= -(0[28]95Ix/0%). Thus, when (dck/dt)s = 0, as it does at equilibrium, (9[28]°>1x/d%): = 0.)
Nevertheless, as a consequence of their concentration dependence, each Dy, ok and s, can,

and most likely will, be ¢-dependent at equilibrium, except for the zero-field case where

each dcy/d§ =0 atall &,

Although the mass flow of each solute component is zero at equilibrium, the mass flows of
individual species of a solute component may be nonzero at equilibrium. In general,
throughout the system, the mass flows of the species of a solute component sum to zero at
equilibrium. (The dependence of species concentrations on the concentration of the
component comprising those species, versus the independence of the concentration of one
component from the concentrations of other components, accounts for the difference in
expectations for the mass flow of a species versus the mass flow of a component at

equilibrium.)

In the limit as equilibrium, or infinite time, is approached, [ approaches zero. Applying this

limit to a re-arrangement of Equation A31 results in

. SW .
lim w? — = lim
t—oo DG t—>oo

dlnc dinc
50), &
(A34)
Applying the equilibrium condition, in which each Ix = 0, to Equation A28 (expressed in

terms of ox and D) shows that, for each solute component, k,

. dcy
fim [cuPuoe =D () | =0-
(A35)
Dividing this equation by Dk yields

. dcy,
fim [ccon = (5¢) | =0
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Taking the sum over all k results in

n

n n n
" l (M) l i z z (ack) lim | 21 k% z (M)
m CO — | — = l1im C, 05, — —_ = lim |¢c ————— -
[am kOk P = kOk 0¢/,|  toe nCk ¢/,

k=1

(A37)
Division by c yields
lim la — (%) l =
tooo |V € /,
(A38)
Thus,
lim o = lim <6ln6) _ dlnc.
too W tsw\ 98/ dE
(A39)

Combining the results of Equations A34 and A39 shows that

lim w? — = lim g, .
t—oo G t—oo

(A40)

Equation A40 only applies at equilibrium. Solving Equation A40 for Dg shows that, at
equilibrium, D¢ = w2sw/ow. Furthermore, Equation A30 shows that, in general, w2sw =
(oD)w. Thus, at equilibrium, Dg = (6D)w/ow. Neither of these expressions for D¢ is especially
well defined for the case of equilibrium at zero field, however. Nevertheless, information
about that system state can be gained from Equation A40 via Equation A39. As dlnc/d§ =0
at zero field at equilibrium, Equation A39 shows that, at zero field at equilibrium, ow = 0.
Applying this result to Equation A40 shows that w2sw/Dg = 0 at zero field at equilibrium.
For all of this to hold, as the field approaches zero and the system approaches equilibrium
at zero field, w?sw must approach zero faster than D¢. Expressed as limits applied to D¢ =
(0D)w/0w,

D D
lim (lim Dg) = lim llim (@ )Wl=aw ¥~ D,

w2r-0 \t->oo w?r-0 [to0 0y, Ow
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(A41)
is obtained at equilibrium at zero field. (As the system approaches equilibrium at zero field,
each ox approaches zero, as does oy, so that (6D)w can be equated to owDw as w?2r

approaches zero and t approaches infinity.)

Plateau regions

Plateau regions are defined as parts of the system where all (dck/9%): = 0. In the limit as all

(0ck/0%)t approach 0, Equation A28 simplifies to

Jim 1= \/z_fz ckDyoy = c(aD),\[2&
k=1

(58), 0
or
lim I— \/_Z CkSEw? = CS,w \/2_5
(as .
(A42)

Thus, using r in place of (2§)%5, I = c(oD)wr = cw?swr in plateau regions.
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Section B: Steps taken to solve the t- and §-dependent Lamm equation

The following finite-element method for solving the t- and ¢-dependent continuity equation
requires a resort to discrete spatial elements and a finite time increment. The method
further requires the flow of each solute component to be zero at the system boundaries, &n
and &. As the flow of each component is expected to meet this boundary condition in a
properly enclosed AUC system, the finite-element solution shown can be applied to all
components, with solute components treated explicitly, and the solvent component treated

implicitly.

The solution begins with an integration that takes advantage of the boundary conditions to
eliminate the partial derivatives with respect to €. To that end, the continuity equation
(Equation A26) is first multiplied by H, which is an arbitrary function of §, and then
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integrated over the entire range of €. (Ultimately, H will be replaced by a set of N functions

of € indexed by i, where 1 <i<N.) Thus,

I G s == (A5 s

(B1)
Integrating the right hand side of this equation by parts results in

2 () e

Zﬂ(eb WZEoh(E) = H (N Zemh ()] ~ Z ji<6€) VE Ikdf]

=1

(B2)
where Ik(§) is Ik at £ and H(%) is H at €. As the boundary conditions in AUC are Ix(§m) = 0 and

k(&) = 0, the preceding equation reduces to

(B3)
Furthermore, as H is 1ndependent of t, (OH/0%): = dH/dE Thus,

(B4)

and Equation B1 becomes

ijb % de - Z]ibi—?\/z_akdf.

(B5)
Next, ck is approximated as the sum of N products, each of which consists of a &-dependent

function, Py, multiplied by a corresponding £-independent coefficient, cxn, which
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nevertheless remains a function of t. With both Py and cxh indexed by h, where 1 <h <N,

n N
C=ch= ch,hph'
k

n
=1 k=1h=1

(B6)

Each element, h, corresponds to a point, &. By convention, £ = &y, and & = &,. Despite the
association of h with spatial parameters such as &, cxn is independent of §, so that (dckn/98)¢
= dckn/dE = 0 atall & (Each ckn is &-independent, and at all € is equal to the value of ck at &n.)
Figures B1 through B6 show, for the case of equal spacing between adjacent &, the
consequences of using the hat function (also known as the triangular function) for each Py,
along with the corresponding set of &-independent solute component concentration

coefficients, ckh.

0.12
0.10
0.08
E
2 0.06
o* g,
|
0.04 éz
&
g,
0.024 g
| E—’G
0.00; | | | | | | | &
g
T T T T T g
18 20 22 24 26 g
) 9
& (cm?) P&y
g

Figure B1. An example of ck versus § at a single time, t. Specific points, &, are shown, where

1 <h <N, and the points are equally spaced. A value of N = 11 was chosen for this example.
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Figure B2. An example, corresponding to that shown in Figure B1, of Py, versus &. Each Py
function is independent of t. The same &}, values shown in Figure B1 are those applied here
to the Py functions. (See Equations B58 to B63 for a more general description of the Py,

functions in the form of hat functions.)
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Figure B3. A detail of Figure B2, showing just three of the Py functions versus &. The system
boundaries are §&1 = &m = 17.2 cm? and & = §11 = & = 26.3 cmZ. In this example, where the
points are equally spaced, each A& is the same, and is described by Equation B38.

(Equations B53 to B57 describe each A&, in general.) Calculation of &, is given by Equation
B36 in general, and by Equation B37 for the case of each A&, being equal. Equations B58 to

B63 describe each Py function and its derivative.
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Figure B4. The §-independent concentrations, ckp, that describe ck at time t. (Compare this
figure with Figure B1, which shows ck as a function of € at time t.) Though each ckp is &-
independent, this figure shows that the value of each cxn at all € is equal to the value of cx at

&h. (As cx depends on both € and t, each cxn remains t-dependent, however.)
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Figure B5. Phckn versus §, where each Phcyn is obtained by multiplying each P, shown in

Figure B2 by the corresponding cxn shown in Figure B4.
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Figure B6. The sum, Y,)_; P,y 5, versus & Each Phcin used in the sum is shown individually

in Figure B5.
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For equally spaced points, &, = &1 + [h - 1]AE, where Ag is the spatial increment between any
two adjacent points. Equations B54 to B57 describe Ag for the general case, in which Ag can
be different for different pairs of adjacent spatial points. Equations B58 to B63 describe Py,

and dPn/dg for Py in the form of the hat function, and the case of potentially variable A&,

As cxh is independent of €, (Ocin/0t)s = dckn/dt, so that

i i dC,;h j:bPthf _ Zfib le_];\/z_gjkdg_

k=1 h=1 m

(B7)
Expanding Ix (Equation A24) as

alnc
I, = ¢ Dy, Io'k k l\/_ [O'kaCk Dk 65 I\/_

and re-writing Ix in terms of the §-independent component concentration coefficients and

corresponding &-dependent functions results in

N

N
dP,
oy Dy Z Ci,nPn — Dy Z Ck,n d_f] 2V, 2¢.
h=1

h=1

Ik=

(B8)
Substituting this for Ix in Equation B7 and rearranging slightly yields

(B9)

The dependence of Dx (Equation A21) and ok (Equation A23) on the concentration, cq, of
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each explicitly included solute component, q, renders Dk and ok §-dependent in all but
special cases, such as t = 0, when all (dcq/d%): = 0 at all §&. (Where the solvent is
compressible, once w exceeds zero, (dpo/08)t # 0, in which case, in all likelihood, (dcq/08)¢
will not equal zero at any position at any subsequent time.) Previously described, first
approximate solutions [Cox and Dale, 1981; Schuck et al., 1998] to the r- and t-dependent
Lamm equation have been derived by treating Dx and sk as r-independent. To obtain a
second approximate solution to the Lamm equation, Dx and ok are expressed in terms of &-
independent coefficients that are separable from §-dependent functions. A first
approximate solution that pertains to the case of (0Dx/9€): = 0 and (dox/9d%): = 0 at all § will
then be derived from the second approximate solution later in this section (The case of
(0ok/09%): = 0 and (dDx/0%): = 0 at all ). In Section ] (Form of the general solution from
Equation C32), a general solution based on the second approximate solution will be

presented.

First approximate solutions to the Lamm equation have been, and in its initial application
here, the second approximate solution will be, incorrectly applied to cases in which Dy, ok
and sk are r- or £-dependent. Due to the typically weak r- or &-dependence of Dy, ok and sk,
such first and second approximate solutions are likely to yield satisfactorily accurate results
when applied to systems in which large and rapid concentration changes (as might arise
from concentration gradients that are both high and steep) are absent. Sets of results
obtained using the first approximate and second approximate solutions to the ¢- and t-
dependent Lamm equation are compared in Section F (§-dependent functions to

approximate Dke and Oke).

As it temporarily becomes more convenient to work with sx and Dk instead of ox and Dy, sk is
approximated as the sum of N products, each of which consists of a §-dependent function, Pj,
multiplied by a corresponding §-independent coefficient, sxj, which nevertheless remains a

function of t. With both Pj and sijindexed by j, where 1 <j <N,
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N
Sk = Z Sk,j P

j=1
(B10)
where each sij at all € is equal to sk at §;. The result expresses sk as separable €-independent

and &-dependent terms.

To express Dk as separable &-independent and §-dependent terms, this transport coefficient
is also approximated as the sum of N products, each of which consists of a &-dependent
function, Pj, multiplied by a corresponding &-independent coefficient, Dxj, which

nevertheless remains a function of t. With both P; and Dx; indexed by j, where 1 <j <N,

N
Dy = z Dy By
j=1

(B11)

where each Dy at all € is equal to Dk at &;.

Equations A23, B10 and B11 are combined to express ok in terms of previously defined
(Equations B10 and B11), separable ¢-independent and §-dependent terms. Thus,

2 2 ¢N
w's W Z]-:lsk,ij
=T3%N
Dy, j=1 Dk.ij

O =

(B12)

While the same approach has been used to express ck, Dk and sk in terms of £-independent
coefficients of §&-dependent functions, those &-independent coefficients and &-dependent
functions are indexed by h in the case of ck, but indexed by j in the case of Dy or sk. At any
given time, then, the §-dependent functions used in the description of cx are expressed in
terms of &, while the §-dependent functions used in the descriptions of Dk and sk are
expressed in terms of ;. To use these parameters together in the same solution of the

continuity equation, at each time point, the set of all §; is made equivalent to the set of all &p.

Using w?2sk in place of oxDk (from a re-arrangement of Equation A23) results in
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n N n N
_zwzzzc jfbspd_Hgdg—z Zc jfb dP"dHff
k,h 5 k h,df k,h : k df dE

k=1h=1 m

(B13)
Replacing sk with the expression in terms of skj, and replacing Dx with the expression in

terms of Dy, yields

and permits the ¢-independent parameters, Dx; and skj, to be factored out of the integrals.

Thus,

k=ih=1  j=1 m
Le v & dp, dH
JZZ%QMAIE Wl
k=1h=1  j=1 g A5 A8
(B14)
Letting
w?sy,j
Ok] DkJ )
(B15)
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where ok is §-independent by virtue of Dij and skj being &-independent, the solution can

now be expressed, after some re-arrangement, as

zi T J ngthf—ch,hka,j [ak,j J. * ey A | "p L El

k=1h=1 m j=1

(B16)

At all §, each of the N scalar coefficients, ox; (defined in Equation B15) is equal to ok at §;.

As aresult of using Equation B15 in Equation B16, the product, Dxok, has been expressed as
the sum of N products, each consisting of a §-dependent function, P;, multiplied by a &-
independent coefficient, Dijok;, which nevertheless remains a function of t. Additionally, the

coefficient Dyjok; is itself the product of the previously defined coefficients, Dyj and ok;.

Dividing Equation B16 by 2, and expressing dckn/dt as Ackn/At, where Ackn and At are finite

increments, yields

Zi %AZ’;"j Pthf—ckhZDk,[akjbePhdgfdf jfb b St fl

k=1h=1

(B17)
The difference between the unknown concentration, cgn+ = ckh at [t + At], and the known
concentration, cxh- = Ckh at t, is the change in concentration, Ackn, during the time

increment, At = [t + At] - t. Using Ackgh = Cih+ - Ckh-, and multiplying by At, yields

n N c &p
ZZ kht ‘j P, Hdé¢

k=1h=1 m
> bug o [ et [ 4 ] ) <
_Ck,h k,' O-k,' . h_ —_ ;) —— =
T J J £ J dsr £ J d§ df

(B18)

The remaining cxn term can be replaced with either ckh-, which would yield the less stable
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explicit solution, or cxn+, which would yield the more stable implicit solution. In the Crank-
Nicholson approach [Schuck et al., 1998] used here, both substitutions are made, resulting
in two forms of Equation 18. Additionally, okj+ and Dkj+, which, respectively, represent ok
and Dy; at time [t + At], are used in conjunction with the explicit form of Equation B18,
where cxh is expressed in terms of ckxh+. Finally, ok;- and Dkj., which, respectively, represent
ok;j and Dy; at time t, are used in conjunction with the implicit form of Equation B18, where
Ckh is expressed in terms of ckh-. The two resulting versions of Equation B18 are summed to
yield, by virtue of the previous division by 2, their average. The average, like any sum of the
two solutions, is considered stable, and is expected to permit the use of larger At values

than either the explicit or implicit solution alone would.

Applying the Crank-Nicholson approach yields, after some rearrangement,

n

;;Ckh+ J‘SbPthf ZDkHIUk”f:bPPhdffdf ffb]dfd_ffdfl
ZN:ckh_ j P,Hd¢

h=1 $m

$b $b
Di- o [ nriggeas- [ nG e )

+

M= I

-
1l
[

(B19)

As oy and Dy are functions of all ck (see Equations A21 to A23), and as each ck is time
dependent (see Equation A26), ok and Dk are also time dependent. Thus, for the purpose of
obtaining a general solution, ok;- and Dk;- must be expressed as functions of parameters
equal to all ckp- for which h = j, while okj+ and Dkj+ must be expressed as functions of
parameters equal to all cixn+ for which h = j. General expressions of this sort are presented

shortly. (See Evaluating the &-independent coefficients of the basis functions indexed by j.)

At this point, there are n equations and nN unknown values of ckn+. To obtain the nN

equations needed to solve for all values of ckn+, H is replaced by N functions,
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(B20)
where each P; has the same functional form as each corresponding Py. (For i = h, P; = Pn.)

Applying Equation B20, the set of equations describing the solution is given by

n N N
$b $b $  dP, dP;
SN cns f PhPidf—ZDk,H[akﬁ f PP, dffdsf f Py g b o
j=1 $m

k=1h=1i=1 m

zn:zN:ZN:Ckh— J PpP;d§
k=

1i=1 $m

N ) $b dp. d
L [“"""L it = [ g o] )

=
>
]

(B21)

The result is solved for ckn+ using the process described below. (See Solving for cin+.)
Interactions between solute components and within each solute component (involving its
species) are handled separately between time steps. (See Section C: A solution to the t- and

¢-dependent Lamm equation in terms of species.)
Evaluating the &-independent coefficients of the basis functions indexed by j

Truncated virial expansions are used to approximate the dependence of Dkj., Dxj+, okj- and
okj+ on the concentration of each explicitly included solute component. To evaluate the &-
independent coefficients of the §-dependent functions indexed by j (see Equations B10 and
B11), prior to each time increment, Dkj., Dxj+, okj- and ok;j+ are, to the extent possible,

approximated by
o dcg
Yh=1 Zq 1Yb,k,q T\

Dicjm = Dlhj- dcg,
S5es et hosq g2 /
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dcgj+”

dc

q,
b1 23=1 Pb.k,q W

b

dc
Yhe1 ZZ=1 Ybka ¢

. b
q,]-
q’j_

b )
dcg it

Yp=12g= 1ybkqm

(B22-)
dc, :.P
/Zb 12g=1Ybkgq qu1++\
Dy j+ = D% j+
Ype12g= 1hbkqﬁ
(B22+)
- dcg ;P
2b=123=1pb,kqdcL
dcg -
Zoo= Zn h ]
wZSk‘j_ wzsok’j_ b=14q=1""b,k,q dC )
k,] Dk'j_ Dokﬁj_ [e0] n dcqr]_ b k']
Zb:qu:lyb,qu
dcg
L= 12‘7 1hbkq dc ]]_
(B23-)
and
o decg iy
/Zb=12q 1Pbk,q quJ+
dcg it
Sis Zies g g
WSy jr  W7S° 4 b1 Sa=L O deg ;o .
O ; — — =0 .
oI Dy j+ D%+ o deg,ji” oIt
Ype12g= 1ybkqﬁ
dc
1) n CI]+
Zb=12q 1hbkq dC i+
(B23+)

respectively, where n is the number of solute components, D°;. at all € equals Dk at §; at time

t in the limit as c approaches 0, D%+ at all § equals D at §j at time [t + At] in the limit as

c approaches 0, 0°;- at all £ equals ok at §j at time t in the limit as c approaches 0, 6°+ at all

€ equals ok at & at time [t + At] in the limit as c approaches 0, s°%;j- at all § equals sk at §; at

time t in the limit as c approaches 0, s°j+ at all § equals sk at §; at time [t + At] in the limit as

c approaches 0, cqj- is the E-independent concentration coefficient of solute component q at

time t (at time t, cqj, at all §, equals cq at §j, just as ckp, at all §, equals ck at &, in Equation B6),

Cq,j+ is the E-independent concentration coefficient of solute component q at time [t + At] (at

34



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

time [t + At], cqj+, at all §, equals cq at §j, just as ckh, at all §, equals cx at &, in Equation B6),
and where pbk,q, Ybkq and hpxq are the bth of up to an infinite number of coefficients of
proportionality for the density increment, thermodynamic nonideality, and viscosity effects,
respectively. By definition, ¥.0_1 D1 k,q» 2g=1Y1,kq and Xg=1 hq i 4 are each equal to 1. Each of
the pbkq Ybkq and hpxq coefficients couples the concentration of component q to an effect
on the transport of component k. (See Section D for more details regarding these

component-based virial expansions.)

With + representing either - or +, the component-equivalents of Equations N23+ and
N24+ can be used in place of Equations B22+ and B23+, respectively. Henceforth, cq is
used to denote the concentration of solute component q at either time t or time [t + At], and

some unspecified position, ;.

Individually, the product of b(cq)? -1 with the corresponding coefficient of proportionality
Pbkq yields the bth term for the contribution of cq to the density increment of the system as it
affects the transport of component k, the product of b(cq)? - with the corresponding
coefficient of proportionality ybkq yields the bth term for the contribution of cq to the
thermodynamic nonideality of the system as it affects the transport of component k, and the
product of b(cq)P -1 with the corresponding coefficient of proportionality hpkq yields the bth
term for the contribution of cq to the viscosity of the system as it affects the transport of

component k, where b(cq)?-1 = d(cq)?/dc,.

Collectively, the sum of products given by };", pb,k,qbcqb_1 is a measure of the total
contribution of cq to the density increment of the system as it affects the transport of
component k, the sum of products given by }.7°_, yb,k,qbcqb_1 is a measure of the total
contribution of cq to the thermodynamic nonideality of the system as it affects the transport
of component k, and the sum of products given by ), hb,k,qbcqb_1 is a measure of the total

contribution of cq to the viscosity of the system as it affects the transport of component k.

Henceforth, okj, Dxj and sk are used to denote the &-independent transport coefficients at
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either time t or time [t + At], and 0°;j, D°kj and s°; are used to denote the §-independent

transport coefficients at either time t or time [t + At] in the limit at c approaches zero.

By definition, 6°;j, D°; and s°;, are -independent, and for a given t-independent field
strength, may also be t-independent. In the case of solvent compressibility however, the
expectation is that Ac®;j/Aj # 0 and AD®;j/Aj # 0, from which it follows that As°x;/Aj # 0.
The condition that, for all solute components, Ac®k;/Aj = 0 and AD°;/Aj = 0, from which it
would follow that As®j/Aj = 0, can only apply to a system with an incompressible solvent,
in which case, 6°;j, D°;and s°k; can be replaced with their respective, system-wide
constants, 6°, D°k and s°. (In writing Equations B22 and B23, it was assumed that Appxq/Aj
= 0, Aybkq/Aj = 0 and Ahpxq/Aj = 0 for any given pair of components k and g, even in the
case of solvent compressibility. If required to deal adequately with the case of solvent
compressibility, pvkgq, Ybkq and hpxq can be replaced with their respective j- and t-
dependent coefficients, which would be py kg, ¥bkg,j- and hpkg;- at time t, and would be
Pbkaj+ Ybkaj+ and hpkqj+ at time [t + At], where, denoting a coefficient at either time by
dropping the - or + suffix, Apbxqj/Aj # 0, Aybkq;/Aj # 0 and Ahpq;j/Aj # 0 for any given

pair of components k and q.)

To avoid quadratic and higher-order terms in cq;- or cqj+, along with other complicated
terms arising from the presence of a truncated virial expansion in the denominators of ok
and Dy; in Equations B22 and B23, no effort is made, initially, to solve Equation B21 as
written. Instead, Equation B21 is solved as if okj+ and Dgj+ were independent of all cq;+, and
as if ox;- and Dy;. were independent of all cq;-. Furthermore, because cq;+ values are not
known prior to their use in okj+ and Dkj+, okj- and D;- are used in place of okj+ and Dyj+,
respectively. The resulting solution is that referred to as the second approximate solution.
(As previously mentioned, the first approximate solution that pertains to the case of
(0Dk/0&)t = 0 and (dok/0¢): = 0 at all € will be derived from the second approximate

solution.) The discussion of this issue is continued following Equation B24.

Equations B22 and B23 use a set of power series of each solute component concentration to
describe the thermodynamic nonideality, density and viscosity of the solution. For solutions
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that are too concentrated to permit the use of highly truncated virial expansions in the
description of parameters such as Dy, ok and sk, additional terms from the infinite series can
be retained. (See Section D: Expressions for the deviation from van 't Hoff behaviour and
other virial expansions.) It is, however, incorrect to treat ok, Dxj and sk; as if they were
functions of any terms involving solute concentrations in the second approximate solution,
unless that solution is applied iteratively within each time increment. The general solution
presented in Section ] (Form of the general solution from Equation C32) does apply the
second approximate solution iteratively, and thus permits the concentration dependence of

okj, Dxjand skjat times t and [t + At] to be treated correctly.
Solving for ckh+

There are now three sets of space-dependent, time-independent basis functions (the set of
all Py, Pi and Pj), and there are N functions per set of such basis functions (1 <h<N,1<i<
N, and 1 <j < N). For each solute component, k, at either time t or [t + At]: there are N
space-independent, time-dependent, concentration coefficients, ckn; there are N space-
independent, time-dependent, diffusion coefficients, Dxj; and there are N space-
independent, time-dependent, sedimentation coefficients, sk, which are related to the N
space-independent, time-dependent, reduced molar mass coefficients through w?2sy; =
Dijox;. For the case of each Py, P; and Pj being a hat function (as described by Equations B58
to B63), for each solute component, k, at either time t or [t + At]: each product, cknPs, is
maximal at spatial element h, and is zero below spatial element [h - 1] or above spatial
element [h + 1]; while each of the products, Dk;Pj and Dxjox;Pj, is maximal at spatial element

j, and is zero below spatial element [j - 1] or above spatial element [j + 1].
Let

b > & dp, §  dp, dP,
Fini+ =J PhPidf—sz,ﬁ Uk,j+] P]'Phd_{;fdf_j de_fd_ffdf At
= ¢ Em

m m

and
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N

$b $b $b 4P, d
Foni- = || PuRdE + ) Dy J. Py S 66 - . v s e

m =
(B24)

Equations B22 and B23 are used to calculate Dyj and okj, respectively. Despite their
dependence on all cqj+, for each iteration (see Section |) of the second approximate solution,
okj+ and Dgj+ are treated as if they were independent of all cx;j+, and in the first iteration of
any given time increment, ox;j+ and Dy;+ are replaced with ox;. and Dyj., respectively, all of

which permits the set of solutions to be written as

n n N N
Z Z Cin+Froniv = Z Z z Ce,n—Fieni-

k=1h=1i=1 k=1h=1i=1
(B25)
where each Fip i+ is treated as independent of all ckj+. In the second approximate solution, it
is permissible to treat Fi ., okj- and Dkj- as dependent of all cqj-. In the general solution
(Section]), the dependence of Fxn,i+, Okj+ and Dgj+ on all cqj+ is repeatedly approximated,

with the errors in those approximations approaching zero with a sufficient number of

iterations.
Letting
N
Zyi- = Z Cr,h—Fie ni—
h=1
then results in
n N n N N
k=11i=1 k=1h=1i=1

(B26)
As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Py
and P; results in most of the terms indexed by i and h being zero:
Fihi1+ = 0 and Fxp1- = 0 forh > 2;
Fxnn+ = 0 and Fgnn- = 0 for h < [N - 1]; and
Fihp<i<n+ =0and Fihpi<i<n-=0for[i-2] <h<[i+ 2].
Consequently,
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n n
Z Zyi- = z(ck,1+Fk,1,1+ + Ck,2+Fk,2,1+) )
k=1 k=1

n

n
Z Zyi- = Z(ck,[i—1]+Fk,[i—1],i+ + CivFioiiv + Crofivn]s Frofi+1]iv)
k=1 k=1

for1 <i< N, and

n

n
z Zgn- = Z(ck,[N—1]+Fk,[N—1],N+ + Ck,N+Fk,N,N+) .
k=1 k=1

(B27)

Equation B27 is derived from Equation A26, according to which, (dc/dt)s = -(9[28]%°1/0%)x.
Equation A26 does not state that each (dck/dt)s = -(9[28]%°1x/0%)t, but where this condition
holds, each Zg;i. will equal the sum over all h of ckn+Fipn,i+. As each k refers to a solute
component, conservation of mass ensures that each (dck/0dt): does equal -(9[28]9-51x/0¢)x.
Thus, equating corresponding terms indexed by k in Equation B27 is permissible, and

results in

Zii- = Cra+Fri1+ + CoarFrz 1+

Zyi- = Crli—1]+Fili1)i+ T CrirFriiv T Crofiv1)+ Fifiv),iv
for1 <i<N, and
Zn— = Crn—1]+Friv-1 8+ F Cone Fron v -
(B28)
(Mass is conserved, but molarity is not, in general. Consequently, in the case of a species, €,
of a solute component, k, it is possible for (dcke/dt)s and -(0[28]%5Ike/d%): to differ, where
Cke is the concentration and Ix. is the mass flow, respectively, of species e of solute

component k. Section C deals with the transport of species in detail.)

Equations C74 to C75 show the fully expanded forms of Equation C39, which is the species-

by-species equivalent of Equation B28.
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Equation B28 permits the continuity equation to be solved component-by-component. For
each component, the solution proceeds one concentration coefficient at a time. Solving first
for ck1+ yields

Cii+ = Y1 — Xi1Cr2+

where
Zy1-
Y — ’
fol Fri1+
and
Fro1+
X, . =k
fol Fr11+
(B29)
For i < N, the solution for each subsequent cg;+, in ascending order from 2 < i < N, takes the
form of
Crjiv = Yii = X,iCri+1]+
where
v - Zyi- — Yi[i-11Fk [i-1],i+
i =
Y Feiie — Xifio11Frofi-11,i+
and
X, = Fk,[i+1],i+
ki = .
Y Feiiv = Xifi-11Frofi-11,i+
(B30)

Ati =N, the solution for cxn+ is obtained. In terms of ckn-1]+, the solution for ckn+ is

Cen+ = Yien — X NCr[N-1]+ »

where
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Y — y
N Fie NN+
and
Fie [N—1],n+
Xk,N = F—
Kk,N,N+
(B31)

The solution for ckn-1]+ can now be substituted into the solution for cxn+ to yield

Cint = Yin — Xk,N(Yk,[N—l] - Xk,[N—l]Ck,N+) )
(B32)

which, solved for ckn+, is

Yin — XinYi [v-1]

Ck,N+ =

)

1 — Xy n Xk [v-1]
(B33a)

alternative expressions of which are

_ YenFinn+ = Fiin-11n8+Yi [v-1]

C =
o+ Fi v+ — Fin—1) 8+ Xk [N-1]
(B33b)
and
Zin- — YViein—11Fi [N-11 v+
Ck,N+ = .
Fienn+ — Xin-11Fk [N-1]8+
(B33c)

The above solution for cxn+ does not require knowledge of cin-1)+ or any other unknowns.
This solution for ckn+ can now be used, therefore, to solve the previously obtained

expression for ckn-1j+ in terms of cxn+ and other known parameters. Subsequently, using
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Ck[N-1]+, the previously obtained expression for ckn-2j+ can be solved in terms of ckn-1]+ and
other known parameters. Thus, once ckn+ is known, each preceding ck;+ is calculated in
descending order from i = [N - 1] to i = 2 using Equation B30 until, upon reachingi =1,
Ck1+ is calculated using Equation B29, at which point, the entire array of cy;+ values has
been determined. For i = h, cgi+ = cin+, So that the array of ck;i+ values obtained equals the

array of ckn+ values sought.

This process is carried out for each solute component, k, at each addition of a time
increment. These new cxh+ values are then used as the next cxh- values after the addition of
the next time increment, and the process is repeated until the desired time point is reached,
at least in a noniterative application of the second approximate solution. (The general
solution presented in Section ] (Form of the general solution from Equation C32) applies the
second approximate solution iteratively, with the result that cxn+ is repeatedly recalculated
within each time increment until a convergence criterion (Equation J6) is met, or a

maximum number of iterations is reached.)

It has been found that the process is made more robust by first calculating all ckn+ in the
forward direction starting from ck 1+, then recalculating all ckn+ in reverse order (starting
from ckn+), and averaging the results. The calculation of all cih+ in reverse order is
implemented by obtaining a solution to the t- and §-dependent Lamm equation with the set
of all &, reversed, so that &1 = &, and &y = &m. The solution obtained is backwards in the
sense that ck 1+ at all € is equal to the value of ck at &, while ckn+ at all € is equal to the value
of ck at &m. In general, &, ckh+, Ckh-, Dkj+, Okj+, Dkj- and oj., of the backwards solution are
equal to §[N-h+1], Ck[N-h+1]+, Ck[N-h+1]- Dk [N-j+1]+, Ok [N-+1]+, Di[N-+1]- and ok [N-j+1]-, respectively,
of the forward solution, which is the solution described above for the original orientation.
Solving for ckh+ using the backwards solution then proceeds as described for the forward
solution. Averaging is weighted toward the starting point of each solution, were artefacts
appear to be minimal, so that, subscripting all concentration and spatial parameters by h as
that index applies to the forward solution, the average value of cin+ is (Cxh+)avg =

[Eh - Em) (cne)R + (&b - En) (ckn+)F]/ (&b - Em), where (cknh+)r and (ckh+)r are the values of cin+
obtained from the forward and backwards solutions, respectively.
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Time

In terms of an unvarying time increment, At, the time after () time increments is
tg = to + QAt,
(B34)
where to is the initial time. In general, for Q) time increments, where each time increment,

Ate, may be different from some or all the rest,

Q 0
tg = Z At, = Z(ts - ts—l) ’
=0 =0

(B35)

where t.1 is defined as equal to zero, and to > t 1.
Space

Defining &o as equal to zero makes

&= i 8E, = i(fa ~Ear)
a=1 a=1

(B36)
a general formula for calculating &,. This equation does not require Ag to be the same for all

spatial increments between two adjacent points.

Where Ag is the same for all spatial increments between two adjacent points,

$h =& +[h—1]AS,

(B37)
from which it follows, given &y = &, and &1 = §n, that
_ $b —¢m
A¢ = N1

(B38)
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Reactions

As discussed in Section C (A solution to the t- and §-dependent Lamm equation in terms of
species), it is more practical to explicitly include each solute species as if it were a solute
component. In such implementations, prior to each addition of a time increment and the
subsequent determination of the new cxn+, each solute component’s current species
concentrations (the sum of which equals ckh-) are adjusted to account for the effects of any
chemical reactions in the system, including any mass-action associations or dissociations
between the species of an individual solute component. Thus, at each time point, the re-
calculation of concentration takes place in two distinct steps: first, the effects of reaction
flows are determined; second, the effects of mass transport flows are determined.
Calculating concentration changes due to reaction flows is discussed in Section G (The
dissipation function and the Curie-Prigogine principle). Calculating concentration changes
due to transport flows is described in this section (Equations B24 to B33) for the second
approximate solution in terms of components, in Sections C (Equations C35 to C44) for the
second approximate solution in terms of species, and in Section ] (Form of the general
solution from Equation C32) for the general solution to the second approximate solution in

terms of species.

The solutions to the §-dependent integrals

In the notation used for the solutions to the §-dependent integrals that follow, a spatial
increment from &.1 to &h is indicated by appending a subscripted minus sign to Ag, a spatial
increment from & to &w+1 is indicated by appending a subscripted plus sign to A, &, denotes
¢ at the meniscus, and &, denotes € at the base of the system. The integrals are solved for the

forward solution, in which &.1 < &, < &n1.

A minus sign, a letter x, or a plus sign is appended to a single equation number for each
member of any set of two or three equations that reduces to a single equation in the case of
(0ok/0%)c = 0 and (dDx/0¢): = 0 at all &. Where one exists, an equation with a subscripted
minus sign precedes one with a subscripted x, and, where one exists, an equation with a
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subscripted plus sign follows one with a subscripted x, for a given equation number.

With the hat functions (see Figure B3, above, and Equations B58 to B63, below) used for Py,

P; and Pj, the only nonzero solutions of the integrals in Equation B21 are:

fb €1+1 A
j PP d¢ = PP d¢ = S;H ;
m &
(B39)
¢p ¢n &
[ Pamds = [ Papds =22
fm Eh—l
(B40)
ép Ehe ¢p ¢p
f PpPpd§ = PpPpd§ = 2([ Ph—1Phdf+f Ph+1Phd§> ;
fm fh—1 m m
(B41)
13 Eht1 Af
f Prs1Podf = f PrasPadf = =t
m fh
(B42)
$b $n A&y _
[ ppads = [ ppuds =22=
m gN—l
(B43)
sPP . aﬂPP . & Lﬁaa@g
L 11dE€€_L1 11dE€€__3_ 4 )
(B44)
I%P P d%fﬂ' f%f> P dﬂ%dg én BI%P P,d§
h-1h-1—57 = h—-1Th-1—57 =55 h-1Lpas ;
Em d¢ Ens d¢ 3 2)g,
(B45,)
$b apy, $h apy, & 1 (%
J e = | e =g =g [ b
m -1 m
(B454)
jbeh 2 BPrge [ ey 2P jbehPh Ry
£ d¢ £ 3 £ dg
m h—-1 m
(B46.)
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fh dPh fh+1
=f PhPhd—fdef PhPhdffdf—

$h—1 ¢
1/ [$b $b
_E<f Ph—1Phdf+f Ph+1Phd§> ;
Em Em
(B46y)
fbp P dphfdf— %P P dphfdf—fbp P dp"fdf-
sm h+1th df - sh h+1th d{ - gm hf h+1 d{'— ’
(B464)
jgbpp dhfdf Jghﬂpp dhfdf n 1J€bp Pyd¢ ;
fm h' h+1 dE h' h+1 dé— 6 2 gm h+1%h )
(B47.)
j gbp P, n £d¢ Ehﬂp P, n —1&ds = fn 3 j EbP P,dé
h+1fh+1 57 = h+1Fh+1 =55 h+1FRAS 5
Em dg & dg 3. 2/,
(B47y)
fbe p @y [ p AP 5 PuPudg
NUN 7 = NIN 57 = 0 T
; dé - dé 3 4
(B48)
% dP, dP, $141  dp, dP, 3§,
d j P = —( + 1) ;
L Pagagt® =), Par @t e,
(B49)
%  dP,_,dP S dP,_, dP 1/3
[Tt Shede = [ p SE TR g = - o2 2)
- dé  dé - dé  dé¢ 6 \A&),_
& dPh dpP,
(B50y)
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$  dp,_,dP, $h dP,_,dP, 1/ 3¢,
L LTl L Fr-17¢ aff__EQﬁjﬂ)

h-1

1 ffbp dpP, dPy, 5
- 6 fm h-1 df df f f )
(B504+)
&b dPh dp, $h dPh dp, 1/ 3¢,
(B51.)
§  dp, dP, $nt1 dp, dPy, &y 1 1
Pyt ey Pt S heds = ()
J Eaee= | e =g,
&b dP, dPy, $b dP, dP,
—L e L j P g6t
(B51y)
&b dpPy, dPy, ! dpPy, dPy, 3§,
L Pros g qp §06= | Punn g g 6 = 5 (5+2)
(B51+)
$  dP,.,dP nt1 dP,., dP 1,3
j p, 1D e p, Zoht1 hff___( fh_l_l)
£ aé d¢ & ¢ d¢ 6 \ASp 4
1 fgbp dpP, dP, i
(B52.)
5” APpiq dPh "Ch“ APpiq dPh 3¢
%  dP,dP,
= —.Lm Ph+1d_€d_€§d§;
(B52y)
and
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$  dPydPy o dPydPy . 1(3&
L irrarraiohe f R T (Af,v_ 1)'
(B53)
where
A1y =141 — 81,
(B54)
Aép_ =& —Sno1,
(B55)
Aépy = Spe1 — S
(B56)
and
Aéy_ =8¢y —Sn-1-
(B57)

The hat functions and their derivatives can be described as follows:

For &€ < &n.10r § > &ht1,

P,=0
(B58)
and
dp,
dé ’
(B59)
for &h.1 < E< &,
p - oo
(B60)
and
P, 1
df AEh_
(B61)

and for & < § < &hyq,
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. (EA;@
(B62)
and
Py, 1
dg Ao
(B63)

Replacing the subscript, h, with i or j in Equations B58 to B63 yields the equations that

describe Py, Pj and their derivatives with respect to &.

Each integral in Equations B39 to B53 need only be evaluated within the domain where its

integrand is not equal to zero.

Where the integrand is P1P1, P1P1(dP1/d%)¢, or P1(dP1/d&)(dP1/d¢)E, the integral is
evaluated from &; to &1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dg,

respectively.

Where the integrand is Ph-1Ph, Ph-1Ph-1(dPn/d€)E, Ph-1(dPh-1/d€) (dPn/dE)E, PnPh-1(dPn/d€)E
(identical to Ph-1Ph(dPn/d€)£), Pn(dPh-1/d€) (dPh/d€)E, or Ph1(dPn/dE) (dPn/dE)E, the integral

is evaluated from &1 to &.

Where the integrand is PnPn, PhPh(dPn/d%)E, or Pn(dPn/d€)(dPn/dE)E, and where 1 < h <N,
the integral is split in two, with one integral evaluated from &1 to &, and the other integral

evaluated from &, to &n+1. The two integrals are then summed.

Where the integrand is Ph+1Pn, Ph+1Pn(dPn/d€)E (identical to PhPh+1(dPn/d§)%),
Pn+1(dPn/d§)(dPn/dg)g, Pn(dPn+1/d€)(dPn/d8)E, Ph+1Ph+1(dPn/dE)E, or
Ph+1(dPh+1/dE)(dPn/dE)E, the integral is evaluated from & to &h+1.

Where the integrand is PnPn, PNPn(dPn/d§)E, or Pn(dPn/d€) (dPn/dE)E, the integral is
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evaluated from &n.1 to &n. Equations B60 and B61, with h = N, describe Py and dPn/dg,

respectively.

Equations B60 and B61 give the functions used for P, and dPn/dg, respectively, in integrals
evaluated from &1 to &, Equations B62 and B63 give the functions used for P, and dPy/dg,

respectively, in integrals evaluated from & to &n+1.

Of the 23 types (within 15 groups) of integrals in Equations B39 to B53, 17 (Equations B40
to B42, B454 to B47x, and B50x to B52y) apply to 1 < h <N, so that each one is evaluated for
[N - 2] different values of h. Of the remaining 6 types of integrals in Equations B39 to B53, 3
(Equations B39, B44, and B49) apply to h = 1, and 3 (Equations B43, B48, and B53) apply

to h = N, so that each one is evaluated for just one value of h.

Of the solutions to the 23 types (within 15 groups) of integrals in Equations B39 to B53: 5
(Equations B39 to B43) are multiples of A&,./6 and A&,+/6; 2 (Equations B44 and B48) are
equal to -&€1/3 - B39/4 or &/3 - B43/4; 7 (Equations B45« to B47) are multiples of &,/6,
B44/2 and B42/2; 2 (B49 and B53) are equal to §1/2A&1+ + 1/6 or §n/2A8N-- 1/6; and 7
(B50« to B52y) are multiples of B51. and B51+. For equally spaced points, A1+ = Aén. = A&+
= A&y = AE for all h, in which case, the solutions to the 14 integrals in Equations B39 to B48
become independent of & Where Equations B40 to B42 and B45« to B47« are independent of

¢, each one can be evaluated just one time, and the result applied to all values of h.

The number, N, and therefore the spacing, of spatial elements, &, (Equations B54 to B57)
can be changed between time increments. Doing so, however, requires recalculating the
basis functions (Pn, Pi and Pj) and their derivatives (Equations B58 to B63), as a
consequence of which, the solutions to the integrals (Equations B39 to B53) must also be
recalculated. Furthermore, whenever changes in the number or spacing of spatial elements
requires the creation of a new, -independent concentration coefficient, that coefficient’s
value must be interpolated from the values of its most closely related prior concentration
coefficients. Exploiting mass conservation can help to ensure that minimal error is
introduced in the process of interpolation, but also requires that mass conservation is
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always enforced between time increments. (As the finite-element method does not
inherently ensure mass conservation, other methods must be employed for that purpose.)
Despite how all this may appear, changing the number or spacing of spatial elements does
not alter the time-independent nature of the basis functions. Instead, the map of the system
is altered. Thus, changing the number or spacing of spatial elements requires the

application of a wholly new solution of the continuity equation.

The case of (dok/0%): = 0 and (0Dx/0d%): =0 atall §

In the case of (dok/0¢): = 0 and (dDx/0¢): = 0 at all §, each ok is equal to the &-invariant
value of ox and each Dx; is equal to the &-invariant value Dk, which permits oxj and Dk to be
factored out of the summations indexed by j in Equations B16 to B24. The consequences to
Equations B39 to B53 are described below. The numbering system for the equations of this
special case (where ok and Di are constant with &) follows that used for the more general
case (where ok and Dk can vary with &) above, with an asterisk appended to the number of

each equation that applies to the special case.

Equations B39* to B43* are unchanged from Equations B39 to B43:

¢p $141 A
j P, Pd¢ = PP d¢ = €1+;
£ 3
m 1
(B39%)
b ¢n &
[ Pamds = [ Papds =22
fm fh—l
(B40*)
¢p Eh+1 b 9
| Puads = [ pupds = 2( | Pamag + | PhﬂPhdf) :
‘fm ‘fh—l ‘fm fm
(B41%)
¢p Ehet Agh
f Py 1 Prdé = Ppy1Prdé = +i
fm ‘fh
(B42%*)
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$b $n A&y _
f PyPydé¢ = PyPydé¢ = ;
3

m EN-1 3
(B43%)
N beP dpP; | - be dP, 4 f1+1P ar, 4 €1+f;:P1P1d€
D\ mngea| = | e = | n g = =
]=1 m m 1
(B44¥)

replaces Equation B44;

) $b $h & $b
E[L B2 6 | - [P Gt = [ n e =G -2 [ “hiinas

j=1 gh 1 m
(B45%)
replaces the sum of Equations B45x and B45+;

zN: Jbe.P ﬁfdf =jfbp ﬁfd{: fh+1P ap, fdf
j=1 fm s dé— gm " dé— fh—l " dE

1 gb fb fb
= _E,f P Ppdé = —<f Ph—1phd€+f Ph+1Phd€>

&m ém ém
(B46%)
replaces the sum of Equations B46., B46x and B46;

N e dP, $p apy, Sht1 apy, & $b
EM PP g | = L I e L
j= m m m

(B47%)

replaces the sum of Equations B47. and B47;

En v — [°? PyPydE

N
$b dPy B b dpy B
Z[Lm Py ] = | ng e =

j=1 EN 1

(B48*)
replaces Equation B48;
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6 , PP, fbdpldpl §141 4P, dP, & 1
JZU g df‘zdl f FarT L FErAL R

1

E J5 pypydg

1
2

(B49%)
replaces Equation B49;

N
$ dp,_,dPy, $pdP,_, dPy, e dPy_dP, & 1
ZUsmj ag g % l I R M o S

h
_6fgm Ph—lphdf

1
2

(B50%)
replaces the sum of Equations B50x and B50+;

N
§ dp,dpPy, fbdph dPh _ ($m1dP, dPy,
ZU ’dfdfgl f g L a @k

h

_ b dp,_ 1dPy, b dPyyq dPy
‘"(Lm ag dg ‘N j az d_fgd'f)

(B51%)
replaces the sum of Equations B51., B51x and B51+;

N
Zlfgb 'dPh+1dPh€ I ffbdph+1dph E_fthdPh_,_ldth dé = — $h _l
ilJe, g dg d§  dg 6 46 df Bne 2
& 1
_6ffmph+1phd§

(B52%)
replaces the sum of Equations B52., B52y; and
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N
b dPNdPN fdeNdPN N dPydPy & 1
JZU g dfgdl f s L,“de a X he 2
__ SN
Bf;”PNPNdE 2

(B53%)
replaces Equation B53.

Each integral in Equations B39* to B53* need only be evaluated within the domain where

its integrand is not equal to zero.

Where the integrand is P1P1, P1(dP1/d%)g, or (dP1/d§)(dP1/d%)E, the integral is evaluated
from &: to §1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dg, respectively.

Where the integrand is Pn-1Pn, Ph-1(dPn/d§)¢, or (dPh-1/d€)(dPn/dE)E, the integral is

evaluated from &h-1 to &.

Where the integrand is PnPn, Pn(dPn/d§)E, or (dPn/d&)(dPn/dE)E, and where 1 < h < N, the
integral is split in two, with one integral evaluated from &-1 to &, and the other integral

evaluated from &, to &n+1. The two integrals are then summed.

Where the integrand is Ph+1Ph, Ph+1(dPn/d€)E, or (dPh+1/dE)(dPn/dE)E, the integral is

evaluated from & to &h1.

Where the integrand is PnPn, Pn(dPn/d8)E, or (dPn/dE)(dPn/dE)E, the integral is evaluated
from &n-1 to &n. Equations B60 and B61, with h = N, describe Py and dPn/d¢, respectively.

Equations B60 and B61 give the functions used for P, and dPr/dg, respectively, in integrals

evaluated from &1 to &, Equations B62 and B63 give the functions used for P, and dPy/dg,

respectively, in integrals evaluated from & to &n+1.
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Of the fifteen types of integrals in Equations B39* to B53*, nine (Equations B40* to B42%*,
B45* to B47*, and B50* to B52*) apply to 1 < h <N, so that each one is evaluated for [N - 2]
different values of h. Of the remaining six types of integrals in Equations B39* to B53*, three
(Equations B39*, B44*, and B49*) apply to h = 1, and three (Equations B43*, B48*, and

B53*) apply to h = N, so that each one is evaluated for just one value of h.

Of the solutions to the fifteen types of integrals in Equations B39* to B53*, eleven (Equation
B41* and Equations B44* to B53*) can be defined in terms of one or two of the other four
(Equations B39*, B40*, B42* and B43*, each of which is a multiple of A¢,./6 and A&n+/6).
For equally spaced points, A81+ = A¢n- = Agh+ = A&y = AE for all h, in which case Equations
B39* to B43* would be independent of £&. Where Equations B40* to B42* are independent of

¢, each one can be evaluated just one time, and the result applied to all values of h.

Equations B39* to B53* are equivalent to the integrals obtained when Equation A26 in
terms of t and € is solved for the case of (dox/0%): = 0 and (dDx/d%): = 0 at all &. (Details not
shown). That equivalence is further evidence that the first approximate solution can be

derived from the second.

Tests of different solutions

The integrals in the solution to the t- and §-dependent Lamm equation (Equation B21) have
been replaced with their evaluations shown in Equations B39 to B53 or Equations B39* to
B53* and those expanded forms of the solution to the continuity equation for AUC have
been used in finite-element simulations. Simulations of AUC based on the second
approximate solution (using Equations B39 to B53) have been found to perform at least as
well as simulations based on the first approximate solution (using Equations B39* to B53%*).
(Highly contrived results for comparison can be found in Section F: €&-dependent functions to
approximate Dxe and oke.) Additionally, finite-element simulations of sedimentation based
on the first approximate solution to the t- and §-dependent Lamm equation have been found
to perform at least as well as finite-element simulations based on the first approximate
solution to the t- and r-dependent Lamm equation [Cox and Dale, 1981; Schuck et al., 1998].
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(Results not shown.)
First approximate solution

To express ok and Dk in terms of pseudo-§-independent parameters, each one is initially
approximated as a set of N scalar coefficients that can be a function of t but must be
invariant with &. For oy, at all &, where 1 <h <N, those coefficients are

O,n = Ok at p,
(B64)
and for Dy, at all &, where 1 <h <N, those coefficients are

Dy = Dy at &,.
(B65)

When it temporarily becomes more convenient to work with sk and Dk instead of ok and D,
sk is also initially approximated as a set of N scalar coefficients that can be a function of t but

must be invariant with & At all &, where 1 <h <N, those coefficients are

Sk,h = Sk at Eh'

(B66)

Equations B64 to B66 define okn, Dkh and skh as constants with respect to &, and in the first
approximate solution, are used in place of Equations B10 to B12. The resulting first

approximate solution to the Lamm equation can be written as

zn:zN:zN:Ck,m <]Ebphpid€_Dk,h+ l%,mL Pp—= dz fdf ffbci;h dé Edél >

k=1h=1i=1 m
n N N &
:Zzzck,h— <f PpP;d§
k=1h=1i=1 m
&  dPp fbdph
Do [P a6 = | s o
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(B67)

As usual, a minus or plus subscript refers to time t or [t + At], respectively. Equation B67 of
the first approximate solution is obtained by applying Equations B64 and B65 to Equation
B21 of the second approximate solution in the case of (dox/d€): = 0 and (dDx/d¢): = 0 at all
€. Thus, when oxn and D are used as they are in Equation B67, each ok should equal &-
independent o, each Dxh should equal &-independent Dk and, given that (dsk/d¢): = 0 when
(0ok/0%)t = 0 and (dDk/0¢)t = 0, each skn should equal €-independent sk. Furthermore,
these conditions make it highly likely that (dsk/dt)s = 0 and (0Dx/0t): = 0 in general, and
that (dox/0t)s = 0 at constant field. Therefore, sgn and Dk are likely to be t-independent in
general, and ok is likely to be t-independent at constant field. All such constraints are

purposefully violated in the following treatment of the first approximate solution.

As typically, but incorrectly, applied, the constants, oxn, Dxh and sk, of the first approximate
solution are treated as if they were functions of solute concentration. Thus, oih, Dxn and skn
become pseudoconstants with respect to €. Truncated virial expansions are used to
approximate the dependence of oxh and Dxn on the concentration, cq, of each explicitly
included solute component, q. To evaluate these pseudo-§-independent constants indexed

by h, prior to each time increment, Dxh and oxn are approximated by

b
dcq,h
dC h

dc
g, XI hd—/

Yb=1 27(;:1 Ybk,q
Dk,h = D%

(B68)
and
dC h
Db= 1Zq 1Pb,k,q dcq T
Okn = 0%k dc A )
ZZO=1Zq 1Ybk,q ¢ h/
(B69)

respectively, where n is the number of solute components, D% at all € equals Dk at &, at time
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t in the limit as c approaches 0, 0°« at all § equals ox at &, at time t in the limit as

c approaches 0, cgn is the &-independent concentration coefficient of solute component q at
time t or [t + At] (cqn, at all §, equals cq at &, just as ckn, at all §, equals cx at &, in Equation
B6), and where pu,kq, Ybkq and hyiq are the bth of up to an infinite number of coefficients of
proportionality for the density increment, thermodynamic nonideality, and viscosity effects,
respectively. By definition, ¥.0_1 D1 k,q» 2qg=1Y1,kq and Xg=1 hq i 4 are each equal to 1. (Each
of the po kg, Ybkq and hpkq coefficients couples the concentration of component q to an effect
on the transport of component k. See Section D for more details regarding these

component-based virial expansions.)

Both 0°k and Dk are &-independent by definition. Furthermore, the first approximate
solution cannot be applied to systems in which changes in solvent density cause (dpo/d%¢)t
to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied
to systems in which solute concentration gradients cause (dpo/d¢): to differ from zero.) As
discussed in the definitions of D°; (Equation B22) and 0°k; (Equation B23), the condition
that AD°;/Aj = 0 and Ac®k;/Aj = 0 for all solute components can only apply to a system
with an incompressible solvent, in which case, D°%; and 0°; can be replaced with D°, and

0°x, respectively. Hence, the use of D° and 0° in the first approximate solution.

As noted, when oxn and Dkh are used as they are in Equation B67, each oxn should equal €-
independent ok, and each Dxh should equal &-independent Dx. Thus, the use of Equations
B68 and B69 is incorrect, except where all coefficients of b(cq)P -1 for b > 1, which is to say
all pv g, Yokqand hyrq for b > 1, equal zero, and where, as previously noted, the solvent is
incompressible and (dp/d%): = 0 at all € and t. (Compare the properties and uses of
Equations B68 and B69, with those of Equations B22 and B23, respectively.)

Possible advantages to working in equi-gravitational-potential space

There are two possible advantages of the finite-element solution to the t- and §-dependent
Lamm equation: the resulting integrals have simpler solutions than the t- and r-dependent

equivalent, making recalculation of the integral solutions less computationally costly; and
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the element spacing, in terms of r, decreases in proportion to the increase in the
gravitational potential from the innermost to the outermost point, with the result that,
where A is the same for all spatial increments between two adjacent points, simulated
transport takes place over equi-gravitational-potential steps with the t- and ¢-dependent
Lamm equation solution and may, therefore, be more computationally stable than
simulated transport using the t- and r-dependent Lamm equation solution in the case of Ar

being the same for all spatial increments between two adjacent points.
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Section C: A solution to the t- and &-dependent Lamm equation in terms of species

In a completely proper application of irreversible thermodynamics, the summations in the
equations for concentration, flow and continuity, and hence the summations in any solution
to the Lamm equation, would be over solute components rather than solute species, and at
a given spatial position (expressed as r or §) and time, it might be expected that the
transport coefficients needed for each solute component, k, would be its weight-average
(over all species of component k) sedimentation coefficient, (sk)w, and its gradient-average
(over all species of component k) diffusion coefficient [Johnson et al., 1973], (Dx)g, the
expectation being that (sk)w = sk and (Dx)c = Dx. To account for the t- and §-dependent
changes in the concentrations of the individual species that sum to cy, in addition to the
aforementioned transport coefficients, (sk)w and (Dx)g, the chemical equations that describe

mass-action associations, dissociations or other reaction flows linking any of the species of
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a solute component would be needed. (See Section G: The dissipation function and the Curie-

Prigogine principle.)

If the diffusion and sedimentation coefficients of a solute component’s individual species
could be defined, (Dx)c and (sk)w could be calculated. (The diffusion coefficients and
concentration gradients of a solute component’s individual species would be used to
calculate (Dx)g, and the sedimentation coefficients and concentrations of a solute
component’s individual species would be used to calculate (sk)w.) The reduced molar mass
coefficients of a solute component’s individual species could then be defined in terms of the
diffusion and sedimentation coefficients of a solute component’s individual species. Finally,
on the basis of the above expectations and Equation A23, the relationship of ok to the
reduced molar mass coefficients of a solute component’s individual species could be
determined using ox = w2(sk)w/(Dx)c. What follows is an approach to defining these
transport coefficients for each solute component’s individual species. The transport
coefficients obtained are then applied to the solution of the continuity equation expressed

in terms of species.

Letting nk represent the number of species that constitute solute component k, and indexing

the species by e,

D, = (D = ,
k ( k)G an (ack,e)
e=1 az .
(C1)
and
2 ng ng
w X SLoC “ Dy ,00 .C
Doy = w’s = w*(SK)w = ZZI e ke = Loz n,lf'e Lkl = (kD
Ze:l Ck,e Ze=1 Ck,e
(C2)
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where cke is the concentration of species e of solute component k, Di is the diffusion
coefficient of species e of solute component k, ox. is the reduced molar mass coefficient of
species e of solute component K, sk. is the sedimentation coefficient of species e of solute
component k, okeDke is defined (by analogy with Equation A23) as equal to w?ske, and
(oxDx)w is the weight average of the product, okeDxe, for all species of solute component k.
The concentration of component k is equal to the sum of the concentrations of all species of

solute component k. Thus,

(€3)

The definitions above permit Equation A24 to be rewritten as

ng Nk al . dl
Ik = Z Ik,e = Z Ck,eDk,e lUk,e - an lJ— = Cg Iw (Sk)w (DR)G < ;}Ck) IJz—f
e=1 t

6lnc
= Cka IUk k l\/—

(C4)
where Ik is the mass flow of species e of solute component k. A comparison of Equations

A24 and C4 shows that, if Equation C4 is valid, (Dx)c = Dx and (sk)w = sk, and thus,

2 2 ng
WSy _ w (Sk)w _ (alnck> Zelek,eUk,eck,e

o= 05~ e

O, =

(€5)

Note that (Dx)c and (sk)w are averages for all species of a single solute component, k, while
D¢ and sw (described in Section A) are averages for all solute components. (Equations A30
and C1 describe D¢ and (Dk)g, respectively. Equations A31 and C3 describe sw and (sk)w,

respectively.) There is no simple relationship between ow and any average of the oie
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coefficients. (See Equations A36 to A40, which show the relationships between ow, the ox

coefficients, and the equilibrium value of w?2sw/Dg.)

The diffusion coefficients and concentration gradients of all solute species can now be used

to calculate the overall gradient-average diffusion coefficient,

0 (5

1 (22) 0, 3 (2) 00 (aacz") 7o (25
k=1 . k k=1 . k/G

0% 0%
De =— Oy ma(l) (%)
k=1\"9% ), k=1\"9% ), k=1\"9% ),
dc
Fer 305 D (F52)
t
dc
e Xk (T

(Co)

(see Equations A29 and C1). The sedimentation coefficients and concentrations of all solute
species can now be used to calculate the overall weight-average sedimentation coefficient,

which, multiplied by w?, is

Y sy ,C
wz 2713_1 lck e=n1 ke k,el
wzs _ (1)2 Z‘;(lzl Cksk _ (UZ 2;’{1:1 Ck(Sk)W _ eil Ck,e
" k=1Ck Yk=1Ck Dh=1Ck

_ w? Z;(,l=1 2221 Sk,eCke

n Nk
k=1 Ze:l Ck e

(C7)
(see Equations A30 and C2).

The reduced molar mass coefficients, concentrations and concentration gradients of all

solute species are related to w2sw/D¢ through
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n n
, Yie=1Ck (0% Di)w k=1 2esq OkeDieCre k=1 2esq OkeDieCre
W= Sy, — (UD)W — ZZ=1 Ck — Z;(l=1 Ck — Zﬁ=1 Ck
D D D D n dc
G G G G n_ ST D, ( alé.e>t

(),

n Nng
(6[710) k=1 Zezl Ok,eDieCre
t

9 fe1Zet1 Dice (62—’%6>
t
(C8)
(see Equations A30, A32 and A40).
A comparison of Equations A32 and C8 shows that

n n ng
Yk=1 0k DiCre _ k=101 OkeDieCre

dc,\ dc '
7<1=1 Dy, (a_gk)t 713=1 2221 Dk.e <a—kge>t

(C9)
Using Equation C5, Equation A40, which describes the concentration distribution of solute

components at equilibrium in AUC, can be rewritten in terms of solute species as

[ ]
n |<5Ck) Yk DieOkeCre |
| e

= Nk
k=11\ 0% e <ack,e) n [Zeﬂ Dk,eUk,eCk,el
n = k,e =1
5 = Dk=10kCk _ e=1 ¢ )1 Dy,
w n - n - n ’
k=1Ck k=1Ck k=1Ck

(C10)

where, as in Equation C5, use has been made of the equivalence, assuming Equation C4 is
valid, of Dk and (Dx)¢. As a comparison of Equations A39 and C10 shows, at equilibrium, the

numerator in each expression on the right-hand side of Equation C10 is equal to dc/d¢.

Transport and reaction flows
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If a mass flow changes the concentration of a component that chemically reacts with other
components, a reaction flow may further change the concentrations of all participating
components. (See reference to the Curie-Prigogine principle, below.) Thus, reaction flows
describe how the local concentration of each component depends on the local
concentrations of any reactively linked components. (The change in the concentration of a
component, in turn, will tend to be the main factor determining how the concentrations of
that component’s solute species change, at least in the absence of a mass flow.) The
irreversible thermodynamic expressions for Dy, sk, and ok (Equations A21 to A23) describe
how the transport coefficients change as local properties of the system (mainly solute
component concentrations) change. These transport coefficients, then, pertain to the
transport flows. If these transport coefficients were sufficiently sophisticated, they could be
used to adequately treat any system on a component-by-component basis, so that the
values of Dk and sk calculated for each solute component would be the appropriate average
values, (Dx)c and (sk)w, respectively, again assuming Equation C4 is valid. Such an approach
would accurately reflect the underlying irreversible thermodynamic theory, but at a cost of

much effort to determine and evaluate the required functions.

In the actual application of the finite-element method described here, the transport of each
species of a multi-species solute component is, in fact, treated as if it were the transport of a
single-species solute component. Thus, the transport of a solute component is handled
species-by-species, and any reactive interaction (typically mass-action
association/dissociation) between species is implemented as a distinct operation
conducted prior to, and separately from, the set of transport operations for all species for a
given, finite time increment. (See Section B: Steps taken to solve the t- and §-dependent
Lamm equation.) The reaction forces and flows are scalars (tensorial order 0), while
transport forces and flows are vectors (tensorial order 1), and the Curie-Prigogine principle
states that there is no coupling between flows and forces of different tensorial order [de
Groot and Mazur, 1962; Katchalsky and Curran, 1965]. As such, reaction flows are not
expected to drive transport flows when the system is isotropic, and there are no
phenomenological coefficients linking reaction forces to transport flows, or transport forces

to reaction flows. (See Section G: The dissipation function and the Curie-Prigogine principle.)
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Thus, treating the transport and reaction flows separately is theoretically sound.
Furthermore, much that applies to solving the continuity equation in terms of components
(Section B) can be applied to solving the continuity equation in terms of species (this

section).

Using the above parameters described in terms of solute species (Equations C1 to C10), the
solution to the Lamm equation in terms of solute components, which is derived in Section B
(Equations B1 to B33), can be revised to obtain a solution to the Lamm equation in terms of
solute species. Near the end of this section (Consequences for average parameters),
evidence will be presented in support of the hypothesis that the finite-element solution to
the t- and &-dependent Lamm equation in terms of solute components can be obtained from
the finite-element solution to the t- and §-dependent Lamm equation in terms of solute
species. To the extent that this hypothesis is valid, the practicality that led to the following
solution in terms of species can be said to yield a solution that can be properly cast in terms

of components.

Steps taken to solve the t- and §-dependent Lamm equation in terms of solute species

As in Section B (Steps taken to solve the t- and §-dependent continuity equation for AUC), the
following finite-element method for solving the t- and §-dependent continuity equation in
terms of species requires a resort to discrete spatial elements and a finite time increment.
Here, too, this method for solving the continuity equation further requires the flow of each
solute species to be zero at the system boundaries, &y and . As the flow of each species is
expected to meet this boundary condition in a properly enclosed AUC system, the finite-
element solution shown can be applied to all species, with solute species treated explicitly,

and the solvent component treated implicitly.

Using Equations C3 and C4, the continuity equation (Equation A26) is re-written in terms of

species to yield

N OCke _ BN <a\/2—flk,e>
ARSI
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(C11)

The solution begins with an integration that takes advantage of the boundary conditions to
eliminate the partial derivatives with respect to §. To that end, the above form of the
continuity equation is multiplied by H, which is an arbitrary function of §, and then

integrated over the entire range of €. (Ultimately, H will be replaced by a set of N functions

of § indexed by i, where 1 <i <N.) Thus,

ZE[& acke de_ zszb<a\/_lke>t Hde.

k=1e

(C12)
Integrating the right hand side of this equation by parts results in

2 () e

n Nk

Z Z H(fb)\/z_fblke(fb) - H(gm)\/ melk e(gm)]
k=1

-y z [ (%) V2te|

k=1e=

(C13)
where Ixe(§) is Ixe at £ and H(E) is H at €. As the boundary conditions in AUC are Ixe(§m) = 0

and Ixe(Ep) = 0, the preceding equation reduces to

_Zzﬁ <6J_1ke>

k=1e=1 °m t

HdE = ZZf (5¢) Y28ttt

(C14)
Furthermore, as H is independent of t, (0H/0¢&): = dH/d¢. Thus,

Z; J: (%?)t J2E 1, dE = Z;Libi—?\/z_flk,eda
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(C15)

and Equation C12 becomes

Bc e ~ n ok fbd_H
ZZ] . de—;;Lm L NRI S

(C16)
Next, cke is approximated as the sum of N products, each of which consists of a -dependent
function, Py, multiplied by a corresponding £-independent coefficient, cken, which

nevertheless remains a function of t. With both Py and cken indexed by h, where 1 <h <N,

nk Nk

n n n N
Z Ck Z Ck'e - Z Z Ck'e,hph.

k=1 k=1le=1 k=1e=1h=1

(C17)

Each element, h, corresponds to a point, &. By convention, &1 = &y, and & = &,. Despite the
association of h with spatial parameters such as &, cken is independent of §, so that
(Ocken/08)t = dcken/dE = 0 at all €. (Each cken is §-independent, and at all € is equal to the
value of cie at &h.) See Figures B1 through B6, which, for the case of equal spacing between
adjacent &, show the consequences of using the hat function (also known as the triangular
function) for each Py, along with the corresponding set of £-independent solute species
concentration coefficients, cken. (Equations B54 to B57 describe Ag for the general case, in
which A can be different for different pairs of adjacent points. Equations B58 to B63
describe Py and dPy/dg for Py in the form of the hat function, and the case of potentially
variable Ag.)

As cien is independent of §, (cken/dt)s = dcken/dt, so that

n Nk N

$5 S s o373 [

=1le=1h=

(C18)
Expanding Ik (Equation C4) as
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ng ng
alnck ocy,
Iy = Z Ige = Z C,eDke [Uk,e - = l\/ [Uk,eck,eDk,e — Dy e (a—;> l\/ 2¢,
e=1 t

and re-writing each Ixe in terms of the E-independent concentration coefficients and

corresponding &-dependent functions results in

Nk ng N N dP
h
b= Z fee = Z ke D § Ck,e,nPn — Die § Cr.eh df] /2¢ .

(C19)
Using Equation C19 to substituting for Ixe in Equation C18 yields

n Nk N

22> et e

=le=1h=
n & dH N N d
ZZ[ dsg Uk,eDk,ezCkehPh Dkezckeh g ¢dg,
k=1e=1 h=1 h=1
which expands to
n Ng N de &
k,eh
- P
Z Z dt f nHdg
k=1e=1h=1 m
n nNg & dH r N
= ZZZ TS Uk,eDk,ez ChenPn|SdE
A
k=1e=1 m L h=1
L hdH] & dp,
—ZZZJ BT Dk,ezck,e,h_ ¢dg,
k=1e=1"5%m as i h=1 ag
and rearranges to
n Ng N
L
= P
Z Z dt j nHdS
k=1le=1h=1 m
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(C20)

The dependence of Dx (Equation A21) and ox (Equation A23) on the concentration, cq, of
each explicitly included solute component, q, renders Dke and oke dependent on the
concentration, cq,,, of each species, a, of each explicitly included solute component, g. This
concentration dependence, in turn, makes Dk and oke -dependent in all but special cases,
such as t = 0, when all (dcqa/08): = 0 at all €. (Where the solvent is compressible, once w
exceeds zero, (dpo/dE)t # 0, in which case, in all likelihood, (0cq,./0%): will not equal zero at
any position at any subsequent time.) In Section F (§-dependent functions to approximate
Dke and oke), the second approximate solution is compared with a first approximate
solution that pertains to the case of (0Dke/0€): = 0 and (doke/0E): = 0 at all €. The solutions
of the integrals of first approximate solution were derived from those of the second

approximate solution in Section B (The case of (dok/9%): = 0 and (dDx/0%): = 0 at all §).

As it temporarily becomes more convenient to work with ske and Dke instead of oxe and Dy,
Ske is approximated as the sum of N products, each of which consists of a &-dependent
function, Pj, multiplied by a corresponding £-independent coefficient, sk, which
nevertheless remains a function of t. With both Pj and skej indexed by j, where 1 <j <N,
N
Ske = Z Skoe,j b/
j=1
(C21)
where each siejat all € is equal to ske at §;. The result expresses ske as separable &-

independent and §-dependent terms.

To express Dk as separable &-independent and §-dependent terms, this transport
coefficient is also approximated as the sum of N products, each of which consists of a &-
dependent function, P;, multiplied by a corresponding &-independent coefficient, Dkej, which

nevertheless remains a function of t. With both Pj and Dke;j indexed by j, where 1 <j <N,
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N
Die = ) DieFy,
=1

(C22)

where each Dke; at all € is equal to Die at ;.

Equations C21 and C22 are combined to define ok in terms of separable £-independent and

¢-dependent terms, which results in the species analogue of Equation A23,

2 2 N
w?Sge W Xjo1Skeb)
Okﬁ = = N
Dk.e Zj:l Dk.e,ij

(C23)

While the same approach has been used to express cke, Dke and ske in terms of &-
independent coefficients of £&-dependent functions, those &-independent coefficients and &-
dependent functions are indexed by h in the case of cke, but indexed by j in the case of Dke
Or Ske. At any given time, then, the €-dependent functions used in the description of ck. are
expressed in terms of &, while the &-dependent functions used in the descriptions of Dye
and sie are expressed in terms of ;. To use these parameters together in the same solution
of the continuity equation, at each time point, the set of all §; is made equivalent to the set of

all &

Using w?2ske in place of oxeDke (from a re-arrangement of Equation C23) results in

n Nk N

zzzzzquehj P, Hd¢
=1le=1h= $m
n
=2wzz
k=1e=1h=1
LN &  dp,dH
“2) 3 - cwen | ot

Dke
k=1e=1h=1 m ¢ dg

ng

jé .ffb dH
c Sy Pr—&d
keh g k,e hdfff

(C24)

Replacing sk with the expression in terms of skej, and replacing Dxe with the expression in
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terms of Diej, yields

n Nk N

zzz f”p,ﬂdg

=1le=1h=

Ng N

jf dH
c E S P; P fdf
k.e,h : ke jijth lf

m j=1

=

n
kz=1e=1 h=1
n Nk N

P, dH

and permits the §-independent parameters, Dke;j and ske,, to be factored out of the integrals.

Thus,
n Mg N de &
Z Z foeh f P, HdE
dt 3
k=1e=1h=1 m
n Nk N N &
=2wzz ch,m S"”U PP, % Edfl
k=1e=1h=1 j=1 $m
n Nk N N
235 e oo || 0 ]
Ck,e,h k.e,j Jj
=le=1h=1 j= df df
(C25)
Letting
; _wzsk,e]
ke,j — D ’
k.e,j
(C26)

where oke,j is £-independent by virtue of Dke;j and skej being §-independent, the solution can

now be expressed, after some rearrangement, as
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Zn: i dkehf P, HdE

k=1e=1h=1
N $b $b hdH
~ 20pen ). D -la f PPy — &d f d l
k,e,h k.e,j ke,j f h d{é— g ] df d{f E

j=1

ngk

(C27)

At all §, each of the N scalar coefficients, oke;j (defined in Equation C26) is equal to ok at §;.
As a result of using Equation C26 in Equation C27, the product, Dxc0ke, has been expressed
as the sum of N products, each consisting of a §&-dependent function, Pj, multiplied by a &-
independent coefficient, Dxejokej, which nevertheless remains a function of t. Additionally,
the coefficient Dyejoke,is itself the product of the previously defined coefficients, Dke; and

Gk,e,j.

Dividing Equation C27 by 2, and expressing dcken/dt as Acken/At, where Acken and At are

finite increments, yields

nk

>

i L Acken f "
2 At ) nHdg

=le=1h=1 m
— Ckeh § ke,j |Ok.e,j jifh - p;
= 4 ém d’f a

(C28)
The difference between the unknown concentration, Ckeh+ = Ckeh at [t + At], and the known
concentration, Cien- = Ckeh at t, is the change in concentration, Acken, during the time

increment, At = [t + At] - t. Using Ackeh = Ckeh+ - Ckeh-, and multiplying by At, yields
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i Cke,h+ — Ckeh— fgbp Hde
2 a

m

i” [ fbeP M e fbe . R fdfl At) 0
T Ckeh ) Prej|Tke. jPn == §ds — {rTarra = 0.
=1 &m d¢ g, | d§ d¢

(C29)

The remaining cxen term can be replaced with either cken-, which would yield the less
stable explicit solution, or cken+, which would yield the more stable implicit solution. In the
Crank-Nicholson approach [Schuck et al., 1998] used here, both substitutions are made,
resulting in two forms of Equation C29. Additionally, oke;j+ and Dkej+, which, respectively,
represent okejand Diej at time [t + At], are used in conjunction with the explicit form of
Equation C29, where cieh is expressed in terms of cken+. Finally, okej- and Dygej., which,
respectively, represent okej and Diej at time t, are used in conjunction with the implicit
form of Equation C29, where cken is expressed in terms of ckeh-. The two resulting versions
of Equation C29 are summed to yield, by virtue of the previous division by 2, their average.
The average, like any sum of the two solutions, is considered stable, and is expected to

permit the use of larger At values than either the explicit or implicit solution alone would.

Applying the Crank-Nicholson approach yields, after some rearrangement,

ip [ f beP i £dé f ng ahy di fdfl At)
— k, '.+ O-k, ,.+ . h_ —_— ) — —
T eJ eJ ¢ J df €, J df df
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(C30)

As ok and Dy are functions of all ck (see Equations A21 to A23), and as each ck is time
dependent (see Equation A26), ok and Dk are also time dependent. Thus, for the purpose of
obtaining a general solution, oke;- and Dke;j- must be expressed as functions of parameters
equal to all cken- for which h = j, while okej+ and Dkej+ must be expressed as functions of
parameters equal to all cken+ for which h = j. General expressions of this sort are presented

shortly. (See Evaluating the &-independent coefficients of the basis functions indexed by j.)

At this point, there are n equations and nN unknown values of cken+. To obtain the nN

equations needed to solve for all values of cken+, H is replaced by N functions,

N
H=Zpi,
i=1

(C31)
where each P; has the same functional form as each corresponding Py. (For i = h, P; = Py.)

Applying Equation C31, the set of equations describing the solution is given by

$b $b dPp
ZDke,+[ake,+L g s | P St o )

n Nk N N &
Z Z Z Ck.e,n— j Py P d¢
k=1e=1h=1 i=1 m

N

$b b dp, d
i ke [ e[ G i )

(C32)
The result is solved for cken+ using the process described below. (See Solving for cken+.)
Interactions between solute components are handled separately between time steps. (Also

see Solving for cken+.)

74



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Evaluating the §-independent coefficients of the basis functions indexed by j

Truncated virial expansions are used to approximate the dependence of Dxe,j-, Diej+,
Okej- and okej+ on the concentration of each explicitly included species of each explicitly
included solute component. To evaluate the ¢-independent coefficients of ¢-dependent
functions indexed by j (see Equations C21 and C22), prior to each time increment, Dyej,,

Die,j+, Okej- and okej+ are, to the extent possible, approximated by

- dcgq;-"
szlz 12(1 1kaeqa dC
q.a,j—

— [e]
Dk,e,j— =D ke, j-

)

n dc b
Zoo Zn Z a ph q.4,] —
b=14iq=14q=1""bkeqa dcqa]._

(C33-)
dc
qa]+
Z;;O:lz 12(1 1kaeqa d
— o Cqa,j+
Dk,e,j+ =D ke j+ N dc b
© n q q.a,j+
Zb=12q=12a=1hb,k,e,qa dcqa’]+/
(C334)
dc b\
q.a,j—
/ZZO=1Z 1Za 1pbkeqa dc
qa]—
dcga,j-
wzsk,e,j_ wzsok‘e'j_ q=14&a=1 4,4 dcq, aj-
O-k,e,j_ = = b
Drej-  D°kej- s s g dCqaj-"
b=14&q=14g=1.bkeq,a dC 0.0,j—
dc, o P
Z;;ozl anlz hbk q, J
q 08 dey
dega it
ZZO=1Z 12(1 1pbkeqa#
= O'ok,e'j_ dc 5
,a,j—
Z{f’:lz 12 1ybkeqadc—/
q,.a,]—
(C34-)
and

75



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

dc, o iv?
n q,a,j+
Zzozl ZZ:l Zaqzl Pbkeq,

a

dCq,aj+
b

ZOO 2 Z dcqa,]+

2 2 o b=1 =1 albkeqadca+

. _ w Sk‘e’j_;,_ _ w S k,e,j+ q r]

ke,j+ — - o
Dk.e,f‘f' D k.ej+ Zoo Z Z qu aJ"‘
b=1 =1

a= 1ybkeqa dcan_

dc
Zoo Zn Z Ng h q.aJ+
= = = b;kye; Ja .
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(C34+)

respectively, where n is the number of solute components, nq is the number of species that
constitute solute component q, D°gj- at all € equals Dke at §j at time t in the limit as

c approaches 0, D%+ at all £ equals Die at §j at time [t + At] in the limit as ¢ approaches 0,
0°kej- at all § equals oke at & at time t in the limit as c approaches 0, 6°e;j+ at all € equals oke
at §j at time [t + At] in the limit as c approaches 0, s°kej- at all § equals sk at §j at time t in the
limit as c approaches 0, s°ke;j+ at all § equals ske at §j at time [t + At] in the limit as

c approaches 0, cq,a- is the &-independent concentration coefficient of species a of solute
component q at time t (at time t, cqaj, at all §, equals cq,a at §j, just as cxen, at all §, equals cke
at & in Equation C17), cq,aj+ is the &-independent concentration coefficient of species a of
solute component q at time [t + At] (at time [t + At], cqaj+ at all §, equals cq,a at §j, just as
Ckeh, at all §, equals cke at &n in Equation C17), and where puykeqa Ybkegqa and hpkeqa are the
bth of up to an infinite number of coefficients of proportionality for the density increment,

thermodynamic nonideality, and viscosity effects, respectively. By definition,

n
-1 Z ~1Pikeqa 2g=1 Z —1Y1keqaand Xg_4 Zaqzl 1k e,q,a are each equal to 1. Each of
the pokeqa Ybkeqga and hpkeqa coefficients couples the concentration of species a of
component q to an effect on the transport of species e of component k. (See Section D for

the component-based equivalents of these virial expansions.)

With + representing either - or 4+, Equations N23+ and N24+ can be used in place of
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Equations C33+ and C34+, respectively. Henceforth, cq. is used to denote the concentration

of species a of solute component q at either time t or time [t + At].

Individually, the product of b(cga)? -1 with the corresponding coefficient of proportionality
Pbkeqa yields the bth term for the contribution of cq. to the density increment of the system
as it affects the transport of species e of component k, the product of b(cg.)? -1 with the
corresponding coefficient of proportionality ypxeq.a yields the bth term for the contribution
of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e
of component k, and the product of b(cq,a)P -1 with the corresponding coefficient of
proportionality hp keqa yields the bth term for the contribution of cq,a to the viscosity of the
system as it affects the transport of species e of component k, where b(cga)?"1 =

d(cqa)b/dcga.

Collectively, the sum of products given by ;" quzl pb,k,e,q,abcq,ab_1 is a measure of the
total contribution of cqa to the density increment of the system as it affects the transport of
species e of component k, the sum of products given by Y., ZZil yb,k,e,q,abcq,ab_1 isa
measure of the total contribution of cq. to the thermodynamic nonideality of the system as

it affects the transport of species e of component k, and the sum of products given by
Yihes 2211 hb,k,e,(wbcq,ab_1 is a measure of the total contribution of cqa to the viscosity of the

system as it affects the transport of species e of component k.

Henceforth, okej, Dkejand ske;j are used to denote the €-independent transport coefficients
at either time t or time [t + At], and 6°kej, D°kej and s°ke; are used to denote the &-
independent transport coefficients at either time t or time [t + At] in the limit atc

approaches zero.

By definition, 6°kej, D°e,j and s°ke;, are §-independent, and for a given t-independent field
strength, may also be t-independent. In the case of solvent compressibility however, the

expectation is that Ac®kej/Aj # 0 and AD%e;/Aj # 0, from which it follows that As®ke;/Aj #
0. The condition that, for all solute species, Ac®kej/Aj = 0 and AD%;j/Aj = 0, from which it
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would follow that As®kej/Aj = 0, can only apply to a system with an incompressible solvent,
in which case, 6°ej, D% and s°ke;j can be replaced with their respective, system-wide
constants, 0%, D°ke and s°. (In writing Equations C33 and C34, it was assumed that
Apbkeqga/Aj = 0, Aybkeqa/Aj = 0 and Ahpxeqa/Aj = 0 for any given pair of species e and a of
their respective components k and g, even in the case of solvent compressibility. If required
to deal adequately with the case of solvent compressibility, pbxeqa Ybkeqa and hpkegqa can
be replaced with their respective j- and t-dependent coefficients, which would be pykeq,a,-
Vbkeqaj- aNd hpkeqaj- at time t, and would be poeqaj+ Yokegaj+ and hpkeqaj+ at time [t + At],
where, denoting a coefficient at either time by dropping the - or + suffix, Appke,qaj/Aj # 0,
Ayykeqaj/Aj # 0 and Ahpkeqaj/Aj # 0 for any given pair of species e and a of their respective

components k and q.)

To avoid quadratic and higher-order terms in cqaj- or cqaj+, along with other complicated
terms arising from the presence of a truncated virial expansion in the denominators of ok,
and Dke;j in Equations C33 and C34, no effort is made, initially, to solve Equation C32 as
written. Instead, Equation C32 is solved as if okej+ and Dkej+ were independent of all cqaj+,
and as if okej- and Dyej- were independent of all cgaj-. Furthermore, because cq.+ values are
not known prior to their use in okej+ and Diej+, Okej- and Diej- are used in place of okej+ and
Dke,j+, respectively. The resulting solution is that referred to as the second approximate
solution. (As previously mentioned, the first approximate solution that pertains to the case
of (0Dke/0%): = 0 and (doke/0E): = 0 at all € will be derived from the second approximate

solution.) The discussion of this issue is continued following Equation C35.

Equations C33 and C34 use a set of power series of each solute species concentration to
describe the thermodynamic nonideality, density and viscosity of the solution. For solutions
that are too concentrated to permit the use of highly truncated virial expansions in the
description of parameters such as Dke, Oxe and ske, additional terms from the infinite series
can be retained. (See Section D: Expressions for the deviation from van 't Hoff behaviour and
other virial expansions. The expressions shown in Section D are based on a component-by-
component description of the system, but by extension, corresponding expressions based
on a species-by-species description of the system can be obtained.) It is, however, incorrect
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to treat okej, Dkej and ske; as if they were functions of any terms involving solute
concentrations in the second approximate solution, unless that solution is applied
iteratively within each time increment. The general solution presented in Section ] (Form of
the general solution from Equation C32) does apply the second approximate solution
iteratively, and thus permits the concentration dependence of Oiej, Dkej and ske;j at times t

and [t + At] to be treated correctly.

Solving for ckeh+

There are now three sets of space-dependent, time-independent basis functions (the set of
all Py, Pi and Pj), and there are N functions per set of such basis functions (1<h<N,1<i<
N, and 1 <j < N). For each species e of solute component k, at either time t or [t + At]: there
are N space-independent, time-dependent, concentration coefficients, cken; there are N
space-independent, time-dependent, diffusion coefficients, Diej; and there are N space-
independent, time-dependent, sedimentation coefficients, skej, which are related to the N
space-independent, time-dependent, reduced molar mass coefficients through w?2sye;j =
Diejoke,j. For the case of each Py, P; and Pj being a hat function (as described by Equations
B58 to B63), for each species e of solute component k, at either time t or [t + At]: each
product, ckenPn, is maximal at spatial element h, and is zero below spatial element [h - 1] or
above spatial element [h + 1]; while each of the products, De;Pj and Dkejok.e,;Pj, is maximal
at spatial element j, and is zero below spatial element [j - 1] or above spatial element

[j +1].

Let
& N & &
Freniv = jm Py P;d¢ _jlek,e,j+ lo-k,e,j+L PPh &z fdf f T d_gfdfl
and
& N & &
Feone- = | PuPudt +;Dk,e,,-_ e [ nrge [ GG | e
(C35)
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Equations B33 and B34 are used to calculate Dyej and ok, respectively. Despite their
dependence on all cqaj+, for each iteration (see Section ]) of the second approximate
solution, okej+ and Diej+ are treated as if they were independent of all ckej+, and in the first
iteration of any given time increment, oxej+ and Diej+ are replaced with oxej- and Diej-,

respectively, all of which permits the set of solutions to be written as

n Nk

n Nk N
Zzzzckeh+erhl+ _Zzzzckeh Fren,i-»
k=1e=1h=1

1=1 =le=1h=1i=1
(C36)
where each Fiepni+ is treated as independent of all cke;j+. In the second approximate solution,
it is permissible to treat Fieh,i, Okej- and Diej- as dependent of all cgaj-. In the general
solution (Section ]), the dependence of Fieh,i+, Okej+ and Diej+ on all cqaj+ is repeatedly
approximated, with the errors in those approximations approaching zero with a sufficient

number of iterations.

Letting
N
Zk,e,l— = Z Ci,e,n—F,e,ni-
h=1
then results in
n Ng N n Mg N N
Z Z Zyei- = Z Z Z Cen+Fren i+
k=1e=1i=1 k=1e=1h=1 i=1

(C37)

As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Py
and P; results in most of the terms indexed by i and h being zero:

Fxeh1+ = 0and Fken1-= 0 for h > 2;

Frenn+ = 0 and Fienn-= 0 for h < [N - 1]; and

Fieh1<i<nNj+ = 0 and Fxeh1<i<n- = 0 for [i - 2] <h <[i+ 2].

Consequently,
n Nk n Nk
ZZ kel— = ZZ(Ckel+erll++CkeZ+Fk621+)
k=1e=1 =]1e=
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n nNg n nNg
Z Zyei- = Z Z(Ck,e,[i—1]+Fk,e,[i—1],i+ + CreitFreiiv T Creiv1]+ Frelit1li+)
k=1e=1 k=1e=1

for1 <i< N, and

n Nk n Nk
Z Z Zien— = Z Z(Ck,e,[N—1]+Fk,e,[N—1],N+ + Ck,e,N+Fk,e,N,N+) .
k=1e=1 k=1e=1

(C38)
Equating corresponding terms indexed by e results in
Zie1- = Cre1+Fret1+ T Crez+Fre21+
Ziei- = Creli-1]+Freli-11i+ T Ciei+Freii+ T Creli+1]+Fre li+1]i+
for1 <i< N, and
ZyeN- = Che[N-1]+FreN-1]8+ T Cren+Frenn+ -

(C39)

The equalities in Equation C39 are permissible by virtue of the Curie-Prigogine principle.
(See Section G: The dissipation function and the Curie-Prigogine principle.) In the case here,
where e is a solute species, it is possible for (dcke/0t)c and -(9[28]9°1ke/0%): to differ. This
would appear to invalidate the step of equating each Zxe,- to the sum over all h of
Ckeh+Fieni+t- As mentioned with respect to Equations B26 to B28, for the case of a solute
component, k, (dck/dt)s does equal -(9[28]%>1x/dE)t, which makes each Zk;. equal the sum

over all h of cxn+Fin,i+ in those equations. Therefore,

ng ng
Zyi- = Z Zre1- = Z(Ck,e,1+Fk,e,1,1+ + Ck,e,2+Fk,e,2,1+> ’
e=1 e=1
ng ng
Ziio = ) Ziei- = ) (Crefi-11+Frefi-11,i+ + CkeitFreiit T Crefit1l+Frefi+1)i+)
e=1 e=1
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for1 <i< N, and

ng Nk

Zyn- = Zien- = (Ck,e,[N—1]+Fk,e,[N—1],N+ + Ck,e,N+Fk,e,N,N+)
e=1 e=1

(C40)

are valid equations. The fact that there are no phenomenological coefficients linking
reaction forces to transport flows, or transport forces to reaction flows, permits the
transport and reaction flows to be dealt with separately, however. Furthermore, the
reaction flow is the sole source of the potential inequality between (dcke/0t)e

and -(0[2§]%>Ixe/d%)t. Thus, when the reaction flow is handled separately, the transport flow
can be handled as it would be for a solute component. As reaction flows are, in fact, handled
separately from transport flows in this method, it is valid to equate each Zie;. to the sum
over all h of cxei+Freni+ (@as shown in Equation C39), which is the approach taken to obtain

a solution here.
Equations C74 to C75 show the fully expanded forms of Equation C39.

Equation C39 permits the continuity equation to be solved species-by-species and
component-by-component. For each species of a given component, the solution proceeds

one concentration coefficient at a time. Solving first for cke,1+ yields

Crel1+ — Yk,e,l - Xk,e,lck,e,2+ ’

where
Y Zk,e,l—
k,e,l F
ke 1,1+
and
X _ Fk,e 2,1+
k,e,l F
ke 1,1+
(C41)

For i < N, the solution for each subsequent cke,+, in ascending order from 2 <i < N, takes
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the form of
Crei+ — Yk,e,i - Xk,e,ick,e,[i+1]+ ’
where
Vo= Ziei- — Yieli-11Fkei-1],i+
k.ei —
Freiiv — Xieli-1]Fk.ei-1],i+
and
X _ Fk,e,[i+1],i+
kel = | —X F '
kel,i+ keli—-1]Tk,e[i—-1],i+
(C42)

Ati =N, the solution for cken+ is obtained. In terms of cke,[n-1]+, the solution for cken+ is

Cren+ = YieN — XkeNChe[N-1]+

where
Y _ Zk,e,N—
k,e N —
k,e,N,N +
and
_ Fren-11n+
Xk,e,N - F
k,e,N,N+
(C43)

The solution for cke [n-1]+ can now be substituted into the solution for cken+ to obtain

CkeN+ — Yk,e,N - Xk,e,N(Yk,e,[N—l] - Xk,e,[N—l] Ck,e,N+) ’
(C44)

which, solved for cken+, is
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c _ Yk,e,N - Xk,e,NYk,e,[N—l]
ke N+ —
1- Xk,e,NXk,e,[N—l]

)

(C45a)

alternative expressions of which are

_ YicenFrennt — Fk,e,[N—l],N+Yk,e,[N—1]

C =
e+ Frenn+ — Fre[N-1],N+Xk e, [N—1]
(C45b)
and
Zien— — Yie[N-11Fk e [N-1]N+
CreN+ = .
Fk,e,N,N+ - Xk,e,[N—l] Fk,e,[N—l],N+

(C45¢)

The above solution for cken+ does not require knowledge of cke n-1j+ or any other
unknowns. This solution for cken+ can now be used, therefore, to solve the previously
obtained expression for cie[n-1]+ in terms of cken+ and other known parameters.
Subsequently, using cin-1]+, the previously obtained expression for cken-2]+ can be solved

in terms of cke,[n-1]+ and other known parameters. Thus, once cken+ is known, each
preceding cie,i+ is calculated in descending order from i = [N - 1] to i = 2 using Equation
C42 until, upon reaching i = 1, cke 1+ is calculated using Equation C41, at which point, the
entire array of ckei+ values has been determined. For i = h, ckei+ = Cken+, SO that the array of

Ckei+ Values obtained equals the array of cken+ values sought.

This process is carried out for each species, e, of each solute component, k, at each addition
of a time increment. These new cken+ values are then used as the next cken- values after the
addition of the next time increment, and the process is repeated until the desired time point
is reached, at least in a noniterative application of the second approximate solution. (The
general solution presented in Section ] (Form of the general solution from Equation C32)
applies the second approximate solution iteratively, with the result that cken+ is repeatedly

recalculated within each time increment until a convergence criterion (Equation ]6) is met,
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or a maximum number of iterations is reached.)

It has been found that the process is made more robust by first calculating all cken+ in the
forward direction starting from cke,1+, then recalculating all cken+ in reverse order (starting
from cien+), and averaging the results. The calculation of all cien+ in reverse order is
implemented by obtaining a solution to the t- and §-dependent Lamm equation with the set
of all &, reversed, so that &1 = &, and &y = &m. The solution obtained is backwards in the
sense that cke1+ at all € is equal to the value of cke at &, while ckens+ at all € is equal to the
value of ce at &m. In general, &, Ckeh+, Ckeh-, Dkej+, Okej+, Dkej- and okej-, of the backwards
solution are equal to §[N-h+1], Cke,[N-h+1]+» Cke[N-h+1]- Dke,[N-+1]+ Oke[N-+1]+ Dke[N-j+1]- and
Oke,[N-j+1]- respectively, of the forward solution, which is the solution described above for
the original orientation. Solving for cken+ using the backwards solution then proceeds as
described for the forward solution. Averaging is weighted toward the starting point of each
solution, were artefacts appear to be minimal, so that, subscripting all concentration and
spatial parameters by h as that index applies to the forward solution, the average value of
Ckeh+ 1S (Ckeh+)avg = [(Eh - &m) (Ckeh+)R + (&b - &h) (Ckeh+)F]/(Eb - &m), where (Cken+)r and
(ckeh+)r are the values of cxen+ obtained from the forward and backwards solutions,

respectively.

For the remainder of the solution, Equations B34 to B63 apply as written, except that the
case of (dok/0%): = 0 and (9Dx/0%): = 0 at all € is replaced with the case of (doke/0E)t =0
and (0Dke/0%)t = 0 at all §, which is covered in Section F (§-dependent functions to
approximate Dke and Oke).

Consequences for average parameters

Examining whether (Fih,i+)w = Fihi+ and (Fxhi-)w = Fin,i-

Given that
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n N N Nk n Nk N N
Z Z Z Ck‘e’h_Fk‘e’h‘i_ - Z Z Z Z Ck‘e’h_Fk’e’h’i_
k=1h=1i=1e=1 k=1le=1h=1i=1
and
n N N Nk n Mg N N
Z Z Z Z Cren+Freniv = Z Z Z Z Ck,en+Fre e n i+
k=1h=1i=1e=1 k=1e=1h=1i=1
(C46)

(see Equation C36), weight averages of Fieni+ and Fkeni- can be calculated for all species of

a given solute component. Averaging the terms indexed by e in Equation C46 results in

n N N Nk n n N N Nk
k ng
Yiet1 CientFreniv Yiel1 Cken—Freni-
Ck,e,h+ R = Ck,e,n— Y ’
k=1h=1i=1 \e=1 e=1"keh+ k=1h=1i=1 \e=1 e=1"keh-
(C47)
which yields
n N N n N N
DIDITCHRNED 13 X ACHEN
k=1h=1i=1 k=1h=1i=1
(C48)

where (Fini+)w and (Fini-)w are the weight-average values of Fieni+ and Fiehn,i-, respectively,
for all species e of solute component k. Using Equation C35 to express Fken,i+ and Fien,i- in

expanded form results, after some re-arrangement, in

Ck,n+ (Fk,h,i+)w

b
= Ck,h+ j Py P;d¢

m

N 9 )
- {([Dk,,-+ak,j+]h)w L ) aphi—?fdf

j=1

- ([Dxss],) L " dd? C;’; €d§} At)

(C49)
and
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Crk,h— (Fk,h,i—)w

b
= Ci,n— f Py P;d¢

m

N
+ z {([Dk,j—ak,j—]h)w f; PPy C;IS: §d¢

j=1

35
- ([Dk’j_]h)w,L J ddlzch C;I; fdf} )

(C50)
where
( _ 22‘21 Cke,n— Dr.e,j-Oke,j-
[ij—okj ] = i )
e=1 Ck.eh—
(C51)
([D ] ) _szlckeh—Dkej—
k,j— h w - an c ]
e=1‘“k,e,h—
(C52)
([Dk' O i ] ) _Zgi1ck,e,h+ Dy j+Ok.e,j+
J+O0k,j+ =
! " n w 221 Ck,e,h+
(C53)
and
([D ]) Yok e+ Dice js
k,j+ = )
! szlckeh+
(C54)

Equations C51 and C52, respectively, show that ([ok;-Dkj-]Jn)w and ([Dxj-]n)w are Cken--
weighted averages of all okej-Diej- and Dkej., respectively, of component k. Equations C53
and C54, respectively, show that ([okj+Dxj+|n)w and ([Dkj+]n)w are cixen+-weighted averages
of all ok ej+Dkej+ and Dkej+, respectively, of component k. Based on the gradient average,
(Dx)g, obtained in Equation C1, however, gradient averages of Dkej- and Dxej+ might have
been expected in place of the weight averages obtained in Equations C52 and C54,

respectively. (Equation C1 yields one of the averages, (Dx)c, required to express Ik in terms
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of component parameters in Equation C4. Equation C2 yields the other, which can be

expressed as (okDk)w.)

In Equations C52 and C54, the occurrence of weight averages in place of gradient averages
is due to there being no derivatives of cken- and cken+ With respect to € in Equation C36 (as
expanded using Equation C35), because cken- and cken+ are &-independent. Instead, the
partial derivatives of cxe and cx with respect to € in Equation C4 give rise to ordinary
derivatives of Py with respect to € in Equations C35, B24 and anyplace else where the
continuity equation has been solved by separation of variables and integration with respect
to & The situation is akin to Equations A40 and A41, where D¢ approaches Dy in the limit as
t approaches infinity at zero field, at which point, the concentration of each component

becomes &-independent and thus indistinguishable from ckh- and cin+.

As noted where Equation C38 is obtained from Equation C37, and as shown in the next
section, forj < [h - 1] orj > [h + 1], the integrals in the summations indexed by j are equal
to zero. As ([0k;j-Dkj-]n)w, ([Dkj-]n)w, ([Okj+Dxj+]n)w and ([Dkj+]n)w are multiplied by such
integrals, only ([ok;j-Dxj-Jn)w and ([Dkj-]n)w for which [h - 1] <j < [h + 1] contribute to
(Fihi-)w, and only ([okj+Dxj+]n)w and ([Dxj+]n)w for which [h - 1] <j < [h + 1] contribute to
(Fihi+)w.

The transport coefficients associated with the left-hand (Fieni+) side of Equation C47 are
Dke,+Okej+ and Dkej+, while the transport coefficients associated with the right-hand
(Fxen,;i-) side of Equation C47 are Dygej-Okej- and Dkej-. Thus, as described by Equations C49 to
C54, Die,j+Okej+ and Diej+ are averaged with respect to cren+ on the left-hand side of
Equations C47 and C48, while Dxe-Okej- and Dxej- are averaged with respect to cken- on the
right-hand side of Equations C47 and C48. As discussed with respect to Equations C32, C33
and C34, in the second approximate solution used initially, Dkej+0kej+ and Diej+ are
replaced, respectively, with Dke;-Okej- and Diej-. Hence, in the initial iteration within a given
time increment, (Fxn,i+)w, the average obtained for the [t + At] part of the second
approximate solution, would be incorrect. Within a given time increment, the correct value
of (Fxni+)w would be obtained by the iterative approach of the general solution (Section J),
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but only after cken+ had ceased to change significantly with continued iterations of the

second approximate solution.

Using Equations C49 and C50, Equation C48 can now be written as

(), | n G e

o) [ o)

(C55)

This equation corresponds to Equation B21, which is the solution to the continuity equation

with respect to components. If

n N N n N N Nk ng
F _ Yiet1 et Frenit
Ck,h+( k,h,i+)w = Ckeh+ an c
k=1h=1i=1 k=1h=11i=1 \e=1 e=1"keh+
n N N Ng n N N
= Z Z Z CkentFreniv = Z Z Z Ciont Fren it
k=1h=1i=1e=1 k=1h=1i=1
(C56)
and if
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n N N n N N Nk ng
7 _ Yies1 Cken—Freni-
Cik,h— ( kh,i—)w = Ck.e,h— STk
k=1h=1i=1 k=1h=1i=1 \e=1 e=1"keh-
n N N Nk n N N
- Z Z z Ck,e'h_Fk,e'h,i_ - Z Z z Ck'h—Fk,h'l_ ’
k=1h=1i=1e=1 k=1h=1i=1

(C57)

then Equations B21 and C55 are identical, in which case, (Fihi+)w = Finit, (Fihi-)w =

Fin,i- and ok;-Dkj., Dkj-, okj+Dxj+ and Dkj+, respectively, of Equation B21 equal ([ok;-Dkj-]n)w,
([Dxj-Jn)w, ([oxj+Dij+]n)wand ([Dkj+]n)w, respectively, of Equation C55. The equivalence of
Equations B21 and C55 would indicate that the solution in terms of components can be
derived from the solution in terms of species. The question of whether Equations B21 and
C55 are identical is revisited after calculating the weight averages of Fin,i+ and Fip- for all

solute components.

Defining (Fn,i+)w = Fhi+ and (Fn;i-)w = Fn,-

Given that
N N n n N N
Z Z Z Ck,h—(Fk,h,i—)W = Z Z Z Ck,n— (Fk,h,i—)w
i=1 h=1k=1 k=1h=1i=1
and
N N n n N N
Z Z Ciont (Fion,iv) Z Z Z Cle,h+ (Fk,h,i+>w
i=1 h=1k=1 k=1h=1i=1
(C58)

(see Equation C48), weight averages of Fxn,i+ and Fkh,i- can be calculated for all solute
components. First, however, it is useful to define the total solute concentration before and
after the time increment as c+ and c., respectively. Next, the sums of cin+ and ckp- over all

solute components are defined as cnh+ and cn., respectively, through

N N n n N
+ =Zch+Ph =chk,h+Ph =chk,h+Ph
h=1 h=1k=1 k=1h=1
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and

N N n n N
-~ Z Ch_Ph - Z Z Ck‘h_Ph - Z Z Ck’h_Ph ’

(C59)
respectively. (Each cy, either as cn+ or cn., is &-independent, and at all € is equal to the value

of c at &. Equation B6 describes ckh and Py.) Penultimately, Equation C58 and C59 are used

to obtain
N N n n N N n
Zk:l Ck,h+(Fk,h,i+)W e 1 Ck,h.— (Fk,h,i—)w
Ck'h+ noc = Ck h— Zn c )
i=1 h=1 \k=1 k=1"“k,h+ =1 h=1 \k=1 k=1 Kk h—

which, finally, yields

chh+(Fhl+ ZZ Ch- (th

i=1 h=1 i=1 h=1
(C60)
where (Fhi+)w and (Fn;-)w are the weight-average values of Fihi+ and Fipn,i, respectively, for

all solute components.

In the general solution (Section ]) in terms of components, Dxjokj+ and D+ are the
transport coefficients associated with the left-hand side of Equation C60 (expressed in
terms of Fihi+ on a component basis, or (Fni+)w on a weight-average basis), while

Dy;-ok;j- and Dy;- are the transport coefficients associated with the right-hand side of
Equation C60 (expressed in terms of Fipi- on a component basis, or (Fpni)w on a weight-
average basis). Thus, in the general solution in terms of components, Dkj+0kj+ and Dy;+ are
averaged with respect to cxh+ on the left-hand side of Equation C60, while Dxj-ok;- and

Dy;. are averaged with respect to cin- on the right-hand side of Equation C60. As discussed
with respect to Equations B21, B22 and B23, in the second approximate solution used
initially, Dkj+0okj+ and Dkj+ are replaced, respectively, with Dij.ok;- and Dkj.. Hence, in the
initial iteration within a given time increment, the average obtained for the [t + At] part of

the second approximate solution, (Fni+)w, would be incorrect. Within a given time
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increment, the correct value of (Fn,i+)w would be obtained by the iterative approach of the
general solution (Section |), but only after ckh+ had ceased to change significantly with

continued iterations of the second approximate solution.

Using Equation B24 to express Fihi+ and Fxp,i in expanded form results, after some re-

arrangement, in

b
Ch+(Fh,i+)W=Ch+ j PpP;d§

m

i{ [D004],) j S gdg - ([0, ), j:b s )

j=1

o $p &b dPh dPp;
+;{([Dj_aj_]h)w Lm P]-Ph—fdf (Ip-] ) L_ )3 dE 5d§} )
(C62)
where
ZZ 1 Cihe D j—0p j—
([ ] ) szlck e !
(C63)
Yok Cion— Dy j-
D;_ = ,
([ g ]h)W ZZL Cr,h—
(C64)
_ 2221 Ci,nt Di,j+ 0k, j+
([DJ+UJ+] ) = sz1ckh+
(C65)
and
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n

([D ] ) _ Xefq Chne D jir
jely) = :
hw Z:ﬁl Cr,h+

(C66)
Equations C63 and C64, respectively, show that ([0j-Dj-]n)w and ([Dj-]n)w are ckn--weighted
averages of all ox;j.Dx;- and Dy;j., respectively. Equations C65 and C66, respectively, show that

([0j+Dj+]n)w and ([Dj+]n)w are cxn+-weighted averages of all oxj+Dxj+ and Dkj+, respectively.

Using Equations C61 and C62, Equation C60 can now be written as

b
+ P, P;d¢
220 ()"
S ’ 1 9
_;{([Dj+aj+]h) j %Phii—?fdf—([pj+]h)wLm%%Z_?gdg} )
S )
= - P, P,d¢
N » & p P dP,
+Z{([Dj_aj_]h)wfe Aruge s = (101)), fg UPTarT: s‘ds‘} )
j=1
(C67)

This equation corresponds to a solution of the continuity equation with respect to total
concentration and total mass flow. (See Equation A26.) Defining Fyi+ and Fy;i. as (Fni+)w and

(Fn,i-)w, respectively, results in

N N N N ,n N N n
F B Dk= 1Ckh+FkhL+ F
Ch+( h,i+)W = Ck,h+ c Cr.n+l'kni+
h=1i=1 h=1i=1 \k=1 k=1Clen+ h=1i=1 k=1
N N
= Z Z Ch+Fh,i+

(C68)

which is analogous to Equation C56, and
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N N N N n n N N n
I IRCAEIS Y W TR WA,
' h—\1h,i— w ' k,h— Z;(l=1 Ck,h— k,h—L"k,h,i—

h=1i=1 h=1i=1 k=1 h=1i=1 k=1
N N
- Z Z Ch_Fh =
h=1i=1

(C69)
which is analogous to Equation C57. Next, defining 0;.Dj,, Dj,, 0j+Dj+ and Dj+, respectively, as

([6§-Dj-]In)w, ([Dj-]n)w, ([0j+Dj+]n)wand ([Dj+]n)w, respectively, Equation C67 can be written as

chm jfbphpdf Z{ +0]+L PPthEdf D; j:b C;—?C;—I;fdf}

h=1i=1 m
+i{1) fsbpp dpigdg D fbpdphdp fdf}At)
= J="] €, J dsz J €, st; d‘f
(C70)
where
N
D, =:§Sl%[},
j=1
(C71)
N
(D) = ) GiD;P,
j=1
(C72)

Dj and ojD; at time t are denoted as Dj. and oj.Dj,, respectively, and Dj and o;D; at time [t + At]
are denoted as Dj+ and oj+Dj+, respectively. Rather than yielding Dg, as in Equation A29,
Equation C71 expresses the weight-average diffusion coefficient, Dw, as the sum of N
products, each of which consists of a §-dependent function, P;, multiplied by a
corresponding &-independent coefficient, D;, which nevertheless remains a function of t.
Each Djat all € is equal to Dw at §;. Similarly, Equation C72 expresses (oD)w of Equation A30

as the sum of N products, each of which consists of a §-dependent function, P;, multiplied by
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a corresponding &-independent coefficient, o;Dj;, which nevertheless remains a function of t.

Each o;D; at all § is equal to (oD)w at §;.

In Equation C70, D;. and Dj+ are weight-average parameters for the same reason that
([Dkj-]n)w and ([Dkj+]n)w are weight-average parameters in Equation C55. It should be
expected that weight-average diffusion coefficients would be calculated from the solution of
the continuity equation obtained by separation of variables and integration with respect to
¢, and it should be expected that gradient-average diffusion coefficients would be calculated

from the continuity equation itself.

In using the continuity equation, something akin to a frame-of-reference problem arises
when determining whether Dx, which is the diffusion coefficient of solute component k,
should be viewed as representing (Dx)g, which is the gradient average of the diffusion
coefficients of all the constituent species of component k (Equation C1), or whether Dy itself
represents the defining measure of the diffusion coefficient of solute component k. As the
implicit solvent and the explicit solutes are quantified component-by-component in an
irreversible thermodynamic context, all species-specific parameters can be considered
improper, which would mean that Dk represents a measure of the diffusion coefficient of
solute component k that is properly dependent on component concentrations (including
component k) only. At best, then, species-specific parameters such as cke, Dke, Oke, €tcetera,
are improper means to a proper end. The proper end being sought is a solution to the
continuity equation in terms of components. As developed here, that proper solution to the
continuity equation in terms of components can be derived from the improper solution to
the continuity equation in terms of species, but only to the extent that improper species-
specific parameters can be chosen so that ([ok;-Dkj-Jn)w, ([Dkj-]n)w, ([Okj+Dxj+]n)wand
([Dxk,j+]n)w of Equation C55 equal ok;-Dxj-, Dkj-, okj+Dxk;+ and Dkj+, respectively, of Equation

B21, in which case, Equations C55 and B21 are identical.

As there is nothing improper about component-specific parameters in an irreversible
thermodynamic context, there should be no doubt that D¢, the gradient-average diffusion
coefficient for all solute components, is the correct average of all Di to use in the continuity
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equation expressed in terms of the total solute concentration, as is the case when Equation
A31 is used to expand the total-solute-concentration form of Equation A26. Nevertheless,
Dw would be the correct average to use in Equation C70 or any other form of the integral
solution to the continuity equation expressed in terms of the total solute concentration. The
fact that Equations C55 and C70 both yield analogous weight-average parameters is

evidence in support of the hypothesis that Equation C55 is identical to Equation B21.

Expanded solution from Equation C32

The solution to the Lamm equation can be written as

n b
Z Z Cke,h+ f PpP;d§
k=1e=1h=1i=1 m
Z l fb Eb dPh
D o f PP d f —&d l
n Nk N N &
=Z chk,e,h— j Py P d¢
k=1le=1h=1i=1 m
N b b
+ZD,W_ lake,_j PPh = Picae - j df = 5dglAt
j=1
(See Equation C32.)

For species e of solute component k, at a specific value of index i (other than 1 or N), the

nonzero terms are
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+20k61_[ake, j:bPPll g - ffb, S dfdelAt>

b
+ Cie,i- j P,Pd¢

ém
N b b P;
I e T j s e
j=1 $m df d§
b
+ Cre [i+1]- L p i+1 P df
N 9 9 Plit1]
+ Z Dk,e,j— O-k,e,j—J P P [i+1] fdf j ] df df gdfl At
j=1 fm

$b $b ;
e |owess | PiPle- S 64 - f pe dfs‘dflAt)

N $b $b
+ D Diej [ak,e,,~+ L PPy g - f dfd—ffdfl At)
=1 m

¢p
+ Cre li+1]+ f PipqPdE

m

$b $b i+1] AP;
+ZDkej+ lo-ke]+L PPI,+1 gdé— .f ] dfl df EdglAt)
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(C73)
as shown in Equations C37 to C40. Expanded fully, for species e of solute componentk, at a

specific value of index i (other than 1 or N), the nonzero terms of Z.;. are

¢p
Ziei- = Ckeli-1]- <j Pji_1Pd¢

m

{ [ $b dPp; $b
+ D - 1_lo . _J P-_ P'_ _fd _J P'—
ke[i—1] ke [i—-1] - [i—-1]4[i-1] dé— f [i 1] dé— dff S;

& ¢p
+ Do [ok,e,i- L PiPyi-1) fdf f bi df df fdfl} )

3
+ Crei- <f P;P;d¢

$m

+{D l fgbp Pdpifdf ffbp i dP.,r d&
ke li—1] ke li—1] [i—-1] LdE . [i—1] df df

$m

b &b 4 &b dPL- dap; 4
+ k.ei— lo-k,e,i—L l df 5 E f l df d_EE gl

m

o jfbp p P jfbp dp dp; |
keli+1]- |Ok.e[i+1]- - [i+1] idf §dg £ 1l ge dé dff ¢

¢p
+ Crelit1]- (j Pt PidE

m

b f” Pliyq) dP;
+ Dk,e,i— Oke,i— PPl+1 fdf _Edf
&m

+ Dk,e,[i+1]— O-k,e,[i+1]—j P[i+1]P[i+1]d_§-€df

m

_jsbP' dPi,1) AP, fdfl} )_
- [i+1] df df -

98



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

¢p
Che [i-1]+ <f Pji_qPd¢

m

&b &b dPji_y) dP;
L L T [ A
§

- S dE d¢
+ Dy [a .fgbpp fdf ffb R fdfl}At)
k,ei+ ke, i+ . [i—1] l df df
3
+ Creit <f PP;d¢

&b dP; & dP; dP;
+ 1Dk i-1]+ Uk,e,[i—1]+L P[i—1]Pid—€fdf—j Pli_q) d_fd_Ef ¢

35 35
+ Dk,e,i+ [o-k,e,i+ Lm l dé— fdf j l df d_fgdfl

b b
+Dk,e,[i+1]+ [Uk,e,[i+1]+L Pl+1 i df Szdsz j [i+1] df df Szdfl}At>

¢p
+ Creli+1]+ (j Pt PidE

+ {D I f ng p gdg f Plis1] dP; ”;dfl
, o .
k.ei+ k.ei+ . [i+1] l df df
+ Dk,e,[i+1]+ O-k,e,[i+1]+ f P[l+1]P[l+1] d—gé—dé——
$m
& dp [i+1] dP
J;m [i+1] dE df g El} )

(C74)

Equation C74 shows that for a given i within 1 <i < N, there are 17 integrals to evaluate.

Expanded fully, for species e of solute componentk, at i = 1, the nonzero terms of Zxe,- are
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b
Zrei- = Cie1- (f P, Py d¢

m

$b $ dp,dP;
ke1- |Ok,e1- 111 1
+{D l L P P & fdf f P, — df & Edfl

$b § dp,dP
+ Dre2— |Oke2- P2P1 fdf Pz Scdsc At
MRELIT: dE dt

¢p
+ Cre2- (f P,P,d¢

m

£ &  dP,dP
#{Duea [o1e- J Py gt - | »E |

) & dp,dP,
Do [ohes- J PPy 64 - | P ] ae)

b
=Ck,e,1+<j PPy d¢
e [
g
k,e,1+ k,e,1+ g 1 d{: 1 d{_— d{_—

&b dP, § dp,dP,
+ Dk,e,2+ O-k,e,2+J; P2P1 df fd{: f PZ df df gdé— At
b
t Cke2+ (L PP, d¢

+ {D l fbp j2 Py —Leqe - fbp 2 Led fl
(o)
k,e, 1+ k,e, 1+ 6 112 l); 1 l); l);

+D [ fbpp WP s - fbe i dPl%df]}At)
0|
k,e,2+ k,e,2+ f 242 df 2 df df

(C75)

Equation C75 shows that for i = 1, there are 10 integrals to evaluate.

Expanded fully, for species e of solute componentk, at i = N, the nonzero terms of Zge,- are
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9
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i dpy
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+ Dyon [ak,e,N_ L PuPiy-1) g §0§ = f fdf]}At)

b
+ Cren- (j PyPydé

m

s‘ds‘l
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$b dPy $b
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T+ CreN+ (f PyPydé

$m

+{D [ fbp PV e fgb P ey El
- 0, —
ke [N-1]+ ke [N-1]+ f N-1]I'N df N 1] df df

+D [ [ * popy P e ] * py L dPNEdEl}At>
0
k,e,N+ k,e,N+ g NI N df N d{'— d{

(C76)

Equation C76 shows that for i = N, there are 10 integrals to evaluate.
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Section D: Expressions for the deviation from van 't Hoff behaviour and other virial

expansions

A minimally restrictive expression of the deviation from van 't Hoff behaviour can be

written as

(o] e} n
dc,?
1+ Z b Z )’b,k,chb_1 = Z Z Yb,kq ﬁ ,
- q

(D1)

where b is the index of the virial expansion, cq is the concentration of component q, ybxq is
the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq, which makes
Vbkq the bth of an infinite number of coefficients accounting for the thermodynamic

nonideality effect of component q on the transport of component k, and

Zn: deg? - )
Yokag 5. | — Zyl,k, = 1.
q qu q

(00}
lim
b=1 \gq=1 q=1

c—-0

(D2)
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A truncated, linear equation is restricted to solutions that are sufficiently dilute to permit

use of an approximation, such as,

> [+ dc,? = =
. q - _
dilutehsrgllutionz Vbl qu =1+2 Z Y2,kqCq = 1+ z YiqCq

b=1 \g=1 q=1 q=1
(D3)
where

YVikqg = 2y2,k,q .

(D4)

As with the van ‘t Hoff expression, density increment and viscosity expressions can be
expanded as infinite series, so that ok (the reduced molar mass coefficient of component k)

and Dk (the diffusion coefficient of component k) can be described, respectively, by

- dc,®
b1 [Zg‘:l Pb,k,q d_cqql
O = O'Ok
- dc,?
Zb=1 [Zgﬂ Yb,k,q d_gql/
(D5)
and
- dc,b
b1 [EZ=1 Ybk,q ﬁl
Dy = D° dc qb )
ZZO=1 [ZZ=1 hb,k,q d_cqql/
(D6)
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where ybkq is the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq
defined as for Equation D1; hpkq is the component-k affecting viscosity coefficient of
dcqP/dcg, which makes hp,kq the bth of an infinite number of coefficients accounting for the
viscosity effect of component q on the transport of component k; and pp kq is the
component-k affecting density increment coefficient of dcq®/dcgq, which makes pp,xq the bth
of an infinite number of coefficients accounting for the density increment effect of

component q on the transport of component k.

From the above equations, it follows that

Yhe 1[2(1 1Pvkq 7~ dc

UokDo
Sk = b
w?
Zb lqu 1 bkq qu /
(D7)
where
(o] n
. Cq
lcl_r)% pb,k,q? = Z Pikg = 1
= q=1 4 q=1
(D8)
and
_ gy dcg” "
i D | D hoka g | = ) e = 1.
b=1 \ g=1 q=1
(D9)

Truncated, linear equations are restricted to solutions that are sufficiently dilute to permit

use of approximations, such as,
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oo n n n
dllutel solutlonz z Pblea™g.— qu =1+2 Z P2kqCq = 1+ z PkqCq -

b=1 \q=1 q=1 q=1
(D10)

where

Pig = 2D2k,q »
(D11)
and

i Zn:h dc_qb z1+22n:h c=1+zn:h C
dllute olution L\ & bk.q deg |~ & 2katq Z kqCq

(D12)
where

hrg = 2haq -

(D13)

Equations D3, D10 and D12 are virial expressions that are truncated at b = 2. Equations D4,
D11 and D13 are the second virial coefficients that apply to Equations D3, D10 and D12,

respectively.

In some cases [Johnson et al., 1981], the deviation from van 't Hoff behaviour can be
described by a virial expansion in terms of ¢, Mw, and an infinite series of global nonideality
coefficients, each denoted by By, where b is the index of the summation. That virial

expansion can be written as

m (o] (o]
b1 dc?
1+Zyk'ch:1+szbBbc :szBbE'
q=1 b=2 b=1
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(D14)
where
_ > dch
LI_I’)%MW BbﬁzMwBlzl
b=1
(D15)
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Section E: Presenting concentration data from calculations as fringe displacement data

To present results that are comparable to the fringe displacement data observed
experimentally, at each time t, at each point &, the concentration, cke (in g/ml) of each
species, e, of each solute component, k, is multiplied by L and kj ke, where L is the optical
pathlength (in cm), and ky ke is an estimate of the specific fringe displacement [Gray et al.,
1995] for species e of solute component k at wavelength A. For species e of solute
component k at a concentration of cke in an AUC experiment using an optical pathlength of L

and a wavelength of A (in cm), the specific fringe displacement (in fringe-cm?2/g) is

ony \ fringe Afjge
Fake =\ 3 1 Leg.
Ck,e L Ck,e

(ED)

where (0ny/dcke)y is the refractive index increment (in cm3/g) at wavelength A for a
solution of species e of solute component k at dialysis equilibrium with the solvent, and
AJake is the observed fringe displacement for species e of solute component k at wavelength
A. As Alake = LKkakeCie, the total fringe displacement, which is equal to the sum of all Ay ke, is

dependent on the concentration of each species of each solute component.
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Section F: §&-dependent functions to approximate Dye and oke

Tests of different solutions

The integrals in the solution to the t- and §-dependent Lamm equation (Equation B21) have
been replaced with their evaluations shown in Equations B39 to B53 or Equations B39* to
B53* and those expanded forms of the solution to the continuity equation for AUC have
been used in finite-element simulations. Simulations of AUC based on the second
approximate solution (using Equations B39 to B53) have been found to perform at least as
well as simulations based on the first approximate solution (using Equations B39* to B53%*).
Additionally, finite-element simulations of sedimentation based on the first approximate
solution to the t- and &-dependent Lamm equation have been found to perform at least as
well as finite-element simulations based on the first approximate solution to the t- and r-

dependent Lamm equation [Cox and Dale, 1981; Schuck et al., 1998]. (Results not shown.)

First approximate solution

To express oke and Dk in terms of pseudo-§-independent parameters, each one is
approximated as a set of N scalar coefficients that can be a function of t but must be
invariant with &. For oke, at all &, where 1 <h <N, those coefficients are

Oken = Oke At Sp)
(F1)
and for Dke, at all &, where 1 <h <N, those coefficients are

Dyen = Dy at $p.

(F2)
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(Compare Equations F1 and F2 with Equations C22 and C23, which describe the functions
that express Dk and oke in terms of sums of products of £-independent coefficients (Dye;
and oej, respectively) and §-dependent basis functions (Pj). It is the &-independence of the

coefficients that permits their being factored out of the summations indexed by j in

Equations C25 to C35.)

When it temporarily becomes more convenient to work with ske and Dk instead of oke and
Dke, Ske is also approximated as a set of N scalar coefficients that can be a function of t but

must be invariant with &. At all &, where 1 <h <N, those coefficients are

Skehn = Ske at &p.

(F3)
(Compare Equation F3 with Equation C21.)

Equations F1 to F3 define oken, Dken and sken as constants with respect to §, and in the first
approximate solution, are used in place of Equations C21 to C23. The resulting first

approximate solution to the Lamm equation can be written as

n Mgk N N

&b o dp, dP;
Z Ck,e,h+ (L Py Pid§ — Dy e ns [Uk,e,h+_L Py —= az f §— f dfh az fdfl At)

N N fb
Z Z Ck,e,h— <j Py P d¢
—y ém

k=le=1h=11

s‘bdph
+ Dy e n— Jk,e,h—.]; Py dfg §— f A @ Ed{lAt)

(F4)

As usual, a minus or plus subscript refers to time t or [t + At], respectively. Equation F4 of
the first approximate solution is obtained by applying Equations F1 and F2 to Equation C32
of the second approximate solution in the case of (doke/d%): = 0 and (dDke/08)c = 0 atall €.
Thus, when oken and Dken are used as they are in Equation F4, each oxen should equal &-

independent okge, each Dken should equal €-independent Dy and, given that (dske/d8): = 0

108



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

when (doke/08): = 0 and (0Dke/0E): = 0, each sken should equal €-independent sie.
Furthermore, these conditions make it highly likely that (dske/dt)s = 0 and (0Dke/0t)s =0
in general, and that (doke/dt)s = 0 at constant field. Therefore, sken and Dken are likely to be
t-independent in general, and okepn is likely to be t-independent at constant field. All such
constraints are purposefully violated in the following treatment of the first approximate

solution.

As typically, but incorrectly, applied, the constants, oken, Dken and Sken, of the first
approximate solution are treated as if they were functions of solute concentration. Thus,
Okeh, Dkeh and sken become pseudoconstants with respect to & Truncated virial expansions
are used to approximate the dependence of oxen and Dken on the concentration, cq,5, of each
explicitly included species, a, of each explicitly included solute component, q. To evaluate
these pseudo-¢-independent constants indexed by h, prior to each time increment, Dyen and

Okeh are approximated by

ng quah
Zb——lz ——12 —1Ybk q —
q = k.eq,a
a=1 dc ah

j— (o]
Dk,e,h =D k.,e

n dc b
Y TP T Ry kega
= = = ) Iel 'a
q=14&qg=1 q dcq,a,h

(F5)
and
b
/Zl‘le P ZZil Pbkeqa Cilccq—ahh\
Oen = 0°ke , dc q:;lb '
25=12q=12021 Vokeqa m
(F6)

respectively, where n is the number of solute components, nq is the number of species that
constitute solute component q, D°ke at all § equals Die at &, at time t or [t + At] in the limit
as c approaches 0, 6% at all § equals oke at &, at time t or [t + At] in the limit as

c approaches 0, cqan is the €-independent concentration coefficient of species a of solute
component q at time t or [t + At] (cqan, at all §, equals cqa at &, just as cxen, at all §, equals cke

at &y in Equation C17), and where pubkeqa Ybkegqa and hpkeqa are the bth of up to an infinite
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number of coefficients of proportionality for the density increment, thermodynamic
nonideality, and viscosity effects, respectively. By definition, };g_; quzl P1ke,qa

n n
g=12 a1 Vikeqa and Ya=12 a1 M1 ke qa are each equal to 1. (Each of the ppkega Ybkega
and hy keq,a coefficients couples the concentration of species a of component q to an effect
on the transport of species e of component k. See Section D for the component-based

equivalents of these virial expansions.)

Both 0°.e and D% are &-independent by definition. Furthermore, the first approximate
solution cannot be applied to systems in which changes in solvent density cause (dpo/d%)«
to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied
to systems in which solute concentration gradients cause (dp/d%): to differ from zero.) As
discussed in the definitions of D°ej, (Equation C33) and 06°ke; (Equation C34), the condition
that AD®ej/Aj = 0 and Ac°kej/Aj = 0 for all species of all solute components can only apply
to a system with an incompressible solvent, in which case, D°e; and 0°ke; can be replaced
with D°e, and 0°ke, respectively. Hence, the use of D% and 6°e in the first approximate

solution.

As noted, when oken and Dken are used as they are in Equation F4, each oken should equal &-
independent oke, and each Dyen should equal &-independent Dk e. Thus, the use of Equations
F5 and F6 is incorrect, except where all coefficients of b(cga)? -1 for b > 1, which is to say all
Pbkeaqa Ybkega and hpkeqa for b > 1, equal zero, and where, as previously noted, the solvent
is incompressible and (dp/0d¢): = 0 atall € and t. (Compare the properties and uses of
Equations F5 and F6, with those of Equations C33 and C34, respectively.)

Results of the first approximate solution compared with those of the second approximate

solution
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Figure F1. Results, as Ziei- = Z1,1,i- versus &, from the first approximate and second
approximate solutions, compared after a 1 s time increment for 87 three-element, single
solute component (k = 1), single solute species (e= 1) systems. (Each system consists of 3
adjacent spatial elements, [h - 1], hand [h + 1], where 1 <h < 31, §min = §1 = 21.1250 cm?,
Emax = &31 = 21.5210 cm?2, Agh- = A+ = AE = 0.0132 cm?, and each system is characterised
by one of three concentration gradients, dcy,1,n/d§, in which (c1,1,n-1] + €1,10 + €11, m+17) /3 =
0.1 g/ml.) The central values of, and gradients in c1,1,5, 01,1,n and D11, are given to the right
of the graph. At the scale shown, Z1,1,- from the first approximate and second approximate
solutions for the case of dci,1,n/d€ = 0 are indistinguishable. (See Section C in general, and

Equations C39 and C74 in particular, for details regarding Zxe,-.)
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Figure F2. Results, as AZxe,i- = AZ1,1,- versus &, from Z1,1,- of the first approximate solution
minus Z1,1,i- of the second approximate solution after a 1 s time increment for the 29
dc1,1,n/d€ = 0 systems shown in Figure F1. The central values of, and gradients in c1,1,n, 61,1,h
and D1,1,n are given to the right of the graph. This figure shows that Z1,1i- from the first

approximate and second approximate solutions differ, even for the case of dc1,1,n/d§ = 0.
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Section G: The dissipation function and the Curie-Prigogine principle

The formalism of irreversible thermodynamics applies when flows can be expressed as

linear functions of the forces present [de Groot and Mazur, 1962; Tanford, 1961]. The forces
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that give rise to flows in the AUC instrument are assumed to be small enough that this
formalism is applicable. Given this assumption, and denoting the solvent as component 0,

the equation for ],f, the molar flow of component k in the solvent frame of reference, can be

written as

(G1)

where Liq is the phenomenological coefficient linking the transport of component k to )?q
[Tanford, 1961], and )?q is the conjugate molar force (Equations A2, A14 and [16) offq,
which is the molar flow of component q in the system frame of reference [Katchalsky and
Curran, 1965]. (See the dissipation function, Equation G2, which shows how a conjugate
force is assigned to each flow through the system [Katchalsky and Curran, 1965]. Also see
Equations I6 to 114 for further discussion offq.) The sum over all q is taken over all linearly
independent forces [Katchalsky and Curran, 1965]. Each conjugate molar force is a vector,
)?q = -VUg, where Uy is the total molar potential of solute component q. In the AUC
instrument, in cases where the Earth’s gravitational acceleration makes no significant

contribution the molar gravitational potential of any component, X ¢ has no component

along the - or z-axis of the system, so that Xq = (Xg)r, which is the r-component of)?q, can
be used in place of the vector. In total, there are n + 1 conjugate molar forces, but Xo, that of
the solvent, has been expressed in terms of the others in Equation G1. The bulk fluid
velocity in the system frame of reference is described by vy, the nonvector representation of
v,, which is the velocity of the solvent flow through the system in the frame of reference of
the system. In the absence of any forces other than that associated with solvent flow, Xq=0

= 0, and the system-frame-of-reference velocity of solute component q, vq, equals vo, from
which it follows, in such cases, that Jx = (cx/Mk)vo. As the AUC system is closed, vo must be

zero at the boundaries, and is likely to be negligibly small elsewhere.

The phenomenological coefficients are functions of system properties, such as temperature,

pressure, and the concentrations of solute components, but are independent of the
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magnitudes of any forces present, provided that those forces are sufficiently small [Tanford,
1961]. The phenomenological coefficients pertaining to coupled flows are the Liq terms for
which q # k. By a statistical mechanical treatment of microscopically reversible processes,
Onsager showed that these cross terms are symmetric in the absence of magnetic fields or
Coriolis forces in the system, in which case, the reciprocal relations are Liq = Lqx for all k
and q [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962]. Denoting any magnetic
fields or Coriolis forces by G, the most general expression of the reciprocal relations is
Lk,q(é) = eqequ,k(-é), where Lk,q(é) is Lkq in the presence of G, Lq,k(-é) is Lqk in the

presence of -G, €q is the indicator of time parity for )?q and ek is the indicator of time parity

for )?k [Jou, Casas-Vazquez and Lebon, 2010; Jou, Casas-Vazquez and Criado-Sancho, 2011].
If a conjugate molar force, such as )?q or )?k, is even under time reversal, its indicator of time

parity, €q or €k, respectively, is equal to 1. If a conjugate molar force is odd under time

reversal, its indicator of time parity is equal to -1.

In the AUC instrument, under the usual operating conditions, G may not be negligible, but as
neither Lkq nor Lqx is likely to be known or experimentally determinable, data analysis and
simulations generally take place at the next highest level of abstraction, for which Dx
(Equation A21) and either sk (Equation A22) or ox (Equation A23) are the accessible
parameters. As such, details regarding the applicable forms of Lk,q(é) = ququ,k('é) are not
explored here, except in the latter part of Section N (A simple coupled-flow equation for
AUC). Nevertheless, a large body of experimental evidence suggests that the applicability of
the reciprocal relations is broader than might be expected, given that their theoretical basis

deals only with processes that are close to equilibrium [Katchalsky and Curran, 1965].

The dissipation function,

n nr n ngr n ngr
O = oKt Y JEAg=Jo- Ko+ Y Jo- Kt ) JEAg= D JE Kk ) JiAg,
g=1 k=1 g=1 k=1 g=1

k=0

(G2)
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measures the local rate of free energy dissipation per unit volume [Katchalsky and Curran,
1965]. This equation is used to determine the proper flows and forces to include in
Equation G1. In the AUC instrument, all significant flows are either those of transport (the
molar flows and mass flows discussed throughout this work) or those of chemical reactions.
The summation indexed by k gives the contribution of independent particle flows to ®. The
summation indexed by g gives the contribution of independent chemical reaction flows to

@. Each term in the summation indexed by g is the product of the molar reaction flow, ]g, of

reaction g, times the conjugate molar affinity, Ag, of reaction g.

The total number of all possible flows is 1 + n + ngr, where 1 + n is the number of possible
molar flows, and nr = n is the number of possible independent chemical reaction flows [de

Groot and Mazur, 1962]. The total number of all possible forces is also 1 + n + ng. As ]5 and

Ag are scalars, their tensorial order is 0. As fk and )?k are vectors, their tensorial order is 1.
Given that reaction flows are not expected to produce molar flows when the system is
isotropic, it is assumed that the Curie-Prigogine principle [de Groot and Mazur, 1962;
Katchalsky and Curran, 1965] applies in the AUC system. Accordingly, there is assumed to
be no coupling between flows and forces of different tensorial order, with the result that no
phenomenological coefficients link the molar affinities of any chemical reactions to the

conjugate molar forces in Equation G1.

Without the nr molar affinities to contend with in Equation G1, there remain n + 1
conjugate molar forces, one of which may be expressed in terms of the others, so that only n

linearly independent forces appear in Equation G1. The Gibbs-Duhem relation is used to

express )?0 in terms of the other conjugate molar forces, each of which is associated with

one solute component.
Conjugate molar forces

The cylindrical coordinate system, where r is the radial coordinate, z is the longitudinal

coordinate, and ¢ is the angular coordinate (the segment of arc), is well suited to describing
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the geometry of an AUC system. It is assumed that an AUC system develops gradients in the
gravitational potential and chemical potentials mainly, and these potentials are expected to
be invariant with respect to ¢ in most systems. Furthermore, in many systems, the

gravitational potential and chemical potentials are expected to be invariant with respect to
z. In general, )?q = Mg(w?Vg - Vgeh) - Vg, where, as discussed with respect to Equation A2,
Hq is the chemical potential of solute component g, Mg is the molar mass of solute
component g, gk is the magnitude of the gravitational field at the Earth’s surface, and h is

the height above the Earth’s surface.

In cases where the Earth’s contribution to the molar gravitational potential

gradient, -MqVgeh, is significant, -Vggh will not be negligible, and X ¢ Will vary significantly
with respect to r and z, but is still likely to be invariant with respect to ¢. (For further
details about the consequences of significant values of -MyVgeh, see Section H: The
contribution of the Earth’s gravitational field to transport in AUC.) In general,

(0€/0r)t,p2 = (08/0r)t. Thus, where -geVh is negligible, in all likelihood,

(Ouq/0r)te,z = (Ouq/Or)t as a result of which, )?q can be described by

Xq = Mqw?(08/0r)t - (Opq/0r)t. For definitions of uq and Mg, see Section I (Calculating molar

mass, chemical potential and partial specific volume for a multi-species component).
Chemical reactions
The contribution of the chemical molar flows to the dissipation function (Equation G2) is

ng
dg = z JBA,,
g=1

(G3)
where ngr = n is the number of possible independent chemical reaction flows [de Groot and
Mazur, 1962], which are indexed by g. Each term in the summation is the product of the

molar reaction flow, ]5, of reaction g, times the conjugate molar affinity, Ag, of reaction g.
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Following Equation G20, the molar reaction flow and molar affinity are discussed further,
utilising some of the results that are obtained between here and there. What follows
immediately is the development of the equations that, in Section K (Reaction flow
algorithms), are applied to the practical problem of calculating the concentrations of solutes
that participate in a chemical reaction. The examples of the various types of reactions
presented in Section K painstakingly illustrate, and may thus help clarify, some of the

considerably tedious material that is covered next.

A chemical reaction involving components 1 < k < n can be cast in terms of Ske, where Ske
represents the formula notation of species e of component k. The sum over all of the

independent chemical reactions that are possible yields

ng n nNg n Nk
Z ZlVnge|Ske“ZZZ'VP,g,ke|Ske:
g=1k=1e=1 g=lk=1le=

(G4)

where Vrgke is the signed stoichiometry of reactant species e of component k in reaction g,
and vpgke is the signed stoichiometry of product species e of component k in reaction g. A
convention is employed where, by definition, vrgke < 0 and vpgxe = 0. Furthermore, by
definition, vrgke = 0 if species e of component k is not a reactant in reaction g, and vpgxe = 0

if species e of component k is not a product in reaction g.

Throughout the equations and examples that follow, the activity of species e of solute
component k will be given by ykecke, where yke is the activity coefficient of that species, the
concentration of which is cke, as usual. Furthermore, if species e of solute component k is a
product or reactant of a chemical reaction, ¥, . and €, . will denote the activity coefficient
and the concentration, respectively, that the species would exhibit if the chemical reaction

were at equilibrium.

The association constant of independent chemical reaction g is given by

n

| ngel
k
KA,g fg 1_[k 1He 1(Vke ke) | || |(ykecke)(vpgke+Vnge)

k |VR gk, el
rg 7}3:1 e=1(Yk,eCk,e)
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(G5)
where, for independent chemical reaction g, ke is the forward rate constant and k. is the
reverse rate constant. Letting Y represent the unit solute concentration (with dimensions

such as 1 g/cm3), the dimensions of kg are given by
1

ng
1-Y2_ Y % v
;Y Zk—lze_ll R.g.k.el ,

(G6)
and the dimensions of k¢ are given by

1
_‘Y‘l_Z,};L=1 ZZ£1|VP,g,k,e| .

S
(G7)

The net stoichiometry of species e of component k in independent chemical reaction g is

defined as vgke = VrRgke + Vpgke, SO that, due to conservation of mass,

n Nk
ZZ gke =0
k=1e=1

(G8)
The net rate of independent chemical reaction g, given by

w el Iv A
kfgl_ll_[(Ykecke Rgle krgl_ll_[(YkeCke Pad

=1 e=1
(G9)

is zero when the reaction is at equilibrium.

Explicitly including the forward and reverse reactions of each component, the continuity

equation for all components is
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n

Z@Ck) i(a‘/_l"> z kfgﬂn(ykecke)|vme|

=1 k=1 g=1 =1 e=1
|V e|
krgl_[n(Ykecke) rok
=1 e=1

(G10)
where the sum of the net reaction rates,

Nnr=n

v v
Z kfg HH(YI{eCk e)l ngel krg nn(Yk eCke)l nge| )
g=

(G11)

is zero when all reactions are at equilibrium.

A convention is now adopted in which the simplest species of each component is assigned
the lowest number, 1, of the species index, e. Higher-order species of component k are thus
those for which 2 < e < nk. Furthermore, in view of the fact that there are as many
independent chemical reactions (nr) as there are components (n), the reaction index, g, can
be reused as an additional component index. Thus, the composition of each higher-order
species (e > 1) of component k is given by the set of vgke for which 1 < g < n, where vge is
defined as the stoichiometry of species 1 of component g, with the constraint that 1 < vg=kke

< oo for g =k, while 0 < vgzkke < oo for g # k.

To describe the reactions that form each higher-order species (e > 1) of each component (1
< k < n), an additional species index, a, is applied to the association constant, forward rate
constant and reverse rate constant of these reactions. To describe reactions in which the
reactants or products include higher-order species (e > 1) of any components (1 <k < n),
the additional species index (a) is also applied to the stoichiometries of each species.

Henceforth, the reaction that produces species a of component g is referred to as reaction

a/g.

For components indexed by g, species are indexed by a. As ng is the number of species that
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constitute solute component g, for g = k, ng = nx. After further indexing the stoichiometries

by a, Equation G4 is summed over all species to obtain

ng=n Mg n ng

ng=n Mg n ng
Z DI VEDIDIIPY oy
a=1k=1e=1

g=1a g=1 a=1k=1le=1

(G12)

where VR gake is the signed stoichiometry of reactant species e of component k in reaction
a/g, and vpgake is the signed stoichiometry of product species e of component k in reaction
a/g. By definition, Vrgake < 0 and vpgake = 0, where vrgake = 0 if species e of component k
is not a reactant in reaction a/g, and vpgaxe = 0 if species e of component k is not a product

in reaction a/g.

The association constant of reaction a/g is given by

n

|VP ake|
kfg Hk 11_[ 1(Yk ecke 7 (VP ketVRg,ak, )
Kaga = = nn(Ykecke) e

k [VRg.akel
rg.a n (Yke ke) gl =1 e=1

(G13)
where Kgga is the forward rate constant and ki, is the reverse rate constant of reaction a/g.

The dimensions of kg are given by
1

n Nk
Zy1-Xk=1 TekilvRgake
S )

(G14)
and the dimensions of kg, are given by
1

n nk
Zy1-Xk=1 Tekilvegake
S )

(G15)

where Y is the unit solute concentration.

The net stoichiometry of species e of component k in reaction a/g is defined as vgaxe =

VRgake + VPgake SO that, due to conservation of mass,
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n ng
Z Z Vg,a,k,eMk,e =0.
k=1le=1

(G16)

The net rate of reaction a/g, given by

n Nk n Ng
|VR,g,a,k,e| |VP,g,a,k,e
kf,g,a 1_[ H(Yk,eck,e) - kr,g,a (Yk,e Ck,e) ’
k=1 e=1 k=1 e=1

(G17)

is zero when the reaction is at equilibrium.

Explicitly including the forward and reverse reactions of each species, the continuity

equation for all species is

k=1e=1
n Mg ng=n Mg
_ a\/ Ike k |VRgake
- fga (Ykecke)
k=1le=1 t  g=1 a=1 =1 e=1
n Nk | |
Vp.g,ak,
krgmlI_II_I(Ykﬁche) - e)r
k=1 e=1
(G18)
where the sum of the net reaction rates,
nr=n Ng
[VR.gak, | [vp.g.ak,
Z z kfgal_[n(Ykecke) gt rgal_[n(YkeCke) gane )
g=1 a=1 =1 e=1

(G19)

is zero when all reactions are at equilibrium.

Equation G18 applies to simulations based on the solution to the continuity equation in
terms of species. Where the pressure in the system is §-dependent, Kaga, Kiga and krga may

be functions of §, and may be worth treating as such. A ¢-dependence in pressure may also
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give rise to an additional §-dependence in yie, beyond that which may result from gradients
in the concentrations of any solute species. Following Equations ]2 to J5, the topic of how to
model a pressure-induced &-dependence is discussed in connection with the species-e-of-
component-k affecting density increment, thermodynamic nonideality, and viscosity

coefficients.

Equilibrium constant

Properly speaking, the association constant should be defined in such a way that it is
dimensionless. It is convenient, however, to preserve the dimensionality of Kag. as defined
by Equation G13. To deal with situations where the numerically equivalent but

dimensionless constant is needed, the dimensionless equilibrium constant of reaction a/g is

defined as
|VPgake|
Y ¢
7{121 HZE ( ek e) Yk eck R (VP,g,a,k,e‘FVR'g'a_k_e)
Keq,g,a - |VRgake| 1_[ 1_[ < ) ’
11—[ (Ykecke) k=1 e=1
(G20)

where Y is the unit solute concentration. The dimensionless aspect of the equilibrium
constant makes it suitable for calculations that require its logarithm, such as AG®°
= -RTInKeqga, and is the parameter obtained from exponential operations, such as Keqga =

e"AG°/RT where AG® is the standard Gibbs free energy change of reaction a/g.

Obtaining conjugate molar affinities from the molar reaction flows

The molar reaction flow on an independent reaction is equal to the portion of the time-

derivative of molar concentration that is a direct result of a chemical reaction [Onsager,

1931a]. Thus, for reaction g/a, the molar reaction flow can be defined as
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Nk % |VR. ak,
JR = fe=11TeZ4 Mk:el Raakd k 1_[ 1_[ <Y > -
ga — n f.g.a ke
ZZ=1 2321 Mk,e |VR,g,a,k e Mk e

ng v |Vp_ ak,
;(lzl He:l Mk.el P’g’a’kel n n <y > g.ar.e
- K kr.g.a ke ,
;clzl Ze:l Mk,e |VP,g,a,k e Mk e

(G21)

which is the molar equivalent of Expression G17. Wherever and whenever reaction g/a is at
chemical equilibrium, jgja = 0 and each Yy ¢Ck ¢ = Yk eCk e, in Which case, the association
constant of reaction a/g can be redefined as

n v ngk
;{lzl Hei]_ Mk,el R’g'a’k’el k -;’(lzl Ze:l Mk,e |VP,g,a,k,e| k
n N f.g.a n N f.g.a

k=1 Zezl Mk,e |VR,g,a,k,e | k=1 Zezl Mk,e |VR,g,a,k,e |

KA“lgL"a = n ng M |VPgake| = TL ng M |VPgake|
collig he1 He:l ke Dok " =1 He:l ke Dok "
i3 r.g,a r,g,a

Z:l Zeil Mk,e |VP,g,a,k,e| H;{lzl HZil Mk,e|VR'g'a'k'e|

n

( ;Cl=1 Zeil Mk,e |VP,g,a,k,e |> kf,g,a
n

Z:l 2321 Mk,e |VR,g,a,k,e| kT,g,a

n 1 an Mk,e (VpgaketVRgake)

(G22)
(compare with Equation G13), while the dimensionless equilibrium constant of reaction a/g

can be redefined as

| Pgakel
n Yk,eCr,e ) e
- PgaketVRgak.e)
Keq.ga = ‘ 11_[ (YMk | | | |<Yke ke) gake gt
'Y - )
collig H” an Ykeck | Rgake| =1 ez YMke
k=11le=1 Y'Mk

(G23)

where Y is now the molar unit solute concentration. (Compare this result with Equation
G20.) The addition of "collig" in their subscripts indicates that these association and
equilibrium constants are defined colligatively, and distinguishes them from their
respective counterparts of Equations G13 and G20, which are defined using mass

concentrations.

As calculated from the colligative equilibrium constant (Equation G23), the standard Gibbs
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free energy change of reaction a/g is thus
n Nk

AG®" = —RTIn (Keq,g,a) = —RTIn <
collig

Yk,e Ck,e
YM .

)(VP,g,a,k,e+VR,g,a,k,e)

k=1 e=1

n ng

Yi,eCk,

= —RT § § (Vpgake + VRgake)n |~ |-
YMy .
k=1e=1 '

(G24)

For values of y; ¢y . that differ from their corresponding values of ¥, ,C e,

n Nk
o Yk,eCk,e
AG = AG + RTI 1_[ ——
+ n < YMk,e

> (VP,g,a,k,e +VR,g,a,k,e)

k=1 e=1

n nNg
o C
=AG-+RT§S§S(wwﬂ%e+ngmthlykekﬁ
k=1e=1 M
=]1e=

n nNg
Yk,eck,e
= RT E E (VP,g,a,k,e + VR,g,a,k,e)ln <~ =
Yk,eck,e
k=1e=1

n Nk

=RT Z Z(VP,g,a,k,e + VR,g,a,k,e)ln(xk,e)
k=1e=1

n Nk
RTIn | |xk'e(VP,g,a,k,e+VR,g,a,k,e) ,

k=1 e=1
(G25)
where
Xio = Yk,efk,e
Yk,eCk,e
(G26)

is the equilibrium-normalised activity of species e of component k. For irreversible
thermodynamics to be applicable, all points of the system must be near equilibrium at all
times. Thus, at any time and place in the system,

Xpe =1+ 8xppe,

(G27)
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where |5xk,e| is not much greater than zero. Furthermore, it is assumed that |5xk,e| is

always near enough to zero that, to a good approximation,

n Nk n Nk
AG = RTIln | | | | xke(VP,g,a,k,e"'VR,g,a,k,e) ~ RT | | | |xke(VP,g,a,k,e"‘VR,g,a,k,e) —11\.
k=1 e=1 k=1 e=1

(G28)
Thus,

nl_[xk (VPgake""VRgake) ~ 1+ In nnxk (VPgake+VRgake) — 1_|__

=1 e=1 =1 e=1
(G29)
More importantly for what follows, AG is divided into two parts,

AG = AG, + AG,

(G30)
where
n Nk n Nk
AG, = RTIn nnxk,evl’,g,a.k.e = RTIn Hl_[xk,elvﬂg,a,k,e
k=1 e=1 k=1 e=1
(G31)
and
n Nk n Ny
AGf = RTIn 1_[ ka,eVR,g,a,k,e = RTIln nnxk,6_|vR’g’a’k’e
k=1 e=1 k=1 e=1
n ng
= ~RTin ank,e|vR’g'a’k'e )
k=1 e=1
(G32)
so that
n Nk n Ny G
1_[ nxk,elvP,g,a,k,A ~ 14+ 1In 1_[ ka,eh/p,g,a,k,e' — RTT
k=1 e=1 k=1 e=1
(G33)
and
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aln e AG
1_[ 1_[ xkelvR,g.a,k,el ~ 1+ In 1_[ nxkelvR’g'a’k'el —1_ R_Y{

k=1 e=1 k=1 e=1

(G34)

Given the definition of x; ,, the molar reaction flow of reaction g/a can be rewritten as

J§a
n Nk
he 1% My e VRgakel K _”_'<\~’k,e6k,exk,e VRo.ake
- ng f.9,a
=1Ze=1Mke Rgake ‘Iézllue—‘l‘ Mk,e
n Nk
Z=1H 1 My e vPgael k _”_'<~k,e5k,exk,e Pgate
- 7,9,a
n:lze Mke|VPgake| Ié:lé:l Mk,e
n Nk
R T10E, My, lvR*‘”“' TTTT1/(VkeCre rgakel 2 |v N
kzlze Mke Rgake I€=‘1“e=‘1‘ ke k=1 e=1
n—ll_[nk M |VPgake| l,.&, Vke e |Pgake|
— n_ k,g, ke ke nnxk |Pgake
_126 Mke|vP9ake| k=1 e=1 Mpe k=1 e=1
(G35)

Given the expected characteristics of x ., the molar reaction flow of reaction g/a can be

rewritten as
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R
Jga
n an M |VR,g,a,k,e| n n_ V ¢ |vR.g,a,k€| 5
_ k=1 nizl ke Kt g ( ke ke> —[ka IVRg.ake
n .9,
k=1 Zezl Mk,elvR,g,a,k,e| %=1 e=1 My e k=1 e=1
Ny
n ng M |VP,g,a,k,e| LN P ¢ |VP,g,ake| 1
_< nk=11_r[li=1 ke kr,g,a ( Ilc\,/;,’ ke> —[nxk | Vp,g.ake
k=1 Zezl Mk,elvP,g,a,k,el k=1 e=1 k.e - =1 e=1
Nk [ ]
f T M sasel Y T o \rga
= =1 M, Yk,eCk,
(e L1521 e
k=1 Ze:l Mk,elvR,g,a,k,e| k=1 e=1 ke =1 e=1
n e M [vp.gakel oMk [ve.gakel - [ 1
[Tr=1[TeZ; Mg " "o%% keCke lv
- n nk kr:g;a M 1 + ln xk;e P’g’a’k’e
=1 Ze:l Mk,elvP,g,a,k,el %=1 e=1 k.e k=1 e= ]
n ng |VRgake| ok e |VR,y,a,k,e| - AG
_ < k=1 He=1 Mk,e e >k (Yk,ec e> 2Mf
- n ng f.g.a
k=1 Zezl Mg e |VR,g,a,k,e| w=1 e=1 M.e ~ RT|
ny v N kol |VP. ak, | - -
~ [ | ) Mk’e| Pgakel 1 1_[ ( k,eCk,e> gane 1+ AG,
T r.g.a .
k=1 Zezl Mk,elvP,g,a,k,el %=1 e=1 Mi.e - RT |
(G36)
. . . . RT .
Multiplying this equation by o yields
n Nk

n 5 = \[PrRgakel
_ 1 Z:l He£1Mk,e|VR’g’a'k'e| k Yk,eCk,e gk RT — AG
Jga = RT\S7 v m f.9.a M. [RT — AG;]
k=1 Zezl k,e|VR,g,a,k,e| k=1 e=1 ke

1 n an M |VP,g,a,k,e| Tk ¢ |VP,g,a,k,€|
k=11le=1 ""'k,e k Yk,e k,e RT AG
ﬁ n ng M r.g.a M [ + r]
k=12ecq Mie |VP,g.a,k,e | ke

n
k=1 e=1

= LRKES + LK
(G37)
where
7 = Lghxge
(G38)

is the molar reaction flow of the products (P) of reaction g/a,
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Ng
n N VR.g.ak, n S = [VR.g.ake
Lg,a _ 1 k=1 l—[e:]_ Mk,el 9.4 el k <Yk,eck,e>
PR ™ n Nk f.g9.a | | | |
RT k=1 Zezl Mk,e |VR,g,a,k,e| k=1 e=1 Mk,e

(G39)

is the coupled-flow-phenomenological coefficient linking];?'a to Xg’a ,

n Nk n Nk
k=1 e=1 k=1 e=1

(G40)

is the conjugate molar affinity of the reactants (R) of reaction g/a,
g = g

(G41)

is the molar reaction flow of the reactants (R) of reaction g/a,

n v n Nk ~ ~ |‘Vp’ ak,
g - - L (s e (Tt
RP —  pT Ny r.9,a
RT \ k=122, Mk.e|VP,g,a,k,e| %=1 e=1 Mi.e

(G42)

is the coupled-flow-phenomenological coefficient linking /5 to X3, and

n Nk n Tk
XPgJa = RT 1_[ ka‘elvP,g,a,k,el ~RTI|1+In 1_[ l_lxk,e|vp"g'a'k'e| = RT + AGr
k=1 e=1 k=1 e=1

(G43)

is the conjugate molar affinity of the products (P) of reaction g/a.

Taking Equations G21 to G23 into consideration together with Equations G37 to G43, it can
be seen that

Lbk = LR
(G44)
is a reciprocal relationship. Thus, the phenomenological coefficients (L3 of Equation G39
and Ly, of Equation G42) of the reaction flows (J7** of Equation G38 and Jz'“ of Equation
G41) included within ]g,a (Equation 37) yield identical results upon evaluation. In part,

splittingjgla into two reactions flows,
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o =I5 48
(G45)
was justified on the basis of L7z and L3 ; being reciprocal. The split was also motivated by

the search for the two molar reaction flows that, in the dissipation function (Equations G2
and G3), are needed to complement the conjugate molar affinities, Xg'a and X;f,"a, that
Equation G37 was contrived to yield. Having split Equation G37 as shown, it is now possible
to write the dissipation function for reaction g/a as

o

_ 194494 | 19ayga
ga =Jp Xp" T Xg"

(G46)

Equation G46 is a dissipation function for two directionally distinct reactions, which are the
forward reaction that produces species a of component g, and the corresponding reverse
reaction. The dissipation function that includes all such pairs of reactions for all species of

component g can thus be written as

Ng
D, = Z Dy
a=1

(G47)
Likewise, the dissipation function that includes all such pairs of reactions for all species of

all components can be written as

Nnr=n

q)R= Z ¢)g.
g=1

(G48)
Thus, the right-hand sides of Equations G48 and G3 can be equated to obtain
np=n nrp=n
b = ]gAg = Z D,
g=1 g=1

(G49)
Using first Equation 47 and then Equation 46, the right-most summation of this result can

be expanded to yield
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nr=n nr=n nr=n Ng ng=n Ng
®p = §;]§A 28 zz §;¢@a_.zz 220£“X9“+]9“X9“)
g=1 g=1 a= g=1 a=

(G50)

Assuming that, by definition,

Ng ng n Nk n ng

— g.a g9,.a\ _ | | | | v | | | | v

= Z(XP + XR ) = RTZ xk,el P,g,a,k,el + xk,el R.g,ak.e
a=1 a=1 \ k=1 e=1 k=1 e=1

(G51)
then
1 TR0 R
SN
(G52)

which would make J g the conjugate-molar-affinity-average of the species-level molar

reaction flows of component g.
Dimensionality and tensorial order

The dimensions of Ag are those of chemical potential, and Ag (Equation G51), the conjugate
molar affinity of component g, can be considered a measure of the chemical potential of
component g. (To be liberally flippant, one could say that the conjugate molar affinity
quantifies how reactionary a component is at any given place and time.) As would be
expected of a chemical potential, Ag is a scalar, as are the species-level conjugate molar
affinities denoted as X5 (Equation G40) or X7'* (Equation G43). Hence, although Onsager
referred to Ag as a force, he tended to put quotation marks about the word when doing so
[Onsager, 1931a]. In contrast, as noted in the discussion of Equation G1, )?q, the conjugate
molar force (Equations A2, A14 and 116) of solute component g, is a vector equal to -VUyg,
where Uj is the total molar potential of solute component q. Thus, Agand Uq are

dimensionally and tensorially equivalent, as are -VAg and )?q.

Similarly, despite their being referred to as flows, reaction flows, such as ]5 at the
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component level or]g'a (Equation G38) and];f,"a (Equation G41) at the species level, are
scalars, and are dimensionally distinct from the molar flows of components, such as fk
(Equation G2), which are vectors. The reaction flows have the dimensions that would be
obtained from a divergence of a molar flow. Thus, V -fk and ]5 are dimensionally and
tensorially equivalent, as are J, and (V 71§, where (V -)~! is the inverse divergence

operator (Sahoo, 2008).

In the dissipation function (Equation G2), products of pairs of vectors, fk and )?k, are added
to products of pairs of scalars, jg and Ag, to obtain a scalar, ®. Dimensionally, the product of
anyfk and any )?k is the same as the product of anng and any Ag. However, while the

product of two scalars yields a scalar, the product of two vectors can yield a scalar
(tensorial order 0), a vector (tensorial order 1) or a dyad (tensorial order 2), depending on
how the two vectors are multiplied (Kolecki, 2005). Thus, to ensure that each product in the
dissipation function yields a scalar, each such product that involves two vectors must be an
inner product. (As it happens, the inner product between two vectors will not yield a result
of the standard form unless one of the vectors is represented covariantly and the other

vector is represented contravariantly (Kolecki, 2005).)

Given the above, it can be stated that the following products between scalars, | gAg, ]5 Ug,

(V . fk)Ag, and (V . fk)Uq, are dimensionally and tensorially equivalent, both to each other,
and to the following inner products between vectors, [(V -)"}J%] - (-VAg), [(V )~ YJ%] - )?q,
fk - (-VAg), and fk . )?q. It would seem, then, that the divergence of a molar flow might be a

molar reaction flow, and the inverse divergence of a molar reaction flow might be a molar

flow. It seems clear, though, that V - ], does not equal /5, and J,, does not equal (V )7Yg.
Likewise, in general, Ag cannot be equated to Ug, and -VAg cannot be equated to )?q. It may,

however, be alright to say that, in general, Ag is part of Uq and thus -VAg is part of)?q.
(See Moody and Shepard, 2004, for a previous version of the material in this section.)
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Section H: The contribution of the Earth’s gravitational field to transport in AUC

The gravitational potential due to angular acceleration is -w?¢, and the gravitational field
due to angular acceleration is w?V& = w?7, where 7 is the radial vector. In a vertically
mounted rotor, in the absence of precession, w?7 - gg = 0, as such designs make w?r
orthogonal to the gravitational field of the Earth, which, expressed as a vector, is gg. If the
rotor were mounted horizontally, as in the oil-turbine ultracentrifuge built by Lysholm and
Svedberg [Svedberg, 1927], then, in the absence of precession, w3r - gg would, on a time-
average basis, be zero for each point in the rotor, though for any given point in the rotor,
w?7 - gr would only actually be zero at the two times per revolution when the angle
between 7 and g was either /2 or -i/2. Thus, in a horizontally mounted rotor, the Earth’s
gravity cannot significantly contribute to a concentration gradient in the system, as the sum

of its contributions per revolution is zero.

Rotors are vertically mounted in Beckman-Coulter XL-A/I analytical ultracentrifuges, and

viewed from above, those rotors spin clockwise, so that the rotor’s axis of rotation, ﬁ, is
directed downward, according to the right-hand rule. For a height change of Ah (equal to a
chosen final height minus a chosen initial height) in an XL-A/I AUC system, the difference in
the Earth’s gravitational potential is geAh. In a properly levelled AUC instrument with a

vertically mounted rotor, in the absence of rotor precession, the acceleration due to gravity

is directed downward along Q, and the drop in height in the direction of g is typically no
greater than -1.2 cm (equal to the lowest possible height minus the highest possible height).
More importantly for what follows, in a properly levelled AUC instrument with a vertically
mounted rotor, the instrument’s vertical axis, z, is defined as being directed downward,
with its reference position, zo, arbitrarily assigned a value of 0, which is arbitrarily chosen
to coincide with the maximum height, hmax, of the AUC system in the absence of precession.

As z and h are oppositely directed, where the dimensionality of z and h is the same, dz/dh
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=-1.

Calculating the contribution of the Earth’s gravitational field to AUC is similar to calculating
the contribution of angular acceleration to AUC. The same standard thermodynamic

relation,

(H1, from A7, which see)
applies to the chemical potential gradient both cases. In both cases, Bernoulli’s equation
also applies, but for the case of the contribution of the Earth’s gravitational field, the form

used, neglecting vector notation, is
Za
P = PO + gE_[ de )
Zo

(H2)
where, at a given value of §, P is the pressure at z = z,, Po is the pressure at z = 7o, and the

rest of the parameters have been defined previously.

As the density of the solvent, po, tends to be constant with, or only weakly dependent on, z,
(0po/0z)%: is almost certain to be negligible. As p is likely to be dominated by po, (0p/0z)¢t is
likely to be negligible. Finally, (dgr/9dz)z: = 0 throughout the system by virtue of scale. Thus,

the sought after derivative of the preceding expression for P can be approximated as

((’JP) ~
aZ flt _ng’

(H3)

so that

G, (5), =me
— —) =M .
ap firc 97 cr kVkPYE
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(H4)

As shown in Equation A2, the gradient of the molar gravitational potential of component k
due to the Earth’s gravitational acceleration is equal to MxVggh, which, given dz/dh = -1,
makes -MyVggz = MiVgeh. Thus, -MkVgez = -Mxgg, and for component k, the sum of the
gravitational and chemical potential gradient terms involving gg is -MxVggz +

(01/0P)gerc(0P/02)5r = -Mi(1 - Dyep) ge-

For Mxv,p < 107 g/mol (approximately), (du/0P)gt1,c(0P/0Z)gr < 1010 g-cm/mol-s2. While
the upper range of this value may seem significant, it is still less than 0.2% of

Mk ¥, pWmin?Imin, Which is the radially directed molar gravitational force at the lowest
possible radial position (approximately 5.7 cm), rmin, and the lowest practical angular
velocity (2m[3,000 RPM]/[60 s/min]), wmin, in the XL-A/I. Thus, the gravitational force
term, Mk, pge, is usually negligible (Mkvy, pge < 0.002-Mk¥y pwWmin®Imin). In general, with a
vertically mounted rotor, the height of an AUC system would have to be much greater than
the typical maximum of 1.2 cm, or |Mk(1 - ¥;.p)| would have to exceed approximately 3-107
g/mol, before Mk (1 - ¥ p)ge would make a substantial contribution to a vertically oriented

concentration gradient.

For |Mk(1 - vp)| >> 3-107 g/mol, reducing Ah (by using a 0.3 cm or shorter optical
pathlength centrepiece, for example) could reduce the ultimate extent of the difference in cx
across Ah. The main problem with significant vertical concentration gradients is the extent
to which the correspondingly significant vertical mass flows would couple with radial mass
flows. For any system in which |Mk(1 - ¥, p)| >> 3-107 g/mol, coupled vertical and radial
flows would likely render the data highly challenging to analyse properly. Furthermore, the
(0c/0z)z: portion of the data that would be needed to analyse such systems cannot yet be

collected in the XL-A/I.
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Section I: Calculating molar mass, chemical potential and partial specific volume for a multi-

species component

The molar mass of species e of component k is represented by M., the chemical potential of
species e of component k is represented by e, and the number of molecules of species e of
component k is represented by Nx.. The number of moles of species e of component k is
equal to Nke/Na, where Na is Avogadro’s number. Defining V as the volume within which the
Nke molecules are found, and representing the molar concentration of species e of
component k by mge, the relationship,

_ Nk,e

m =
ke TN,V

(11)
is obtained. The mass concentration of species e of component k is thus given by

Cre = Mk,emk,e .

(12)

Letting nk represent the number of species that constitute solute component k, and indexing

the species by e, the number of molecules of all species of component k is given by

ng
N, = Z Nk,e»
e=1

(I3)

the total molar concentration of all species of component k is given by

ng
(mk)total = Z Mge,
e=1

(14)
and the mass concentration of all species of component k is given by
Nk
Cx = Z Ck,e-
e=1
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(15)

The total molar flow of all species of solute component k is given by

N,
n ke -~
Z kevke ZeklNA;vke
(]k)toml z]ke z MyeVke = Mitotar —amy = (mk)total—N
Ze 1mk an ke
e=1 NAV
Znil Nk,eﬁk,e -
= (mk)totalenk— = (M) torar (Vi »
Ze:lNk,e

(16)

where vy . is the velocity of species e of component k in the system frame of reference,
(74 )y is the number-average velocity for all species of component k in the system frame of
reference, and use has been made of the definition of a component’s molar flow as the
product of its molar concentration and its velocity in the system frame of reference, which

for component k is denoted as vy,.

The total molar concentration of all species of component k can be expressed as

Nk ng DN Ck.e
(my) Z e I Mie __Ck
My )total = My e = = Ck o = )
e=1 e=1 Mk,e Z:e=1 Ck,e (Mk)N
a7)
where (M) is the number-average molar mass for all species of component k, so that
7 - ck (V)N
(]k)total = (M) totar(Vin = m

(18)

Similarly, the mass flow of solute component k can be related to the mass and molar flows
of all species of component k by

Ny Nk Nk an -
- - - Cr eV
_ _ _ - _ e=1"“ke“ke __ -
I = Z Iye = Z MyeJx,e = Z CkeVke = Ck —an c = cx(Vidw
e=1 e=1

e=1"‘k,e

(19)

where (vi)w is the weight-average velocity for all species of component k, and use has been
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made of the definition of a component’s mass flow as the product of its mass concentration

and its velocity in the system frame of reference. (]k) , is now defined as ]k, the molar

flow of component k, and from the previous two equations, the relationship between Ik and
fk is given by
(ﬁk)w ( k)w

ik — Ck(ﬁk)w = Ck(ﬁk)N _(17 = (Mk)N( k)

) Je = M)k »
KN

(110)
where (My)x is the coefficient needed to convert from the molar flow of component k to the
mass flow of component k. Solving Equation 110 for (Mk)x in terms of the mass and molar

flows of component k yields

(111)

Using Equation 19 to express fk as the sum of all Mk,efk,e of component k results in

M _ Ik _ 2221 Mk,e]k,e _ 2221 Mk,e]k,e
(My)y = = = Zestueke  Zet
Tk Jk DIy [P

= (Mk)],

(112)

where (My)j is the molar-flow-average molar mass of solute component k. This equation is
undefined for the case offk = 0, but the limit as fk approaches zero, the limit as all fk,e
approach zero, or the limit as all v, . approach zero, can be used to evaluate (My); in these

zero-flow-in-component-k cases.

As

n n -
Z k ke]ke _ 2921 Mk,emk,evk,e

= o - ,
Ze=1]k,e Ee=1mk,evk,e

(Mk)] =

(113)

the limit as the velocity of each species of solute component k approaches zero is

Y My oMy oV ok, Myom
lim (M); = lim e=1""ke 'ke"ke _ ~e=1""ke ‘ke

L n — - n
all By, g0 allve>0 YK My o Ve Yok My

= (Mk)N ,
(I14)
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which is the number-average molar mass of solute component k. As (My); is simpler to
describe than its equivalent, (Mk)x, (Mx); is used in the definitions of Dy, sk and Ik in Section

A.

Equations A1, A2,110 and [12 can be combined to yield

Ck

n
- - Cr
27 Uo| = (My), z Lk,q(Mq [w?7 — Vggh] — qu) + Vol
K - k

n
I = (M), Z LiqXq +

g=1 g=1
(I15)
Using Equation A2, the gradient of Ug, the total molar potential of solute component g, can
be written as

VU = —Xg = —(My[w?F — Vggh] — Vi),

(116)
in which )?q is the conjugate molar force (Equations A2 and A14) of component g. (As noted
in Section A (An application of irreversible thermodynamics to analytical
ultracentrifugation), and again in Section H (The contribution of the Earth’s gravitational
field to transport in AUC), the gravitational potential due to angular acceleration is -w?2§, and

the gravitational field due to angular acceleration is w?V¢ = w?#, where 7 is the radial

vector.)

As Uq is a molar quantity, it can be calculated from the number average of its species-

specific parts. Thus,

Nq Nq Nq Nq
U. = Zazlmq,auq,a _ Za=1 Nq,aUq,a _ Za=1 N‘La'uqra _ [wzf -9 h] Za=1 Nq,an,a
q — Nng - Ng - ng E ng
Zazl mq'a Zazl qua Eazl qua Zazl Nqﬁa

= (uq),, — [@?& — gghl(M,) .
(117)
where the nq species of component q are indexed by a, so that so that, for species a of
component q, Uga, lga and Mga are, respectively, the total molar potential, the chemical
potential, and the molar mass; while for component q, Ug, (1)~ and (Mg)n are, respectively,

the number average of the total molar potential, the number average of the chemical
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potential, and the number average of the molar mass, with each number average being for

all species of component q. (Equation M15 shows (Mg)n.)

In what follows, (VMg)n is the number-average gradient of the molar mass for all species of
component q (Equation M19), and (Vug)n is the number-average gradient of the chemical

potential for all species of component q.

If each Nga were invariant with space, each VNg. would equal zero everywhere, in which
case, throughout the system, V(Mg)n (Equation M18) would equal (VMg)n = 0, and V(ug)n
would equal (Vug)n. This result holds for any value of nq. For the special case of ng = 1, at
each point in space, there is only one VNg,,, and regardless of whether it equals zero, V(Mq)n

= (VMg)n = 0, and V(pg)n = (Vo).

Without assuming that each VNg,, is equal to zero, the gradient of the total molar potential

of solute component q must be expressed in a more general form, such as
qu nq
VU, = Z VUgq = —Z iq,a = V(‘uq)N — (Mq)NV[wZE — gph] — [0%E— gEh]V(Mq)N
a=1 a=1

= V(‘u.q)N — [(,()ZF — VgEh](Mq)N — [(A)ZE — gEh]V(Mq)N )
(118)
where )?q,adenotes the conjugate molar force of species a of component g. Defining a

gradient-modified-average molar mass for all species of component q as

v - (M,), VIw*§ — gphl + [w?E — gghlV(M,)
(M), = Vlw2g — ggh] ’

(119)
the gradient of the total molar potential of solute component q becomes
VUq = Y(uq), — 0?7 - Vgghl(My), -
(120)
A comparison of Equations A2 and 120 shows that Vg = V(pq)n and Mg = (Mg)e. Equation

[19 (of which Equation M17 is an alternative form) shows that
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v(lvzlj)rfvlao(Mq)g = (Mq)N-
(121)

This result is a consequence of

)

n n
w50, = oo (Blete )y Basygoetie
qa q.a Za_ N, a aa Za=1 Nq,a
(122)
which, as described previously, is applicable for any value of nq. For the case of nq =1,
V(Mg)n is always equal to zero. (A more detailed examination of (Mg)n, (VMg)n, V(Mg)n and
(Mg)¢ is presented in Section M: Effects of solvent density on (apparent) reduced buoyant

mass.)

In contrast,
Nq Nq
Z = N a.u a Z = N avnu' a
llvlim V(‘M‘I)N= llvlim V<%q,q, - llvlim a_%lq g.aVHq, = (Vv Q)N’
allVNg q—0 allVNg q—0 Za— Nq,a allVNg q—0 Zaleq,a

(123)

which reflects the fact that, even when each VNg . equals zero, under some conditions, some
or all Vyg,. may differ from zero, as a result of which, (Vyq)n may also differ from zero. (For
example, concentration gradients in components other than q may result in (Vg)n being
nonzero despite all VNga being equal to zero.) Equation 123 is applicable for any value of nq.

For the case of nq = 1, V(pq)n is always equal to (Vg)n.

In addition to its utility in Equation A2, the description of Vg as V(ug)n is directly
applicable to Equations A5 to A14, and thence, to every subsequent description of the

continuity equation. The derivation of Equation A5 from Vg4 begins with

V(ug)y = Vhg = <%>t <§>t
<%>t,P,c ((;—;)t * <%>t,ﬂc (g_?>t ¥ M; <%>t,T,P,cq¢w (%)t (g)t ’

(124)
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. o . aT\ .
where gradients in dimensions other than § are assumed equal to zero. As (a_f) is assumed
t

to equal zero, the product, (aTq)tPc (g—g) = 0. Furthermore, as each (6c ) h (aac;v) is
e, wit, Cq t

adequately treated in terms of component concentrations and activity coefficients
(Equation A12), it is not necessary to expand these parts of Equation 124 in terms of all the
Ng.a and g parameters that comprise (pg)n. Thus, the only part of Equation 124 that must
be dealt with in fully expanded form is

9(uq)
(), @)~ () G),-

n
Z ! Nq allqa
nq N

t,T,c
a[.l,a n aN
ZaliNoa(5Y)  Zatasaa (5
=J a=1""9.a aP LT.c 1.u'qa ap i e
l Yot Noa )
ON,
=i (4)
[zt (58).

om0, -0, (55 1),

(125)
where:
auqa)
(M5,) = <auq> ] Yl ( 0P )ipe S NoaMaaline
q~q - ap - = =
N JoP t.T.cly 2a=1 q.a Zaqle a
(126)

is the number average of the product, M, .V, 4, for all species of component q, with 7, 4

being the partial specific volume of the system with respect to species a of solute

component q;
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(g, = nq (aNq,a
a=1 aP t,T,c
(127)
is defined as the pressure-gradient average of pi;
35, 2.(5)
<alan> 6P t,T,c a=1 6P t,T,c
oP t,T,c Nq Zaq=1Nq,a

(128)
and (pqg)n is previously defined. Using (Mg), to define

Oty + (1), ~ (), (o)

(17q)pg = (Mq)g )

(129)
which is a pressure-and-gradient-modified-average partial specific volume of the system

. . (D a
with respect to component g, permits (ﬁ) (_P
aP t,T,C 6{

(%)mc (Z_I;)t - {(Mqﬁq)N + (1), — (19),,] <%>mc} (Z_I;)t = (M), (%), (Z_I;)

(130)

) to be described as
t

Section J: Form of the general solution from Equation C32

The solution to the continuity equation for AUC can be written as
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EN [ D f EbPP ah &dE-D f § p, 4P P fdfl
ke, j+Yk.e,j+ . Ji hdf ke j+ - ] df df

(J1, from Equation C32)

General virial expansions of the transport coefficients can be defined as

- dcgq-"
Zb=12 1Za 1pbkeqa dC
q.a,j—

b
dcga,j-

Yh=12q 1Za 1)’bkean/

J— o
Okej— = O ke,j-

J2)
and
- dcgq-"
szlz 1Za 1kaeqaﬁ
Dk,e,j— = Dok,e,j— dC a _b )
DSIRD D il hbkeqa#/
J3)

for time t, while for time [t + At], they can be defined as
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Zb——lz ——12 = pbkeqa 2
q ,K.eq, .
a=1 d(' a,j

Okei+ = O ke
k.ej+ ke, j+ 2“’ Zn an d Cq,a,j+b
b=14q=14g=1 yb,k,e,q,a dcqaj+

J4)
and
dc, o is?
n q,a,j+
/ZZO=1 Zgzlzail:)/b,k,e,q,a dc a ,+\
Dk,e,j+ = Dok,e,j+ n dc & '.] b |’
) n q q.a,j+
Zb=1 Zq:l Za:l hb,k.e,q.a dcq,a,j+
Js)

where n is the number of solute components, nq is the number of species that constitute
solute component q, D%e;- at all € equals Dk at & at time t in the limit as c approaches 0,
D°kej+ at all § equals D at & at time [t + At] in the limit as c approaches 0, 6°kej- atall §
equals ok at §j at time t in the limit as c approaches 0, 6%+ at all § equals oke at §j at time [t
+ At] in the limit as c approaches 0, cq,2j- is the §-independent concentration coefficient of
species a of solute component q at time t, cq,0j+ is the §-independent concentration
coefficient of species a of solute component q at time [t 4+ At], and where pyke,qa Ybkeqa and
hpkeqa are the bth of up to an infinite number of species-e-of-component-k affecting density

increment, thermodynamic nonideality, and viscosity coefficients, respectively. By

S n Nq n Nq n Nq
definition, X.¢_1 X ,2; P1keqa 2q=12ge1 Y1 keqa aNd Xg=1 2,2, P1 ke qq are each equal to 1.

(See Section D for the component-based equivalents of these virial expansions.)

Henceforth, cq,. is used to denote the concentration of species a of solute component q at

either time t or time [t + At], and some unspecified position, §;.

Individually, the product of b(cqa)P -1 with the corresponding coefficient of proportionality
Pbkeqa yields the bth term for the contribution of cq. to the density increment of the system
as it affects the transport of species e of component k, the product of b(cg.)? -1 with the

corresponding coefficient of proportionality ybkeq.a yields the bth term for the contribution

of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e
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of component k, and the product of b(cq,a)P -1 with the corresponding coefficient of
proportionality hp keqa yields the bth term for the contribution of cq,a to the viscosity of the

system as it affects the transport of species e of component k, where b(cga)?-1 =

d(cqa)b/dcga.

Collectively, the sum of products given by )5, quzl pb,k,e,q,abcq,ab_1 is a measure of the
total contribution of cqa to the density increment effect of the system as it affects the

transport of species e of component k, the sum of products given by

Db ZZil yb,k,e,q,abcq,ab_1 is a measure of the total contribution of cq. to the
thermodynamic nonideality of the system as it affects the transport of species e of
component Kk, and the sum of products given by )5, quzl hb,k,e,q,abcq,ab_1 is a measure of

the total contribution of cq,. to the viscosity of the system as it affects the transport of

species e of component k.

In writing Equations ]2 to ]5, it was assumed that App ke,qa/Aj = 0, Aybkeqa/Aj = 0 and
Ahpkeqa/Aj = 0 for any given pair of species e and a of their respective components k and q,
even in the case of solvent compressibility. If required to deal adequately with the case of
solvent compressibility, pbkeqa Ybkeqa and hpkeqa can be replaced with their respective j-

and t-dependent coefficients, which would be ppxeqajs Ybkeqgaj and hpkeqaj- at time t, and

L 5,E,

would be pbkeqaj+ Ybkeqaj+ and hpkeqaj+ at time [t + At], where, denoting a coefficient at

,15,E)f

either time by dropping the - or + suffix, Appke,qaj/Aj # 0, Aybkeqaj/Aj # 0 and Ahpke,qai/Aj

# 0 for any given pair of species e and a of their respective components k and qg.

In the general solution, Equation J1 is solved iteratively as follows:

1. Using cken- for cgaj+ (wWhere k = q, e = aand h =j) in Equations J4 and J5, the second
approximate solution (Section C) is used to calculate all (cken+)o, Wwhich are the
initial approximations of the true cken+ values;

2. Using (cken+)o for cqaj+ (Where k =g, e =aand h =j) in Equations J4 and ]5, the
second approximate solution (Section C) is used to calculate all (cken+)1, which are

the first approximations of the true cke;+ values that can be tested against an
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acceptance criterion of convergence (see Equation J6, below);

3. Step 2 is iterated until the acceptance criterion of convergence (Equation J6) is met,
so that, at iteration m, using (Ckeh+)m-1 for cqaj+ (wherek =q,e =aand h =j) in
Equations J4 and J5, the second approximate solution (Section C) is used to calculate
all (cien+)m, which are the mth approximations of the true cken+ values that can be

tested against an acceptance criterion of convergence (Equation J6).

An example of an acceptance criterion of convergence would be a chosen value of Enin,

which is repeatedly compared against

k=120t Th= 1{[(Ckeh+) _( keh+) ]Vh} _ (crss)m

Em = 2 - (c_)2 )
( Z=1Z Zh 1 V Ckeh )

Je)

where (crss)m is the residual sum of squares for the final total solute concentration at
iteration m relative to iteration (m - 1), Vi is the volume of spatial element h, V is the total
solution volume, and (c.)? is the square of the initial (time t) total solute concentration.
(With the height of the spatial element given by Az and the length of the spatial element
given by A&y = (Agh- + Aéh+) /2 (see Equations B54 to B57, and let A%;. = Aén+ = 0), Vi =
@(Az)A%h, where @ is the angular coordinate (the segment of arc) of the system, which has
the geometry of a cylindrical sector.) The squared raw sum of all initial solute mass values
is identical to V(c.)2. Convergence is considered to be adequate if Em < Emin. Once this

convergence criterion is met, (Cken+)m is considered to be equal to cren+.

Section K: Reaction flow algorithms

Notation and other common features

An iterative process is used to calculate the concentrations of solutes that participate in
each chemical reaction, a/g. As noted in the discussion preceding Equation G12, reaction

a/gis defined as the sole explicit reaction that produces species a of component g. In
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addition to the restriction of just one product species per reaction, the algorithms

presented here are restricted to just 1 or 2 reactants per reaction.

The constraint of just one reaction per product could be cheated by giving identical
characteristics to multiple species of a component, and summing the concentrations of the
identical species, each of which is the product of a unique reaction. In principle, it should
also be possible to model more complicated reactions by linking multiple reactions. (For
example, if two reactions share one product, the shared product could be considered an
intermediate, and the reactants of the second reaction could be viewed as the ultimate
products of the first reaction.) The algorithms presented here are not well optimised for

linked reactions, however.

Throughout this section, the concentration, activity coefficient and molar mass of species e
of solute component k are denoted as cke, Yke and Mxe, respectively. As with the definition of
reaction a/g, much of the reaction-specific notation here follows that of Section G. Thus, k¢ga
is the forward rate constant (hence the subscript f) and kv is the reverse rate constant
(hence the subscript r) of reaction a/g. Additionally, vxgake is the stoichiometry of species e
of component k in reaction a/g, where X = R if species e of component k is a reactant, and X
= P if species e of component k is a product. As in Section G, the reactant stoichiometries
are negatively signed, and the product stoichiometries are positively signed. (See Equations

G13 and G16.)

As there is only one product per reaction, it must consist solely of species a of component g.
Thus, the stoichiometry of the product species is vpgaga, and vpgaga is the only nonzero
product stoichiometry of reaction a/g. By the convention adopted in Section G, the species
index is greater than 1 for any higher-order species, and as the product is a higher-order
species by definition, a > 1. (See the discussion preceding Equation G12, where the simplest
species of each component is assigned the lowest number, 1, of the species index.) The
concentration, activity coefficient and molar mass of the product are denoted as cga, Yga and

Mg, respectively.

148



Irreversible thermodynamics of AUC, copyright December 12,2011 (CIPO 1091880), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

A minimum of one reactant must be something other than species a of component g. Thus,
one reactant species is denoted as species r1 of component g, where r1 may equal 1, but r1
cannot equal a. The stoichiometry of reactant species r1 of component g in reaction a/g is
VRgagrl. L he concentration, activity coefficient and molar mass of species rl of component g

are denoted as cgr1, Ygr1 and Mgr1, respectively.

There may be a second reactant species, which could be any species other than species a or
species rl1 of component g. If present, then, the second reactant species is denoted as
species r2 of component q. If q # g r2 may be any species of componentq.Ifq=g,
however, r2 cannot equal rl or a. The stoichiometry of reactant species r2 of component q
in reaction a/g is Vrgagqr2. The concentration, activity coefficient and molar mass of species

r2 of component q are denoted as cq,r2, Yqr2 and Mgq,r2, respectively.

In typical usage, each stoichiometry is integral, but integral values are not required for the
algorithms. As currently implemented [Moody, 2012a; Moody, 2012b], yxe is always equal
to 1 in all reaction flow calculations. To show how to work with values of yk. other than 1,
however, yke is retained in many of the expressions presented here. Similarly, to present

the most general case possible, some of the expressions shown are applicable to reactions

in which more than 2 reactants form more than 1 product.

The minimum number of iterations is equal to the total number of reactant stoichiometries,
Viotal, for which vrgake # 0. (See Equation G12.) Thus, at each spatial element, &, (Equation
B36), for each time increment, At (Equation B35), the flow of each reaction, a/g, is
calculated at least viotal times. In each of the viotal iterations, the reaction flow throughout the
system is calculated for all reactions. Additionally, in each of the viotal iterations, the flow of
reaction a/g at each & is calculated Ra/g times, where Ra/g is the total number of all reactant
species for reaction a/g. (With the algorithms restricted to a two-reactant maximum, Ra/g is

either 1 or 2.)

In general, Ra/g < Viotal. If there is more than one reaction, Ra/g < Viota. Where multiple
reactions are present, the order in which their reaction flows are calculated may affect the
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outcome. The multiple iterations of the full sequence of reaction flow calculations within At
are meant to minimise such order-specific effects. Toward that end, where possible, species
indices are chosen to ensure that the R/ iterations of a given reaction are not consecutive.
(The Ry iterations will be consecutive if the species indices of the corresponding reactants
do not encompass the species index of a reactant from another reaction. Conventions

adopted for the species index, e, are described in the discussion preceding Equation G12.)
Mass conservation

The total concentration of all species of reaction a/g at a given &, within At is denoted as
Ca/g. At a given &y, within Ate, ca/g remains constant, but the concentration of each species of
reaction a/g may change over Ate. Henceforth, a minus subscript is used to denote a
concentration at the start of Ate, and a plus subscript is used to denote a concentration at
the end of At.. Thus, in terms of the total concentration, in the case of a two-reactant, one-
product reaction, the mass conservation of all species of reaction a/g at a given &, within At;
can be expressed as

Ca/g = Cga— T Cgri— T Cqr2— = Cga+ T Cgri+ T Cqra+ -
(K1)
Additionally, in the case of a two-reactant, one-product reaction, the total mass of each
reactant, expressed as the mass of that species that would be present if the product
completely dissociated, is conserved at a given &, within Ate. Thus, the concentration of
species r1 of component g that would be present if the product completely dissociated to

reactants can be expressed as

|VR, ,a, ,rllM , Tl
_ g,4.9 g

_ |VR,g,a,g,r1|Mg,r1
Cga— T Cgri- =

Cgl Cg,a+ + Cg,r1+ i

- |VP,g,a,g,a |Mg,a |VP.g.a,g,a |Mg,a

(K2)
and the concentration of species r2 of component q that would be present if the product
completely dissociated to reactants can be expressed as

|VR, ,a, ,erM T2
_ g,a,q9 q

- |VP, ,a, ,a|M ,a
g.a.9 )

|VR, ,a, ,r2|M T2
_ g.,a.q9 q

- |VP, ,a, ,alM ,a
g.a,9 g

Cg,a- + Cqr2- Cg,a+ + Cqra+ -

Cq2

(K3)
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(See Equation K13.) Respectively, Equations K2 and K3 reflect the fact that cgiand cqz are

conserved at a given &, within At.. The sum of Equations K2 and K3 yields ca/g = cg1+ Cq2.

Finally, in the case of a two-reactant, one-product reaction, at a given &, the concentration

changes per At are

Acga = Cga+ — Cga->

(K4)

Acgr1 = Cgr1+ — Cgri-
(K5)
and

Acqr2 = Cqr2+ — Cqra—>
(K6)

where, by conservation of mass,

Acgq +Acyrq +Acqy,, =0.
(K7)
Once cga+, Cgri+, Cqr2+ and all other species concentrations pertaining to the end of Ate have
been determined, they become, respectively, cga-, Cgr1-, Cqr2- and all other species
concentrations pertaining to the start of Ate+1, during which they are likely to change again
due, as in prior time increments, to mass flows and reaction flows.
In the following discussions of reaction flows, products are described as being formed from
the association of reactants, and reactants are described as being formed from the
dissociation of products. Such descriptions apply well to mass-action interactions, but are
not well suited for some other types of reactions, such as conformational changes. Once the
subject of two-reactant, one-product reactions has been thoroughly covered, however, the
application of the algorithms will be generalised to include one-reactant, one-product

reactions.

Algorithm for reaction flows that are slow, relative to At

When a reaction does not fully equilibrate within a given period of time, its net reaction
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flow is nonzero for that time. Thus, if a reaction, a/g, is judged too slow to equilibrate within
some time increment of interest, its reactant and product concentrations can be calculated

on the basis of the product of the net reaction flow and At,

n Nk | | n Nk | |
VR.g.ake Vp.g.ake
kfg.a | |(Yk,eck,e) —krga | | | |(Yk,eck,e) At,,
k

k=1 e=1 =1 e=1
(K8)
which is just Expression G17 multiplied by the reduced time increment, At; = At/ Ttotal,
where Ttotal = ViotalRa/g, and T is an index for which 1 < t < twotal. Expression K8 describes the
flow of reaction a/g during Aty, and is applied Ttwta times per Ate, thereby yielding the flow of
reaction a/g during At.. Here, the concentration, cke, is that which applies to species e of

component k at the start of At.. (At the start of Ate, Cke = Cke-.)

For reaction a/g, the portion of the products that dissociates to form reactants during Ats,

expressed as a concentration, is

n

ng
|VP,g,a,k,e|
Cr,g,a = kr,g,a 1_[ H(Yk,eck,e) At
e=1

k=1
(K9)
and the portion of the reactants that associates to form products during At., expressed as a

concentration, is

n

ng
|VR,g,a,k,e|
Cf,g,a = kf,g,a 1_[ (Yk,eck,e) At,,

k=1 e=1
(K10)
where the subscript r refers to the reverse reaction, and the subscript f refers to the

forward reaction.

The current algorithm is restricted to reactions in which 1 or 2 reactants form just 1
product. As there is only one product per reaction, it must consist solely of species a of
component g. Thus, the stoichiometry of the product species is vpgaga, and with vpgaga

being the only nonzero product stoichiometry of reaction a/g, Equation K9 simplifies to
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|VP,g,a,g,a|
Cr,g,a = [kr,g,a(Yg,an,a) At

(K11)

where Crg. is the portion of the concentration of the product, species a of component g, that
dissociates to form the reactants, species r1 of component g and species r2 of component q.
Here, the concentration, cg,, is that which applies to species a of component g at the start of

At.. (At the start of Ate, cga = Cga-.)

Of the reactant species, Vrgagri and Vrgaqr2 are the only nonzero stoichiometries of reaction

a/g, as a result of which, Equation K10 simplifies to

|VR,g,a,g,r1 | |VR,g,a,q,r2 |
Cf,g,a = [kf,g,a (Yg,rlcg,rl) (Yq,rz Cq,rz) At

(K12)

where Cgga is the portion of the concentration of the reactants, species r1 of component g
and species r2 of component g, that associates to form the product, species a of component
g. Here, the concentrations, cgr1 and cq,r2, are those which apply, respectively, to species rl
of component g and species r2 of component q at the start of At.. (At the start of Ate, cgr1 =

Cgri- and Cqr2 = Cq,rZ-.)

Given that

|VP,g,a,g,a|Mg,a = |VR,g,a,g,r1|Mg,r1 + |VR,g,a,q,r2|Mq,r2 ’
(K13)

the portion of Ctga that consists of species r1 of component g is given by

Cf,g,m — |VR,g,a,g,r1|Mg,r1

|VP.g,a,g.a|Mg,a hoa:

(K14)

and the portion of Ctga that consists of species r2 of component q is given by

C — |VR.g.a,q.7’2 |Mq,r2
f.q.r2 |Vp'g,a,g'a |Mg,a

f}g'a = Cf;g,a - Cf,g,rl .

(K15)
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The change in cga per At is

(Acg.a)T = Crga~ Crga;
(K16)
the change in cgr1 per At: is

_ |VR.g.a,g,r1 |Mg

Ac = e —C
( g,rl)T |VP,g,a,g,a|Mg,a ( r.g.a f.g.a)

(K17)

and the change in cq2 per At: is

% M
(ACq,rz)T — _(ACg,a) _ (Acg,rl) — <1 _ | R,g,a,g,r1| g;Tl) (Cr'g'a _ Cf'g,a)
* t |VP,g,a.g,a |Mg,a

|VR, ,a, ,r2|M T2
_ g.a,q9 q

- |VP, ,a, ,alM ,a
g.a.9 g

(Cr,g,a - Cf,g,a) .

(K18)

Equations K16 to K18 form the basis of a test to determine whether reaction a/g is slow
relative to At.. The test employs Crga- and Ctga-, which, respectively, are the values of Crga

and Cgga at the start of At.. If

YQ,an,a— > Cr,g,a— )

(K19)
|VR,g,a,g,r1 |Mg,rl
Yg,r1Cg,r1- > Cf,g,a—
|VP,g,a,g.a |Mg,a
(K20)
and
|VR,g,a,q,r2 |Mq,T2
Yq,rch,rz— > Cf,g,a— ’
|VP,g,a,g.a |Mg,a
(K21)

from which it follows that

(Yg,acg,a— + YQ,rlcg,rl— + Yq,rch,rz—) - (Cr,g,a— + Cf,g,a—) >0 ’
(K22)
then reaction a/g is judged to equilibrate slowly enough, relative to At;, that Equations K11
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and K12, or more generally, Equations K9 and K10, can be used to calculate the changes in
the reactant and product concentrations. If, relative to At reaction a/g is slow enough that
Equations K19 to K21 hold, then, relative to At = TwtaAty, reaction a/g is considered slow

enough that its product and reactant concentrations after At: can be calculated as

Ttotal

Cga+ = Cga— t+ Z (Acg'a)T = Cga- + ACqq,
=1

(K23)
Ttotal
Cqri+ = Cqr1- T Z (Acg,m)T = Cgr1- T Acgr1
=1
(K24)
and
Ttotal
Cqr2+ = Cqra— T Z (ACq,rz)T = Cgr2— T Acgra .
=1
(K25)

The test (Equations K19 to K21) ensures that Equations K23 to K25 will not be applied if
their use would violate mass conservation. Essentially, Equations K19 to K21 test the
applicability of the slow equilibration method by testing whether the method conserves

mass.

Algorithm for reaction flows that are fast, relative to At

When a reaction fully equilibrates within a given period of time, its net reaction flow is zero
for that time. If one or more of Equations K19 to K21 do not hold, then reaction a/g is
judged rapid enough to fully equilibrate within Ate, in which case, the product and reactant
concentrations of reaction a/g are iteratively recalculated until their values yield the
association constant of the reaction, within a chosen level of tolerance. Compared to the
method for a slowly equilibrating reaction, the method for a rapidly equilibrating reaction
is more computationally intensive, as it involves up to Nequil more iterations, where Negui, an
empirically determined parameter, may be a number in the low thousands. (At present, the

routinely used values of Nequit are 5,000 for the initial equilibration at t = 0, and 2,500 for all
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equilibrations after t = 0.)

During Ate, up to Nequil iterations take place within each of the previously discussed Ra/g
iterations, and those R,/ iterations, in turn, take place within each of the previously
discussed viotal iterations. Thus, for reaction a/g, within Ate, the maximum number of
iterations is equal to ViotalRa/gNequil. (The main purpose of imposing a maximum of Nequil
iterations is to prevent the occurrence of infinite loops, but it is usually best to set Nequi
higher than necessary to ensure equilibration. Spurious spikes and dips in the
concentration data are evidence that Nequil is too low to consistently achieve equilibration,
but such low values of Nequit might sometimes be useful for quickly testing a complicated

model system.)

The innermost iterations are indexed by w, where 1 < w < Wrinal, and Winal < Nequil. The last
iteration, wrina,, occurs when the equilibration criterion (Inequality K29) has been met, or
when w reaches Nequi,, Whichever comes first. Thus, for reaction a/g, within At,, the total
number of iterations is equal to ViotalRa/gWrfinal. At each of the wiina iterations, a

concentration-change factor,
ko
ko + (W —wp)’

Rw

(K26)

is calculated, where ko is a real number greater than zero, and wo is a real number equal to
or greater than 1. Both ko and wo are empirically determined parameters. For wo = 1, at w
= 1, kw = 1, which is its maximum possible value. As w increases, kw decreases. The smaller
ko is, the faster kw decreases as w increases. The larger ko is, the closer kv is to zero at w =
1. (At present, the routinely used value of ko is 3, while the routinely used values of wo are 1

for the initial equilibration at t = 0, and 4 for all equilibrations after t = 0.)

As in the discussion of slowly equilibrating reactions (Algorithm for reaction flows that are
slow, relative to Ate), a minus subscript is used to indicate a concentration before
equilibration, and a plus subscript indicates a concentration after equilibration. Also,

henceforth, concentrations that are in use during iteration w are subscripted by w, and
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further subscripted with a minus sign to indicate a concentration at the start of iteration w,
or a plus sign to indicate a concentration at the end of iteration w. Thus, cgaw-, Cgr1,w- and
Cqr2w- are, respectively, the values of cga, Cgr1 and cqr2 at the start of iteration w, and for w =
1, are equal to cga., Cgr1- and cqr2-, respectively. Likewise, cgaw+, Cgri,w+ and cqrzw+ are,
respectively, the values of cga, Cgr1 and cq,r2 at the end of iteration w, and for w = wrina), are

equal to cga+, Cgr1+ and cqr2+, respectively.

At each iteration, two test parameters,

Qpa = (VoaCham-)" """
(K27)
and
Qrw = Kaga(YgriCoriw-) Prgagril (Yar2Cqraw-) rgaar: )
(K28)

are calculated, where Qp,w derives from the product concentration (hence the subscript P),
and Qrw derives from the reactant concentrations (hence the subscript R). At chemical
equilibrium, Qp,w = Qrw. To test whether Qp,w is acceptably close to Qrw, a tolerance level, (,
is chosen, where 0 < { < 1 in principle, though values as close to 1 as practical are
preferred. (At present, the routinely used values of ¢ are 0.999 for the initial equilibration at

t =0, and 0.995 for all equilibrations after t = 0.)

If (Qp,w < Qrw and {Qrw < Qp,w, the reaction is considered equilibrated, and the new
concentrations are equated to the old concentrations: cga+ = Cga-, Cgri+ = Cgr1-, and Cqr2+ =
Cqr2-- Thus, the criterion for adequate equilibration of reaction a/g is

(Yg,acg'a_l_)lvprg,a,g,al

<
|VR,g,a,g,r1| |VR,g,a,q,r2 | -
(Yg,rl Cg,r1+) (Yq,rz Cq,r2+)

(KA,g,a < EKA,g,a ’

(K29)
where the central value of Inequality K29 has the form of the simplified association
constant of reaction a/g (Equation G13) that pertains to the case of 1 product species and 2

reactant species per reaction.
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If CQp,w > Qrw Oor {Qrw > Qp,w, the reaction is not considered equilibrated, and to meet the
criterion for adequate equilibration (Inequality K29), the new concentrations must be
altered from their old concentrations, with the constraint that mass must be conserved. (If
¢Qp,w > Qrw, Cgaw+ must be made smaller than cgaw-, Cgr1,w+ must be made larger than cgr1,w-,
and cqr2w+ must be made larger than cqr2,w-- If (Qrw > Qp,w, Cgaw+ must be made larger than
Cgaw- Cgri,w+ Mmust be made smaller than cgr1,w-, and cqr2,w+ must be made smaller than

Cq,r2,w--)

The concentration changes per iteration w are defined as (Acga)w = Cgaw+ - Cgaw- (ACgr1)w =
Cgriw+ - Cgriw- and (Acgr2)w = Cqr2w+ - Cqr2w- Which, in this algorithm, are also subject to
mass conservation. Thus, (Acga)w + (Acgr1)w + (Acqr2)w = 0. The algorithm also enforces
mass conservation for cg1 and cq2 at each w. Thus, Equations K1 to K3, and Equation K7,
must hold when cga+, Cgr1+ and cqr2+ in those equations are replaced with cgaw+, Cgri,w+ and

Cqr2,w+ respectively.

For each iteration, w, the calculation of the concentration changes is divided into three
parts, the first of which yields the preliminary differences, (Acga)w*+, (Acgr1)w+ and
(Acqr2)w; the second of which yields the intermediate differences, (Acga)w*, (ACgr1)w and

(Acqr2)w+; and the third of which yields the final differences, (Acga)w, (Acgr1)w and (Acgr2)w-

The functions used to calculate the preliminary differences of iteration w depend on
whether {Qrw > Qp,w or {Qp,w > Qrw. At iteration w, if (Qrw > Qpw, the preliminary

concentration changes per iteration w are given by

(Acgs),,., = (Acgr),, = —kwegri-,
(K30)

(Acq,rz)W** = (AC‘I»TZ)F,W = —kyCqra-
(K31)
and

(Acg,a)w** = (Acg,a)F’w = [(Acg,rl)F’w + (Acq,rZ)F,w] = kw(cg,rl— + Cq,rz—) .
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(K32)
At iteration w, if (Qp,w > Qrw, the preliminary concentration changes per iteration w are
given by
[VRg.agrilM
(cardu = Bamden 20 gy e 55
(K33)
v M
(Acq,rZ)W** = (ACWZ)RW —k | R,g,a,q,r2| q,r2 -
| Ve 5,09l
(K34)
and
(Acg,a)w** = (Acg,a)R,W == [(ACQ.TI)R'W + (Acq.rz)R,w] = —kwCga- -
(K35)

The functions used to calculate the intermediate differences of iteration w are

(8cy),. = 3| @) 4322 (Beara),, |

(K36)
1 M

(8¢4r2),. = 3 [(Acm)w** I
(K37)
and

(Acga [(Acgrl) +(Acqr2) ]

(K38)

The final differences of iteration w are determined when mass conservation is enforced. If

|VR.g,a,g,r1 |M

(ACQJ’l)W* < (Acg,‘f'l)max = Cg,a— >

Vp.g.0.9.a/Mg.a
(K39)
then (Acgr1)w is set equal to (Acgr1)w+, but if the condition described by Equation K39 is not

met, (Acgr1)w is set equal to (Acgr1)max. Likewise, if
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— |VR,g,a,q,r2 |Mq,r2
max |VP.g,a,g.a |M a

(Acq,rz)w* < (Acqr2)

g.a—>

(K40)
then (Acqr2)w is set equal to (Acqr2)w* but if the condition described by Equation K40 is not

met, (Acqr2)w is set equal to (Acgr2)max. Finally,

(Acg,a)w == [(Acg,rl)w + (Acq,rz)w] :
(K41)
At this point, it can be seen that Equations K32, K35 or K38, which are included for

completeness, are not needed to obtain the results given by Equations K39 to K41.

If w is less than Nequil, and if the criterion for adequate equilibration (Inequality K29) has
not been met, then the end of iteration w is the start of iteration [w + 1], in which case,
Cgafwl]- = Cgaw+ = Cgaw- T (ACga)w, Cgri[w+1]- = Cgriw+ = Cgriw- + (ACgr1)w, and Cqrzfwt1]- =
Cqr2w+ = Cqrzw- + (Acqr2)w. If the criterion for adequate equilibration is met, or if w reaches
Nequil, then the end of iteration w is the end of the chemical equilibration process for
reaction, a/g within Ate, in which case, cga+ = cgaw- + (Acga)w, Cgri+ = Cgriw- + (Acgr1)w, and

Cqr2+ = Cqr2w- + (ACq,rZ)W-
The iterative application of the second approximate solution

As noted in Section C (Transport and reaction flows), the reaction flow and the mass flow
are calculated in separate, consecutive steps within a given time increment. Thus, the values
of cga+, Cgr1+ and cqr2+ Obtained from the reaction flow calculations are used to re-initialise
Cga- Cgr1- and cqr2-, respectively, after which, cga., cgr1- and cqr2- are subjected to the mass
flow calculations described in Section C. Following those mass flow calculations, mass
conservation is enforced, as described in Section L. Finally, if the convergence criterion
(Equation ]J6) has been met, or a set limit on the maximum number of iterations has been
reached, the time is incremented by At, and the flow calculations for the next At are begun.
(Otherwise, without incrementing At, the values of cken+ obtained, which pertain to

iteration m and are thus denoted as (Cken+)m, are used to calculate (cken+)m+1, which
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denotes the next iteration of cken+ at the end of Ate.)
Limits

For a given chemical reaction, as the concentration of any of its reactants approaches zero,
the computational intensity of the reaction flow calculation rises, while the significance of
the information gained from the calculation falls. Avoiding such calculations, therefore,
reduces the time required to model a system, without adversely affecting the accuracy of
the results to a significant extent. To this end, two methods are used to place appropriate
limits on the application of the reaction flow algorithms. These methods employ two
dimensionless parameters, a and (3, that, when properly set, identify conditions in which

there is little or no need to calculate a reaction flow.

As with the flow calculations themselves, the methods to limit reaction flow calculations are
described in terms of a two-reactant, one-product reaction. In the inequalities used to limit
reaction flow calculations, Y represents the unit solute concentration (with dimensions

such as 1 g/cm3), just as it does in Equations G6, G7, G14, G15 and G20.

The first parameter, ¢, is used to test whether the concentration of one or both reactants is

approaching zero. If

Yg,r1Cq,r1,w— VR g.agr1l
(Fergries) >a

YoaCoaw—\"Poasal  VgraCqraw—yVraaar:|
Y ( ) )

Y Y

(K42)

or

Yqr2Cqr2w- [Vr,g,a,q.r2]
(—) >a

YgaCgaw—\"Pacsal  Vgr1Chr1my VRaaor]
¥ ( )+ ) ,

Y Y

(K43)

then the algorithm for a fast (relative to At:) reaction flow is not used, even if one or more
of Equations K19 to K21 do not hold. If Equations K19 to K21 do hold, however, the
algorithm for a slow (relative to Ate) reaction flow is used, regardless of the test results

from Equations K42 and K43. At present, the routinely used value of a is (10-13 erg-s) /h,
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where h is the cgs Planck constant.

The second parameter, 3, tests whether the concentrations of all reactant and product

species are approaching zero. If

Yg,aCg,a,w- lvp.gag.a
B> (Femges)
(K44)
Yor1Coriw-y"rocor
8> ()
(K45)
and
YaraCarzw=\Mraars
(K46)

neither the algorithm for a fast (relative to Ate) reaction flow, nor the algorithm for a slow
(relative to At¢) reaction flow, are used, regardless of the test results from Equations K19 to
K21. Instead, whenever Equations K44 to K46 prove true, any remaining product is

converted to reactants. At present, the routinely used value of 8 is h(1010/erg-s).

One-reactant, one-product reactions

Expressions for one-reactant, one-product reactions are obtained by letting Vg gagqr2 = 0,
Mgr2 = 0, cqr2- = 0, cqr2+ = 0 and Acqr2 = 0, wherever they appear in Equations/Inequalities
K1 to K35. For one-reactant, one-product reactions, Equations/Inequalities K36 to K46 are

either superfluous or inapplicable, and are not used.

A special case of one-reactant, one-product reactions is that for which vrgagr1 = 1 and
Vpgaga = 1, wherein one species simply changes into another. Such reactions would include

conformational changes.

For all other one-reactant, one-product reactions, vrgagr1 > 1 and vpgaga = 1. Such
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reactions would include any oligomerisation that can be described as an event in which
VRgagri monomers form 1 oligomer. A polymerisation, or complex formation, that must be
described by the successive addition of monomeric or oligomeric subunits, in which each
addition may have unique rate and association constants, would have to be modelled as

multiple reactions on a one-addition-one-reaction basis.
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Section L: Algorithms to conserve mass and adjust the time increment

Neither the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981],
nor similar numerical solutions to the t- and r-dependent or the t- and &-dependent forms of
the continuity equation (Sections B, C, F and |), conserve mass. Computational instabilities
appear to worsen the failure of such approaches to conserve mass. Thus, the severity of the
mass-conservation failure can be exploited to measure computational stability. When
instabilities develop, as evidenced by severe deviations from mass conservation,
parameters, such as the time increment, can be adjusted to restore stability. Algorithms to
enforce mass conservation, and to decrease the time increment when computational
instability is judged to be excessive, are described here. The description of these algorithms
uses parameters and notation found in Sections C, ] and K. As in Sections C and |, the

subscript h corresponds to a spatial element, &.. (See Equation C17.)

The total mass, throughout the system, of species e of component k after the calculation of
all reaction flows (Section K), but prior to the calculation of the mass flows (Section C), is
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N
Mg e = Z VhCr,en—»
h=1

(L1)

where Vj, is the volume of spatial element h, and the minus subscript indicates a
concentration at the start of the time increment, At;, already used in the reaction flow
calculations, and yet to be used in the impending mass flow calculations. Thus, cken- is the
concentration of species e of component k at the start of Ate, after application of the reaction
flow algorithms described in Section K, but before application of the mass flow algorithms
described in Section C. Any mass of species e of component k that is associated with any

boundary of the system is included in cken.-.

The total mass, throughout the system, of species e of component k after the calculation of

all reaction flows (Section K), and after the calculation of all mass flows (Section C), is

N
My ey = Z VhCien+ »
h=1

(L2)

where the plus subscript indicates a concentration at the end of Ate. Thus, cken+ is the
concentration of species e of component k at the end of Atg, after application of the reaction
flow algorithms described in Section K, and after application of the mass flow algorithms
described in Section C. Any mass of species e of component k that is associated with any
boundary of the system is included in ckehn+. If there is a flow of species e of component k
through the system during Ate, the set of all ckeh+ accounts for any resulting change in the
mass of that species. Prior to calculating mge+, and prior to using the set of all cken+ in any
of the equations that follow in this section, any negative values of cken+ are set equal to

Zero.

As described in Section K (The iterative application of the second approximate solution),
within each iteration of the general solution of the continuity equation (Section J), the
reaction flow, mass flow, and mass-conservation algorithms are applied consecutively.

When the iterative solution of Section ] is applied, At; is not incremented until the
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convergence criterion (Equation ]6) is met, or a set limit on the maximum number of
iterations is reached. Within Atg, at the end of each iteration, m, the values of cxenh+ obtained,
which are denoted as (Ckeh+)m, are used to calculate (cken+)m+1, Wwhich denotes the next
iteration of cken+ at the end of At.. In this section, for simplicity, the subscript associated
with the iterative solution of Section | is not appended to cken+ unless needed to distinguish

values pertaining to different iterations.

At the end of Atg, cien+ multiplied by a mass-conservation-correction factor, Kien+, to obtain

Ckehx = Cke,h+ Kie st »

(L3)
where cien+ is equal to cxent corrected for mass-conservation errors, and where Kgen+ is
given by
Kient =1 = 8pen+ -
(L4)

To define the fractional-change parameter, Sien+, the concentration-gradient parameter,

Axen+, and the normalisation factor, Nk e+, must first be defined.

For all h, the default value of Axen+ is zero. Nonzero values of Axen+ are obtained if cken+ > 0
and |Ackeh+| > 0, where

Cke[n+1]+ — Cke[n—1]+

Acken+ = )
(L5)
for1 <h <N,
ACke1+ = Cre2+ — Cke1+
(L6)
forh=1, and
Acken+ = Cren+ — Cke[N-1]+
(L7)

for h = N. With Acken+ thus defined for all h, Axen+ can be defined as

A
Agen+ = |Ack,e,h+| ’
(L8)
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where A, the exponential term of Aken+, is an empirically chosen parameter. As Equation L8
is only applied if |[Acken+| > 0, A can be any real number. (If [Acken+| = 0, Axen+ maintains

its default value of zero.)

The normalisation parameter,

N
Niet+ = z Vicken+Dien+ »
h=1

(L9)

must be greater than zero, as it is the denominator in the equation that defines Ok en-+-
Where Equation L9 yields a value of zero for Nie+, as it will if all cxen+ equal zero or all
Axen+ equal zero, Nke+ is set equal to 1. (As each Vi, must be greater than zero, there is no

set of Vi values that could cause Equation L9 to bring Nie+ to nought.)

Given the definitions and exceptions above, Sken+ can be defined as

5 _ (mk,e+ - mk,e—)Ak,e,h+
k,e,h+ - N .
k,e,h+

(L10)
When Aken+ = 0, Sken+ = 0. Thus, for |Acken+| = 0 or cken+ = 0, Sken+ = 0. For |Acken+| > 0

and ckeh+ > 0, Skent+ > 0 if (Myes+ - Mie-) > 0, and Sken+ < 0 if (Mkes - Mye-) < 0.

For A > 1, as A increases, the difference between the highest and lowest nonzero values of
|8ken+| increases, while fewer cken+ values bear more of the concentration changes
required to enforce mass conservation, as more of the correction affects the nonzero cken+

values that correspond to the largest nonzero |Acken+| values.

As A approaches zero from above(A = 0) or below (A < 0), the difference between the
highest and lowest nonzero values of |6ken+| decreases toward zero, and at A = 0, the
concentration required to enforce mass conservation is the same for each nonzero cgen+

value that corresponds to a nonzero |Acken+| value.
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For A < -1, as A decreases, the difference between the highest and lowest nonzero values of
|8ken+| increases, while fewer cken+ values bear more of the concentration changes
required to enforce mass conservation, as more of the correction affects the nonzero cien+

values that correspond to the smallest nonzero |Acken+| values.

At present, A is typically set equal to 1.

Adjustments of the time increment

If, at the end of Atg, each cken+ = 0 after the application of Equation L3, the system is
considered computationally stable, in which case, each cxen+ is equated to its corresponding
Cken+ Value. If the convergence criterion (Equation J6) has been met, or a set limit on the
maximum number of iterations has been reached, the time is incremented by At, and the
flow calculations for the next At are begun. (Otherwise, without incrementing Atg, the
values of cxen+ obtained, which pertain to iteration m and are thus denoted as (Cken+)m, are

used to calculate (cken+)m+1, which denotes the next iteration of cken+ at the end of At..)

If, however, at the end of Ate, one or more cxen+ < 0 after the application of Equation L3, the
system is considered computationally unstable, in which case, each cken+ is equated to its
corresponding cken- value that pertains to the start of Ate. In that case, the time is not
incremented by Ate, At is halved, and the flows are recalculated using the shorter time

increment.

Evidence of instability practically requires that At: be decreased. Evidence of stability does
not require that At be increased, but may justify testing whether At: can be increased
without jeopardising stability. To that end, an algorithm has been implemented that can
raise Ats under conditions where it may be appropriate to do so. The evidence to raise At is
less definitive than the evidence to lower it, however. Thus, limiting parameters, such as a

maximum At value, are used to regulate the Atc-raising algorithm.

If permitted by the relevant limits, Ate may be increased if the system is considered
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computationally stable, provided that a computationally unstable condition has not
occurred within a specified time span. A judicious selection of various parameters, such as
Ate, A, the set of spatial elements, and the limits that govern reaction-flow calculations, can

minimise the occurrence of computationally unstable conditions while nearly maximising

computational speed.
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Section M: Effects of solvent density on (apparent) reduced buoyant mass

The (apparent) reduced molar mass coefficient of solute component k is
1 q

w?sy w* = Xg- M, Ska
e R Dkq<acq)
dc\ <9=1 M, \ or
ar ),
dlnc _
( ark)th =1 LigMq(1 — 7gp)
- dinc, dc dlny, ’
7 i () b+ 0280 (32, (52
q 0 k.a 14w=1\0dc, 0w /i1 b
(M1 = A23)
and the reduced buoyant molar mass of solute component kis defined as
Lyn Cq
M= RT — RT Sk _ RT Ck Zq:qu sk’q
() == e (7,
"/t
dlnc
( k) Yi=1 LigMq(1 = Bgp)

dlnc ) dc diny, '
) e ) (5]
q—l( or kq[ q dcg . ac,, T Py
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(M2)

where Ris the cgs ideal gas constant, pis the density of the solution, {= r%/2 (rbeing the
radial position in the centrifuge), ém = rm?/2 (rm being the innermost radial position of the
system), 7'is the absolute temperature, ¢is time, Pis the pressure of the system, wis the
angular velocity of the centrifuge rotor, nis the total number of solute components, skis the
(apparent) sedimentation coefficient of solute component &, Dris the (apparent) diffusion
coefficient of solute component 4, cxis the mass concentration of solute component &, Myis
the molar mass of solute component % 7, is the partial specific volume of solute component
g, ¢4 is the mass concentration of solute component g, M, is the molar mass of solute
component g, y,is the activity coefficient of solute component g, ¢ is the mass
concentration of solute component w; si,is the coupled-flow-sedimentation coefficient of
solute component kas affected by solute component g, Dk is the coupled-flow-diffusion
coefficient of solute component kas affected by solute component g, Li4is the coupled-
flow-phenomenological coefficient linking the molar flow of solute component kto the
conjugate molar force (Equations A2, A14 and 116) of solute component g, and where the
components are variously indexed by &, gor w; for whichl < k< n1<g<nand1 < w<

n, respectively.

For further information about the parameters in Equations M1 and M2, see Section A: An
application of irreversible thermodynamics to analytical ultracentrifugation. Most of the
details regarding M, one of the parameters of Equations M1 and M2, are presented in
Section I: Calculating molar mass, chemical potential and partial specific volume for a multi-
species component. (Equation 19 describes (M) the gradient-modified-average molar
mass of component g, which is found (Equations A2 and 120) to be identical to M,.)
Additional details (Equations M15 to M19) regarding M, are presented in the last part of
this section (An examination of whether (Mq)n and Mg can be regarded as molecular

parameters).

There are a number of obstacles to calculating My, among which is the fact that each L4 of
Equation M2 is generally unknown. Onsager showed that the cross terms Lxgand Lgxare

symmetric in the absence of magnetic fields or Coriolis forces in the system, in which case,
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the reciprocal relations provide Ligq = Lg«for all kand g [Onsager, 1931a; Onsager, 1931b;
de Groot and Mazur, 1962]. (In the presence of magnetic fields or Coriolis forces, resort
must be made of the more general form of the reciprocal relations mentioned in Section G:

The dissipation function and the Curie-Prigogine principle.)

Beyond the reciprocal relationships, the most that can be said in general is that each Lggis a
function of system properties (e.g. 7, 2, and component concentrations), and that each Lx4
is independent of the magnitudes of any forces present, provided that those forces are
sufficiently small [Tanford, 1961]. For g not equal to & however, there is no equation that
describes Liqin terms of independently determinable parameters. Even for g = k& Likis

only calculable in the case given by

Ck
lim Ly, = ———r1o,
Cq#k>0 NyM, fi,

(M3 =A19)

where Njis Avogadro's number and fis the frictional coefficient of solute component 4, but
this equation only applies in the limit as all solute concentrations other than that of solute
component kapproach zero. Nevertheless, if there are no solute components other than %,
and if f cxand My are known, Lgis the one phenomenological coefficient that can be

calculated.

Of all the parameters needed to calculate Lgy fxis the most challenging to determine. In the

absence of solute components other than &, f can be calculated from the Stokes equation,
fr = 6mRy,

(M4 = A20)

if Ry, the Stokes radius of an equivalent sphere of solute component 4 and 7, the solution

viscosity, are known. The applicability of the Stokes equation, however, is questionable

except as cxapproaches zero, at which point, 7becomes identical to the solvent viscosity.
Reduced buoyant molar mass as a function of solution density

In special cases, M), can be calculated, and one such case is used here to examine the trends
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exhibited by My, as the density of the solution approaches its extrema. In the absence of all
components other than the solvent and solute component %, and in the limit as ¢x

approaches zero, Equation M2 reduces to

M,Szlim( lim M;g) M, (1—@)

c—0 \cquk—0 Pk
(M5)

where cis the total solute concentration, po is the density of the solvent, and pxis the
density of solute component & This simplified form of Equation M2 stems first from the

absence of any solute components other than & which reduces Equation M2 to

lim M = Ly x My (1 — vy p) M (1 — vyp)
k - .
Cqzk=0 dincy, alnyk alnyk
(alnck)t Lick [1 + alnck TP 1+ alnck LT P

(M6)

Further simplification stems from the application of the subsequent limit,

): i Mk(;;:kp) l) _ M, <1 _p_z)’

lim{ lim M,
dl-l- 6lnck tT,P

c—0 (cqik—m

(M7)
to which the individual limits,
limp = py,
(M8)
lim 5. — 1
CIE)% Vi = E
(M9)
and
dl
lim( n]/k) =0
c—-0 Olnck TP
(M10)

have been applied to obtain M as shown in Equation M5. If the solvent is incompressible, it

also follows that
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(M11)

At a given My and a given py

lim M,? = —o00
pPo—®

(M12)
describes the buoyant molar mass of an infinitesimally dilute solute component kin a

singularly dense black hole of a solvent.

At a given Mjand a given py

lim M? =0
Po—Pk

(M13)
describes the buoyant molar mass of an infinitesimally dilute solute component kin a

solvent with a density that is equal to the density of solute component &

At a given Mjand a given py

lim M = My
Po—0

(M14)
describes the buoyant molar mass of an infinitesimally dilute solute component kin an

otherwise perfect vacuum.

While it is not possible to achieve the extreme conditions applied in Equations M12 and
M14, as hypothetical conditions, they nonetheless help to illustrate the trends sought
regarding M;, over the range of possible solvent densities. Those trends show a dependence
of M, on po, and that dependence renders M; a system parameter, rather than a molecular

parameter.

An examination of whether (Mg)n and Mq can be regarded as molecular parameters
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The number average of the molar mass, (My) s, is given, as in Equation 117, by

(), = 2y st

Y4=1Nga

(M15)
where the n, species of component g are indexed by a, so that, for species a of component g,
Mg, is the molar mass and N, is the number of molecules (Equation 11). Each M, can be
considered independent of system properties by definition, as M, is a defining molecular
parameter. (For a given species, molar mass cannot change. Within a component, a change
in molar mass requires an association of more than one species, or a dissociation into more
than one species.) In the absence of a gravitational field, each N;, may change with such

system properties as 7, Pand solute concentrations at any given point in the system. Thus,

in the absence of an gravitational field, (M;) v is a system parameter.

In the presence of a gravitational field, the gradient of the total molar potential of solute

component g includes a gravitational contribution given, as in Equations [15 to 119, by
(M) VIw?§ = gghl = (M) VIw?*¢ — gghl + [w*¢ — ggh]V(M,),,

(M16)

where (M,).is the gradient-modified-average molar mass for all species of component g, g¢

is the magnitude of the gravitational field at the Earth’s surface, 4 is the height above the

Earth’s surface, -@?{is the gravitational potential due to angular acceleration, and w?V £is

the gravitational field due to angular acceleration (Equation A3; Section H).

Dividing both sides of Equation M16 by V[w?¢- grh] yields

(M),

(Mq) _(MQ) Vin[w2f — gghl

(M17)
where
n n TL
V(M ) =V <Zaq=1 Nq'an'a> _ Yge1Mg,aVNga ( ) ae1VNga
)y — n - n - q
N Zaq=1 Nqia Zail Nq N
(M18)
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Equation M17 is an alternative form of Equation 119. As a comparison of Equations A2 and
120 shows, (M,)sis identical to M, As such, Equation M17 shows that M, = (M;) ywhere
V(Mg n= 0.

In what follows,

n n
Zaqleq,aVMq,a — Zaq=1Nq,a(0) —0

(VM,),, =
q/N n n
Zaqleqra Z:aqleq'a

)

(M19)
is the number-average gradient of the molar mass for all species of component g, and

(VMy)n= 0 because each VM, , = 0.

For a system at equilibrium, in the absence of a gravitational field, each N,;,would be
invariant with space. If each N,;,were invariant with space, each VN,, of Equation M18
would equal zero everywhere, in which case, throughout the system, V(M,) vy would equal
(VM) = 0. This result holds for any value of ng,. For the special case of n; = 1, at each point
in space, there is only one VN, and regardless of whether VAN, ,equals zero, V(My)n=

(VM) n=0.

Regardless of whether a system is at equilibrium, in the presence of a gravitational field,
some N, might not be invariant with space. Wherever N, varies with spatial position, the
corresponding VA, , of Equation M18 will be nonzero, and wherever VN, is nonzero,

V(M;) nwill be nonzero. According to Equation M17, M, will differ from (M) » where V(My)n
differs from zero. Compared to (M,)n, then, M, is especially dependent on gravitational

field.

The discussion surrounding Equations M15 to M19 constitutes the argument that,
regardless of whether a gravitational field is present, (M;)vand M; = (M;)sare system
parameters, in that they depend on system properties, such as 7, Pand component

concentrations.
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Section N: A simple coupled-flow equation for AUC

Equation A24 can be expressed as
I.=c [S <1 +Za 1pkaca> a)ZT—DO <1 +Za 1ykaca> (alnck) l
e PR\ 1+ Yn=1NraCa F\1+Y7_, hy.aCa or /¢

1+30 1+37 al
Ik — Cleg (1 - §2—1Yk,aca> [O’ < Za 1pk aca> Tle l\/—

a=1hk,aca 1 +2a 13’kaca

or

(N1)

where the expressions for ox Drand s

<1 + Za 1 Pk, aca>

T =0 1+ X3-1YkaCa
(N2)
Dy = D (1 + Xa=1 Yk,aca>
1+26-1hkaCa
(N3)
and
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Sk =

Uka — O-I?Dl? 1+ Za 1Pk,aCa — SO 1+ Zgzl Pr,aCa
(1)2 (1.)2 1+ Za:l hk'aCa k 1+ ZZ:l hk‘aca ’

(N4)
respectively, were obtained by applying the truncated linear equations (3, 10 and 12) of
Section D to Equations D5, D6 and D7, respectively.

Equation N1 does not account for coupled flows, but can be used as the basis for an
equation that does. Multiplying Equation A18 by My, which is equated to (M),in Section I
(Calculating molar mass, chemical potential and partial specific volume for a multi-species

component), yields

JMy=1,=M Zn:c—qs w’r—D _Olncq
KMy = I, = My, M, k,q ka5, t.

q=1
(N5)

For g = k the right-hand-side of Equation N3 can be used to approximate Dy, and the right-
hand-side of Equation N4 can be used to approximate sxq4 More generally, Dkq can be

approximated as

22 1Yq, aca>

Dy, = XP,D?
o s ws

(N6)

and sx4 can be approximated as

_X +Za 1Pq,a€a
kaSq 1+ Y51 hgata)

(N7)
where X,eq and X} , are constants. Thus, Equations N6 and N7 become equivalent to the
truncated forms ofX,gq times Equation D6 and X} , times Equation D7, respectively, when g

= k. Applying Equations N6 and N7 to Equation N5 yields
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n
_ Z_qlxk <1 +Za 1PQaca> a)Z‘I"—X]? D0< ZZ 1yqaca) <alncq> l
L M a5 1+ X0_1hgata TN+ X0 hgata) \ 0T ),
n 1 n
My { w?r ZC—qXE s ( T 2a- 1pqaca>
qleq 1+2X6-1 hgaCa

n
Z (acq> Xk qDO (1 + Za 1Yq, aca>
Mg \1+X5-1hgaCa

q=1

(N8)
For n= 2, Equation N8 yields

_ 5 1+pii61 +p126 €2 s of1+P2ic1+Dp2202
Il —_ Ml CU T Xll 1 h h — h h
M1 1+ hyqc1+ hypc, M, 1+ hyqc1 + hypc;

— i(%) xD. Do 14+ Y1161+ Y120
Ml or t L1EL 1+ h1,1C1 + hl'zcz

1 /0c 1+ c+ c
+—(—2> X{JZDS Y2,1C1 T Y2202
My\or/, ~ 1+ hyqic1 + hypc;

and
1 1+ pi1610 + P16 o) 1+ pyic1+ P22
L =M 2p [—=Xx3 — X35
2 Z{w rlMl 21S <1+h11C1+h12C2>+MZ 225 <1+h2101+h2262
1 (6C1> D 1+ y161 + Y120
M;\or/, 1+ hyqc1+hys0;
1 /0c 1+ ci + c
_I__(_z) X2,D2 Y2,1C1 T V2,262
Mz ar t 1+h2 1C1+h22C2
(N9)

The coupled-flow analogue of the (apparent) reduced molar mass coefficient (Equation
A23) is defined as
WSk w? Mq(l — Uyp)

() - - )
ka ™~ p kq dcy,\ (9lnyg
Cq/ N 9w Jerpcoww

(N10)

where Dy 4 and s, are defined by Equations A17 and A16, respectively, and are
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approximated by Equations N6 and N7, respectively. This result is noteworthy for the lack
of a viscosity term in gy 4, presumably because Ly , from sxq cancels Ly , from Dgg. (See the

discussion following Equation A20.) Using Equations N6 and N7 to express Diqand skq,

respectively, and introducing a set of constants denoted by X} ;, gkq can be approximated as

2 w?X: s (1+ZZ 1pqaca)
w Sk,q ka=aq 1+Za 1 qaCa

— x0 (1 + Za 1Pq, aca>

O'k, = = U
! Dk,q xD po <1+Za 1yqaca) o 1+Za 1Yq,aCa
RaTI\1 + Yg=1 qaca
(N11)
where, by virtue of X7, X,’gq, Xi g0 oy, Dg and sg being constants,
w2 0
o 0 _ Xliqsq
Xk:qo-q - X DO
k.q

(N12)
is a constant to the extent that wis constant. Thus, Equation N11 becomes equivalent to

X} q times the truncated form of Equation D5 when g = & Using Equation N10, Equation N5

can be rewritten as

n

n
Z Cq alncq Z Cq Olncq
Ik :Mk _Mqu’q IO’k’qr—< a‘r )tl :Mk _M Dk,q O'k,q— af t w/Zf,

=1

(N13)

where, as defined in Section A, é= r2/2. For g = k; the right-hand-side of Equation N2 can
be used to approximate ok, and the right-hand-side of Equation N3 can be used to
approximate Di4 More generally, Dx, can be approximated by Equation N6, and gx4 can be

approximated by Equation N11. Applying Equations N6 and N11 to Equation N13 yields

n
C +Za 1Yq,a€a +Za 1Pq,aCa alncq
I, = M,MZ{Z—"XD D°< Xg .
qleq ITANT + ¥ Ry aca €a% 1+ Y5-1Yq.aCa ¢ ),

(N14)

For n= 2, Equation N14 yields
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€1
I, = My, J2¢ {[Exflxglpfaf <

and

€1
I, = My, 2¢ {[_M X2D,1XZ1D{)U1O<
1

(N15)

Re-evaluating sy Drand ox

1+ pi161 + P16
1+ hyqc1+hypc,

)XfD°<
t

1D1
14+ pyic1 +p220
1 + hz‘lcl + h2'2C2

0

ac, D (

S2) XP,DS
9 ), "t

)

1+ yi1161 + 1,262
1+ hyi¢;+ hyp0;

[ 1
M,

dcy
9

)
)
)}

(

D yo 0.0
X12X1,D7 07 (

(

.,
| M,
[ 1

| M,

1+ y161+¥220
1 + hz‘lcl + h2’2C2

)

14+ y1161 + Y1262
1 + hl'lcl + h1’2C2

1+ P1,1C1 + P1,2C2
1+ hyqic1+hysc,
0

|

1
1+ P2,1C1 +D22C
1+ hyqic1 + hypc;

(

1
| My

ac1>
— ) xb
af . 2,1

)
)
)

(

D g 0.0
X32X5,D;0; (

acz)
—) x2,D9
(ag L

-
| M,
[ 1

| M,

1+ V2,1C1 Y2202
1+ hyqic1 + hypc;

272

In terms of Drand sy, or Dxand oy, the mass flow of solute component & can be written as

(N16)

or

(N17)

dincy,
or

Iy = JiMy = ¢ [sszr — Dy <

)]

dincy

3

)|V

Iy = JkMy = ¢ Dy lUk - (

both forms of which are shown in Equation A24.

Replacing Dy and sxof Equation N16 with
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- () .
Z d tXI?,qDé)( + Xa= 1yqaca>

(ack) = 1+Za 1 qaca

(N18)
and
Mk ( +Za 1pqaca>
S, = — —X ,
“ Ck =1 1 kasa 1+Za 1 qaca
(N19)

respectively, yields Equation N8. Equations N18 and N19 approximate Equations A21 and
A22, respectively.

Replacing Drand oy of Equation N17 with

., (acq)
D, = My z 0§ t xb D0<1+ZZ 1yqaca>

k,
(N20)
and
wz n X <1+Za 1pqaca>
_wzsk_(alnck> a= 1M kaa \T4yn hq,aCa
N AT (6%)
n 9 275 /e gD po (1"'22 1yqaca>
=1 My, “kaTI\1+ ¥ _1hgacq
14+ )7 _1PgaC
n 0 a=1Fq,ata
_ (alnck> - 1M qu quqD (1+Za 1 qaca)
RN
n 9 275 JeyD D0(1+ZZ 1yqaca>
=1 My, TkaTA\1+ ¥} _1hgacq
n X oDo <1+Za 1pqaca>
_(('Jlnck) a= 1M ka%a"q 1+Z qaca
(@)
n 43 25 /e yp D0(1+ZZ 1yqaca>
=17 M, “ka 9\T+ 37 Ry .,
(N21)
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respectively, yields Equation N14. Equations N20 and N21 approximate Equations A21 and
A23, respectively. Multiplying both sides of Equation N12 by X, DJ yields Xg X7 ;D303 =
w?Xj 459, the left-hand side of which is used to replace w?Xj; ;s in the numerator of
Equation N21. As DJog = w?sg (Equations A21, B23F, C34F), Xj; , = X,QqX,‘éq, in which the

derived parameter is actually

(N22)
Provided that X,’gq is not equal to zero, X}/ ,can be calculated using Equation 26. Where X,Qq
=0, X,‘c"q is undefined, except that the product, X,qu,gq, is nevertheless treated as being

equal to Xj ..

When all X,’gqik values are equal to zero, Equation N20 reduces to Equation N1. Similarly,
when all X,?,qik and X, ;. values are equal to zero, Equation N21 reduces to Equation N2.
As shown by the inability to eliminate the (1 + ¥5-1 hy 4C,) terms from Equations N21
when not all X,?‘qik and X} ;. values are equal to zero, however, h, , values can wield some
influence on gy, values, even at equilibrium, unless all X,gqik and Xj, ;. values are equal to
zero. This residual influence of h , is a flaw of the approximation of ox by Equation N21, as
the equation (A23) that defines oxis devoid of any viscosity-related terms such as h, g,

which represents the species-g-applicable transport coefficient that links ¢, to the viscosity

of the system (Equations D6, D9 D12 and D13).
Re-evaluating the &independent coefficients of the basis functions indexed by j

Equations 33-, 33+, 34- and 34+ of Section C (A solution to the # and &dependent
continuity equation for AUC in terms of species) show the functions used to approximate the
concentration-dependent transport coefficients of each species, ¢ of each solute
component, & To render those functions &independent, the solute concentrations at each
explicitly included spatial element, &, were replaced by the corresponding &independent

concentration coefficients of each species of each solute component at each of two times, ¢
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or [t+ At], of which, all of the time-dependent parameters at time ¢are known, while all of

the time-dependent parameters at time [+ A{] are in the process of being determined.

To include the effects of coupled flows when solving the # and &dependent continuity
equation in terms of species (Section C), Equations C33- and C33+ can be replaced by &

independent diffusion coefficients in the form of

e . dcy, 4P
M n Mg an Zb=12 1Zu 1ybqawu#
. ke D? 5
kejo = ACH}_ZZ kellgal“q.aj- deyq,;-"
g=1a=1 DRAEPXE N hbqawum/
(N23-)
and
Ac . dc b
M n Mg an+ Zb=12 1Zu 13’bqawudCW#]+
D, . .. = ke ZZ DO —
k,e,]+ Acke]+ ][ ] qa]+ [o's) n nw dCW,u,j-l'b )
q=1a=1 Xp=1 Zw=12u 1 hb'q'a'w'um/
(N23+)

which are based on the &dependent function given by Equation N20, while Equations C33-

and C33+ can be replaced by &independent reduced molar mass coefficients in the form of

2
o _ w Sk,e,j—
ke,j— Dk,e,j—
b
o deyy,j-
M c Zb=1Z 1Zu 1pbqawu dC
ke an qa] X DO wu,j—
Cn . i “aq=1 [k.el.lq.al0 an— q.a,j- d b
k,e C —
,€,] q, oo n h wu,j
2b=12w=12 b,q,.a,w,u dcwu]
Dk,e,j—
(N24-)
and
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2
_ W"Skej+
O-k,e,j+ - Dk i+
,€,]
b
/ [o%0) dCWu]+ \
M c Zb=12 1Zu 1pbqawu dc
_2 Z qa}+X DO wu1+
c q=1 [k.ellq.a10 qa1+ q.a,j+ dc
ke j+ a Zoo Zn Z h wu]+
b=14&w=1 b,q,a,w,u dC W+
= )
Dk,e,j+
(N24+)

which are based on the &dependent function given by Equation N21.

To define the parameters of Equations N23-, N23+4, N24- and N24+, it is convenient to let
arepresent component &, gor w; let frepresent species ¢ aor u, and let /4 represent j- or
Jj+, where jrefers to spatial element &, the minus sign refers to time ¢ and the plus sign

refers to time [¢+ A{f]. As such, in Equations N23-, N23+4, N24- and N24+, nis the number

of solute components, 110 is the number of species that constitute solute component @, ¢, g is
the concentration of species S of component a, D, 4 is the diffusion coefficient of species f
of component a, o, 4 is the reduced molar mass coefficient of species fof component g, Dg,ﬁ
equals Dg g in the limit as capproaches 0, 0°, g equals g, g in the limit as capproaches 0,
Cq,p,j— atall fequals the concentration of species S of solute component @ at §;at time ¢
Cq,p,j+ atall equals the concentration of species fof solute component aat §at time

[t+ Af], Do p - atall fequals Dy g at Gat time & Dy g ;4 atall equals D, 4 at &at time

[t+ Af], 0,p ;- atall fequals o, 5 at Gattime 4 0, ;4 at all fequals g, g at §jat time

[¢+ Af, D(M;]Jr equals D, g ;7 in the limit as capproaches 0, 0°, 3 ;3 equals g, g ;7 in the

limit as capproaches 0, X [?(,e] [

[q.a] IS the coefficient that couples D° 4 ;5 to Dy ¢ 7, X[Sk,e],[q,a]

is the coefficient that couples °; 4 j3D°g q,jF t0 Ok ¢ j3, Mkeis the molar mass of species e of
solute component %; s, . is the sedimentation coefficient of species e of solute component %,
W?Sy e j— atall fequals w?sy at &at time £ and w?sy ¢ ;4 at all fequals w?sy, at &at time
[+ Af. (See the various forms of Equation N25 for the definitions of Acy ¢ ;— /A¢,

Acye jr/AE, Acq qj-/AE and Acy 4 ;4 /AE.) The b1 of up to an infinite number of coefficients

of proportionality for the density increment, thermodynamic nonideality, and viscosity
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effects are pp g o wur Vb,q,awur @0 Ry g.q.w . rESPECtively.

By deﬁnition: Z&zl 23‘21 Pirq,aww &zl ZZ‘;’l Yi,qawu and Z$=1 Zz‘il hl,q,a,w,u are each
equal to 1. Each of the py, 4 4 ww Yb,q,awuaNd Rp g,q.w coefficients is a constant that couples
the concentration of species uof component wto an effect on the transport of species a of
component g. (See Section D for the component-based equivalents of these virial

expansions.)

Provided that (0D°, , /ag)t =0and (0D°;,/0t) ¢ = Oatall fatall times, D°q- = D°,q
and D°; 4 j+ = D°; 4 atall {atall times. Provided that (aa°q,a/65)t =0and (6a°q,a/6t)f =

0 atall §at all times after a change in the gravitational field is complete, 6°; 4, ;- = 0°;, and

0°gaj+ = 0°qq atall fatall times after a change in the gravitational field is complete.

With arepresenting component kor g, frepresenting species eor a, and /4 representing j-
or j+, the approximated derivatives, Acy o i~ /AS, Acy ¢ ;1 /AE, Acq q j—/AE and Acy g ;1 /A, in
Equations N23- and N23+, are calculated as

Acapjz  Capl2]F — CapilF

AS $121 — S
(N25a)
for j=1,
Acap 7 _ 1<Ca,ﬁ,[j+1]¢ ~ CaplilF | CapliF ~ Ca,/z,[j—1]¢>
AS 2 SLi+11 ~ SU] $u1 — Sui-1]
(N25b)

for1 <j< N and

Acap iz CapNF — CapN-1]F

A $iny — $iv-1]

(N25¢)
for j= N. Provided that AE/Aj = 0, Equations N25a, N25b and N25c, respectively, are

equivalent to
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Acap iz  Capl2]F — CaplilF

AS AS
(N25d)
for j=1,
ACapF _ Capli+1lF ~ Capli-117
AE 208
(N25¢)

for1< ;< N and

AcopjT  CapNIT ~ CaBIN-11F

A¢ A¢

(N25f)
for j= N. Thus, for A /Aj = 0 (as in Equation B37 and B38), it can be argued, given the &
independence of cxef, Ckej+, Cgar Cqar and A that each form of Equation N25 yield a &

independent result.

Equations N23+ and N24+ can be used in place of Equations C33+ and C34+, respectively,
where the minus/plus sign refers the equation at either time tor time [+ A{f]. Eliminating
the indices eand a, which apply to species, and the summations with respect to species,
yields the component-equivalents of Equations N23+, N24+ and N25. The component-
equivalents of Equations N23+ and N24+ can be used in place of Equations B22+ and
B23+, respectively.

Evaluating X}, and X7,

Solving Equations A16 and A17 of Section A (An application of irreversible thermodynamics
to AUC) for Lgqyields

CqSk,q CqDyq

MM (1-0.p) al '
R v (02 2]
q t w t,T,P,Ca¢W

Lyg =

(N26)

Using Equations N6 and N7 to approximate Dxqand sig, respectively, results in
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1+ Za 1pqaca)

o X5 ( 1+X5- 1anca)
a%kasq 1+2a 1 qaca

D 0
_ Cqu’qu (1 + Z q aCa

Lyqg=

MM, (1— - al ’
q Q( Uq,D) MqRT l]‘ + Cq rvlv=1 (gﬂ) ( anyQ> l
Cq/: \ O Jerpcosw
(N27)
and division by cq/(M [1 + -1 hq'aca]) yields
qu (1+Za 1pqaca)_ qu q(1+2a 1yqaca)
1- B al '
M (1 - 5,p) RT [1 g S (302 (Sa) ]
Cq t Cw t,T,P,cqxz
(N28)
Thus, as the total solute concentration, ¢ approaches zero,
lmXIi,qS (1 + Za 1pq aca) — lim Xk qD((J)(l + Za 1Yq aca)
c—>0 M ( — 7D p) c-0 l dc alny ’
1 1 RT [1+cqXh- (—W)( ")
4 ew=t va t aCW t,T,P,cqz
(N29)
the result of which is
Xi.q5q Xl?,qDO
RT ’
(-8
q

(N30)
where py is the density of the solvent, and pris the density of solute component &

(Equations M5 to M7). Solving for X, yields

xp = Xt IRT
* pom (1—@)
qa-"q Pq

(N31)
Applying the limit as c approaches zero to Equation M2, and comparing the result to the

Equation M7, shows that
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(N32)
Thus,
Xig = Xig:

(N33)
Applying this result to Equations N12 and N22 shows that X , should be equal to 1.
Although this result shows that X ,2 ¢ should always have the same value as Xj ,, it may be

convenient to treat them as independent variables in a simulation program, so that the

coupled-flow effects on s, can be evaluated separately from the coupled-flow effects on D,.
In the limit as tapproaches o

Equation N21 can be rewritten as

n o XE DO( + 2a- 1pqaca)
(alnck) a= 1M ka%a2a \ T3 37 Ry ot
O =

(%)
n a¢ t xD D0(1+22 1anca)
=1 M, “kaT4\1+ Y7 _1hgaCq

(N34)
Equation A36 applies to the system at equilibrium, and dividing both sides of that equation
by cryields
dincy,
T = < 9% )t'
(N35)

As such, it must be that

1+ ZZ 1Pq, aca>

0 0
Xicq® DQ<1+Z RgaCa

n
qlM

t—oo (6lnck) t—oo (va)
i J, . \0¢ \&) vp D0(1+ZZ 1yqaca)
q=1 M k.a~q 1+Za 1 qaca

(N36)

at each spatial position, £ in the system at equilibrium.
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The more general equation, A23, can be rewritten as

o = <6lan€c )

1
2\'n
=171, CqSk.q

)

acq
a=111, (af) Drea

(N37)
1
<6lnck> Z=1M_chak.q Dy,
P
N0 i (%) b
a=1M, \'9¢ ), k4
(N38)
or
; _<6lnck) w2 Yoy LMy (1 — 7,p)
k — )
i /, n  (9lncg n dc,,\ (9lny,
RTZq:l( aé— )th,q 1+Cq w=1 (a_cq)t( 6CW )t,T,P,Ca¢W
(N39)

which, in the limit as ¢approaches oo, yield

w Zq 1M CqSk,q

lim ——k— = | =1
£oroh (alnck) g n acq v
0z ), AT IR
(N40)
n 1
O q=1 M_ank.q Dy,
lim ————— = lim =1
t—co (alnck) toom dcq
0% ), 7T, as) Dreq
(N41)
and
lim __ Tk _ lim W’ Z=1 Lk'qu(l _ ﬁqp) =1
t>m 6lnck> = dinc dc dlny, -
n q w q
( 05 /¢ RTZq:l( ¢ ) beq [1 + q 2= 1(6Cq) < dcy )tTPca¢
(N42)
respectively, at each spatial position, & Assuming that (accw) (a;rcl—yq) is zero for all w
a/¢ N 9w LT P s

# g, Equation N42 further simplifies to
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w? ¥i=1 LigMq(1 = 74p)

tlim = 1.
- dinc diny,
RT Sl (%) [1 * (ot ]
t 97 t,T,P,cazq
(N43)
L . dlncg . dincg . <6lnyq> .
Thus, at equilibrium, w1th( T )tbemg equal to T , and with 2tncy . being equal
dinyg
dincg’
- dl dl
nc ny,
Lig |0?M,(1—9,p) — RT—2(1 1)=0
). KQ[M (1= 7qp) iz ( 4'dlncqﬂ
q=1
(N44)

at each spatial position, & in the system.

Neglecting vector notation (see the discussion following Equation A3), in an AUC system,

VU, can be reduced to (%) (Equations A2, A14, and 16 to 120), and at equilibrium, (a{%)
¢ t

dUg _ 1dUq

% rar Thus, Equation

dav, . . .-
can be expressed as d—rq. In Equation N44, L4 is the coefficient of

N44 can be written more compactly as

n

du,
2, a5 =0

q—1
(N45)

where Uy is the total molar potential of solute component g (Equation 117). As each dd% =0

at equilibrium, Equation N45 cannot be used to determine L4 values. In the case of
membrane-confined electrophoresis (MCE) [Moody, 2011], however, reservoirs of solvent
are separated from the top and bottom of the system by semi-permeable membranes
through which the solvent and membrane-permeant components can flow at a steady rate,
while membrane-confined components that must remain between the membranes form
concentration gradients in response to an applied electrical potential difference and the

flow of mass through the system. MCE systems approach steady state rather than

il . du i
equilibrium, and in such a system at steady state, each d—; can be nonzero. Under conditions
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. . au . .
in which the d—; values are nonzero, the MCE-equivalent to Equation N45 can be used to

determine L4 values. Such determinations are explored in Section N of the MCE document

[Moody, 2011] that mirrors this AUC document.
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List of selected parameters, their indices, and their cgs dimensions

symbolindices parameter index 1 index 2 dimensions
r radial vector cm
M1 molar mass component g/mol
C1 mass concentration component g/cm3
€12  mass concentration component spatial element g/cm3
D12 diffusion coefficient component component cm?/s
si2  sedimentation coefficient component component S

D1 diffusion coefficient component cm?/s
S1 sedimentation coefficient component S

o1 reduced molar mass coefficient =~ component cm-2
D12  diffusion coefficient component spatial element cm?2/s
s12  sedimentation coefficient component spatial element S

o012 reduced molar mass coefficient =~ component spatial element cm-2

r radial position cm

1S half the radial position squared cm?
€1 half the radial position squared  spatial element cm?
W angular velocity s1

t time S
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U1
p
P1
Y1
Na
f1

P12
V1,2
hi12

g.a
LP,R

g.a
LR,P

(o)

partial specific volume
solution density
density

activity coefficient
Avogadro's number
frictional coefficient

solution viscosity

Stokes radius (equivalent sphere)

basis function

pressure

ideal gas constant

absolute temperature
reduced buoyant mass
density increment coefficient
nonideality coefficient
viscosity coefficient

total molar potential

chemical potential
conjugate molar force

mass flow vector

mass flow

phenomenological coefficient
phenomenological coefficient
phenomenological coefficient
molar flow vector

molar flow

molar reaction flow

conjugate molar affinity
magnetic field

Coriolis force

component

component

component

component

component

spatial element

component
component
component
component
component
component
component
component
component
component
products
reactants
component
component
reaction

reaction
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component
component

component

component

reactants

products

cm3/g
g/cm3
g/cm3

dimensionless

mol-1
g/s
g/s-cm

cm

dimensionless

dyne/cm?
erg/mol-K

K

g

cm3/g

cm3/g

cm3/g
erg/mol
erg/mol
dyne/mol
g/s-cm?
g/s-cm?
mol?-s/g-cm3
mol2-s/g-cm5
mol2-s/g-cm5
mol/s-cm?
mol/s-cm?
mol/s-cm3
erg/mol

tesla, or

dyne/g
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) free energy dissipation function erg/cm3-s
v/ longitudinal coordinate cm

[0) angular coordinate dimensionless
vy velocity vector component cm/s

\4t velocity magnitude component cm/s

ér unit vector direction (+r-axis) dimensionless
gk gravitational acceleration (See note.) Earth cm/s?
Note

The cgs standard acceleration due to gravity, g, is approximately 981 cm/s? (for the Earth

at sea level).
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