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An irreversible thermodynamic description of analytical ultracentrifugation (AUC) applied to An irreversible thermodynamic description of analytical ultracentrifugation (AUC) applied to An irreversible thermodynamic description of analytical ultracentrifugation (AUC) applied to An irreversible thermodynamic description of analytical ultracentrifugation (AUC) applied to a solution of the timea solution of the timea solution of the timea solution of the time----    and gravitationaland gravitationaland gravitationaland gravitational----potentialpotentialpotentialpotential----spacespacespacespace----dependent Lamm equationdependent Lamm equationdependent Lamm equationdependent Lamm equation     IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn     Irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962; Katchalsky and Curran, 1965], also known as nonequilibrium thermodynamics, is a theoretical framework that has been used to describe a variety of transport processes. The theory is generally applicable to coupled flows in multi-component systems, and is applied here to analytical ultracentrifugation (AUC). (The cgs system is typically used to express all parameters in AUC, and is the default system used here.)  Along with presenting the relevant theoretical context, this work presents a method of simulation that is built on that which Claverie, Dreux and Cohen [1975] described in their solution to the Lamm equation, but differs in several respects. To correctly implement their concentration dependence, the transport coefficients are defined as spatially-independent parameters. To correctly evaluate the concentration-dependent transport coefficients at the time to be evaluated, the concentrations are calculated iteratively. By such an evaluation of the concentration-dependent transport coefficients at both the time already evaluated and the time being evaluated, the accuracy of each new set of concentrations is maximised. Computational artefacts are reduced by first calculating all concentrations in one order, then recalculating all concentrations in the opposite order, and averaging the results. Simpler results of integration are obtained by using one-half the square of the radial position, rather than the radial position, as the spatial parameter of the continuity equation. Additionally, a simple coupled-flow equation has been implemented.  The application of irreversible thermodynamics (Sections A, I and G) provides a proper description of molar flows in the system. Mass flows are calculated from the molar flows (Section I), and these mass flows are used in the applicable continuity equation (Section A). An integral, finite-element approach then yields a numerical solution to the continuity equation (Sections B and C). The solution presented here is referred to as a “second 
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approximate solution,” to distinguish it from the type of approximate solution previously obtained by similar finite-element approaches. The aim of all of these solutions is to calculate solute concentrations throughout the system sequentially from one point in time to the next.  The second approximate solution can be used non-iteratively, but is then expected to gradually accumulate errors that, depending on the system, may become significant after many time increments. An iterative application of the second approximate solution (Section J) yields a general solution to the continuity equation. The time taken to calculate a set of results with the iterative approach will be proportional to the average number of iterations per time increment. Concentrations and concentration-dependent transport coefficients change very little from one time point to the next, however, so convergence, as judged by a marked decrease in change with further iterations, is likely to take just a few iterations per time point, provided that the acceptance criterion is not set too stringently. When analysing a system with highly concentration-dependent transport coefficients and high solute concentrations that change rapidly, the iterative process should be most advantageous.  ReferencesReferencesReferencesReferences     [1] Onsager, L. (1931a) Reciprocal relations in irreversible processes, I. Phys. Rev. USA 37373737 405-426.  [2] Onsager, L. (1931b) Reciprocal relations in irreversible processes, II. Phys. Rev. USA 38383838 2265-2279.   [3] de Groot, S. R., and Mazur, P. (1962) "Nonequilibrium Thermodynamics." North Holland Publishing Company, Amsterdam.  [4] Katchalsky, A., and Curran, P. F. (1965) "Nonequilibrium Thermodynamics in Biophysics." Harvard University Press, Cambridge, MA.  
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[5] Claverie, J.-M., Dreux, H., and Cohen, R. (1975). Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers. 14141414, 1685-1700.  Section A: An application of irreversible thermodynamics to analytical ultracentrifugation Section A: An application of irreversible thermodynamics to analytical ultracentrifugation Section A: An application of irreversible thermodynamics to analytical ultracentrifugation Section A: An application of irreversible thermodynamics to analytical ultracentrifugation (AUC)(AUC)(AUC)(AUC)     The application of irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962; Katchalsky and Curran, 1965] to AUC yields the flow equation. Given the flow equation, the coupled flow diffusion and sedimentation coefficients can be defined. The flow equation requires a description of the conjugate molar forces in the system. For AUC, those forces are due to gravitational and chemical potential gradients.  The sum of the gravitational and chemical potential gradients equals The sum of the gravitational and chemical potential gradients equals The sum of the gravitational and chemical potential gradients equals The sum of the gravitational and chemical potential gradients equals ∇∇∇∇UUUUkkkk  The molar flow of solute component k in the system frame of reference is 
GHI = GIKLLLH + NIOI PHQ = R SI,TUHT

V
TWX + NIOI PHQ , 

(A1) where GIKLLLH is the molar flow of component k in the solvent frame of reference, PHY is the velocity of the solvent flow through the system, Mk is the molar mass of solute component k, ck is the mass concentration of solute component k, UHT is the conjugate molar force (Equations A2, A14 and I16) of solute component q, Lk,q is the coupled-flow-phenomenological coefficient linking the molar flow of solute component k to the conjugate molar force of solute component q, and n is the total number of solute components. (Each solute component is indexed by an integer that is greater than or equal to 1, and less than or equal to n. With the exception of its velocity through the system, the solvent component is treated implicitly, and by implication, is assigned an index of 0.) The molar flow of component k in the system frame of reference bears a somewhat complicated relationship to the mass flow, [HI , of component k in the system frame of reference. (See Section I: Section I: Section I: Section I: 
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Calculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multi----species species species species componentcomponentcomponentcomponent.) The molar flow of component k in the solvent frame of reference is discussed further in Section G (The dissipation function and the The dissipation function and the The dissipation function and the The dissipation function and the CurieCurieCurieCurie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle), where v0 is shown to be negligibly small in AUC. The molar mass of a component is discussed below, and described in detail in Section I.  In an AUC system at a fixed point on the surface of the Earth, the gradient of the total molar potential of solute component q is ∇\T = −UHT = ∇^T−OT_`∇a + OT∇bcℎ , (A2) where Uq is the total molar potential of solute component q, μq is the chemical potential of solute component q, Mq is the molar mass of solute component q, gE (the standard acceleration due to gravity) is the magnitude of the gravitational field at the Earth’s surface, h is the height above the Earth’s surface, ω is the angular velocity of the centrifuge rotor, and ξ = r2/2, for which r is the radial position in the centrifuge. The component parameter μq is equal to (μq)N, which is the number average of the chemical potentials of all species of component q, but in general, ∇(μq)N does not equal (∇μq)N, which is the number average of the chemical potential gradients of all species of component q. In general, Mq is equal to (Mq)g, which is the ξ-dependent molar mass of component q. (For the definitions of μq and Mq in the general case, see Section I: Calculating molar mass, chemical potential and partial Section I: Calculating molar mass, chemical potential and partial Section I: Calculating molar mass, chemical potential and partial Section I: Calculating molar mass, chemical potential and partial specific volume for specific volume for specific volume for specific volume for a multia multia multia multi----species componentspecies componentspecies componentspecies component. In the limit as all concentration and pressure gradients approach zero, the component parameters, ∇μq and Mq become the number averages of the corresponding species parameters of component q. A detailed examination of Mq is presented in Section M: Section M: Section M: Section M: Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant massmassmassmass.) The molar gravitational potentials of component q due to angular acceleration and the Earth’s gravitational acceleration are -Mqω2ξ and MqgEh, respectively. It will be shown that Mq∇gEh is negligible in most cases in AUC. (See Section H: The contribution of the Section H: The contribution of the Section H: The contribution of the Section H: The contribution of the Earth’s gravitational field to transport in AUCEarth’s gravitational field to transport in AUCEarth’s gravitational field to transport in AUCEarth’s gravitational field to transport in AUC.)  (It is assumed that the system has sufficient concentrations of small, rapidly diffusing ions 
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that no significant electrical fields develop due to charge separation, which the redistribution of macro-ions in experimentally attainable gravitational fields might otherwise be expected to produce. Thus, in Equation A2, ∇Uq does not include any contribution from zqF∇Ψ, where zq is the valence of solute component q, F is the cgs Faraday, and Ψ is the cgs electrical potential, as ∇Ψ is assumed to equal zero everywhere at all times.)  Each chemical potential is a function of time, t, and spatial position. Each molar gravitational potential, whether arising from angular acceleration or the Earth’s gravitational acceleration, is dependent on spatial position. In the case of MqgEh, the potential varies spatially with h, but as (∂h/∂t)space = 0, can only vary temporally if Mq varies temporally. In the case of -Mqω2ξ, the potential varies spatially with ξ, but as (∂ξ/∂t)h = 0 (aside from negligible rotor deformation when (∂ω/∂t)space ≠ 0), -Mqω2ξ can only vary temporally if ω or Mq vary temporally, and except for periods of rotor acceleration or deceleration, (∂ω/∂t)space = 0. Thus, at constant ω, the time dependence of each molar gravitational potential is proportional to the time dependence of Mq. For a single-species component, (∂Mq/∂t)space = 0. For a multi-species component in a system that has not yet reached equilibrium, if ∇μq ≠ 0, μq is almost certain to vary with time, in which case, where (∂μq/∂t)space ≠ 0, (∂Mq/∂t)space ≠ 0. (See Section I: Calculating molar mass, chemicaSection I: Calculating molar mass, chemicaSection I: Calculating molar mass, chemicaSection I: Calculating molar mass, chemical potential l potential l potential l potential and partial specific volume for a multiand partial specific volume for a multiand partial specific volume for a multiand partial specific volume for a multi----species componentspecies componentspecies componentspecies component. Also see EquilibriumEquilibriumEquilibriumEquilibrium at the end of this section.)   The gravitational field due to angular acceleration in the centrifuge is −∇(−_`a) = _`∇a = _`mH ,  (A3) where mH is the radial vector, and -ω2ξ is the gravitational potential due to angular acceleration.   In AUC, the sample occupies a closed system with the geometry of a cylindrical sector, which usually ensures that all flows of solute components within the system are laminar and, assuming that Mq∇gEh is negligible, radially directed. Thus, each ∇Uq is significant in 
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the radial direction only, and vector notation can be neglected. This permits a single spatial variable, such as r or ξ, to be used to describe all spatial dependencies of interest in the system. Henceforth, therefore, with a few exceptions, vk, Jk, Ik and r are used in place of PHI , GHI , [HI and mH, respectively, where PHI is the velocity of component k in the system frame of reference.  By convention, the meniscus of the solution is defined as the innermost point of the system, and its radial position is denoted as rm. (If the location of the innermost wall at the top (with respect to ω2mH) of the assembly containing the sample is defined as rt, then rt < rm. The space between rt and rm is typically occupied by air.) The outermost point of the solution is defined as the base of the system, and its radial position, denoted as rb, is located at the outermost wall at the bottom (with respect to ω2mH) of the assembly containing the sample. As the radial position of the axis of rotation is 0, 0 < rm ≤ r within the system ≤ rb. In terms of one-half the radial position squared, the system is located within the range of ξm to ξb, where ξm = rm2/2 and ξb = rb2/2.  On the basis of the relationship described by Equation A3, ξ can be considered the natural independent variable of choice in AUC, as the derivative of the gravitational potential with respect to ξ is a constant: d(-ω2ξ)/dξ = -ω2. In contrast, the derivative of the gravitational potential with respect to r is a function of r: d(-ω2ξ)/dr = d(-ω2r2/2)/dr = -ω2r. Hence, ξ is the parameter associated with the gravitational-potential-space in the title of this work.  Chemical potentialChemical potentialChemical potentialChemical potential     The chemical potential of component k is given by ^I = (^I)Q + pqrstINI , 
(A4) where R is the ideal gas constant, T is the absolute temperature, γk is the activity coefficient of solute component k, and the constant (μk)0 is the standard-state chemical potential of solute component k. Given that μk is a function of the temperature of the system, the 
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pressure of the system and the concentrations of all solute components in the system, 
∇^I = vw^Iwa xy vwawmxy

= zvw^Iwq xy,{,| vwqwaxy + vw^Iw} xy,~,| vw}waxy + R vw^IwN�xy,~,{,|��� vwN�wa xy
V

�WX � vwawmxy , 
(A5) where P is the pressure of the system, and cw is the mass concentration of solute component w.  Temperature control ensures that 

vwqwaxy = 0 . 
(A6)  A standard thermodynamic relation, when applied to a multi-species component in the presence of concentration and pressure gradients, yields 

vw^Iw} xy,~,| = OIP�I , 
(A7) where P�I = (P�I){� (defined in Section I) is the ξ-dependent partial specific volume of the system with respect to solute component k, and OI = (OI)� (also defined in Section I) is the same molar mass parameter that applies to Equation A2.   Applying a convenient form of Bernoulli’s equation to the AUC system, which, despite the flow of matter within it, is treated as if it were hydrostatic, yields 

} = }Q + _` � ��a��
��  , 

(A8) where ρ is the solution density, P is the pressure at ξ = ξa, and P0 is the pressure at ξm = rm2/2. Given that (∂ω2/∂ξ)t = 0 throughout the system, 
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vw}waxy = �_` . 
(A9) 
Thus, 

vw^Iw} xy,~,| vw}waxy = OIP�I�_` , 
(A10) where ρ is a function of ξ and t. Contributions to ρ include gradients in solute concentrations and ξ-dependent compression of the solvent, which can be expressed as (∂ρ0/∂ξ)t ≠ 0, where ρ0 is the solvent density. Expectations for a system with a compressible solvent include the likelihood that, when dω/dt ≠ 0, (∂ρ0/∂t)ξ ≠ 0 and dξm/dt ≠ 0.  Given that (∂ξ/∂r)t = r throughout the system,  

vw^Iw} xy,{,| vw}wmxy = vw^Iw} xy,~,| vw}waxy vwawmxy = OIP�I�_`m . 
(A11)  For the remaining part of ∇μk, 

R vw^IwN�xy,~,{,|��� vwN�wa xy
V

�WX = pq vwrsNIwa xy z1 + NI R vwN�wNI xy vwrstIwN� xy,~,{,|���
V

�WX � . 
(A12)  The term in square brackets describes the deviation of μk from van ‘t Hoff behaviour.  The sum of the above descriptions of the various parts of ∇μk yields the gradient of the chemical potential of component k in the system. Thus, 

∇^I = vw^Iwa xy vwawmxy = OIP�I�_`m + pq vwrsNIwm xy z1 + NI R vwN�wNI xy vwrstIwN� xy,~,{,|���
V

�WX � . 
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(A13) Applying the above descriptions of the various parts of ∇Uk, the gradient of the total molar potential of solute component  k in an AUC system can be written as 
∇\I = −UHI = −OI(1 − P�I�)_`m + pq vwrsNIwm xy z1 + NI R vwN�wNI xy vwrstIwN� xy,~,{,|���

V
�WX � , 

(A14) where UHI is the conjugate molar force (Equations A2 and I16) of solute component k. Using Equation A14 to describe the conjugate molar force of solute component q, the molar flow of solute component k in the system frame of reference, given in Equation A1, can be re-written as 
GI = R SI,T �OT�1 − P�T��_`m − pq �wrsNTwm �y z1 + NT R �wN�wNT �y �wrstTwN� �y,~,{,|���

V
�WX ��V

TWX  . 
(A15) For the effect of component q on component k, the coupled-flow-sedimentation coefficient is defined as 

�I,T = OTNT  SI,TOT�1 − P�T�� , 
(A16) and the coupled-flow-diffusion coefficient is defined as 

�I,T = OTNT  SI,Tpq z1 + NT R �wN�wNT �y �wrstTwN� �y,~,{,|���
V

�WX � , 
(A17) so that 

GI = R NTOT ��I,T_`m − �I,T �wrsNTwm �y�V
TWX  . 

(A18) Like Lk,q, ssssk,q and DDDDk,q link the molar flow of solute component k to the conjugate molar force of solute component q. Unlike Lk,q, ssssk,q ≠ ssssq,k, and DDDDk,q  ≠ DDDDq,k.  
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An application of irreversible thermodynamics to the Lamm equationAn application of irreversible thermodynamics to the Lamm equationAn application of irreversible thermodynamics to the Lamm equationAn application of irreversible thermodynamics to the Lamm equation     Equation A18 describes the molar flow of one solute component in a multi-component system in the analytical ultracentrifuge, and derives from the application of irreversible thermodynamics to AUC [Williams et al., 1958; Fujita, 1962; Fujita, 1975].  Each coupled-flow-sedimentation (Equation A16) and coupled-flow-diffusion (Equation A17) coefficient is described in terms of its corresponding phenomenological coefficient, Lk,q. In the absence of magnetic fields or Coriolis forces, the reciprocal relations give Lk,q = Lq,k, but for q not equal to k, there is no equation that describes Lk,q in terms of independently determinable parameters. (In the presence of magnetic fields or Coriolis forces, resort must be made of the more general form of the reciprocal relations mentioned in Section G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle.) For Lk,k, 
lim|���→Q SI,I = NI��OI�I  , 

(A19) where NA is Avogadro's number and fk is the frictional coefficient of solute component k, but this equation only applies in the limit as all solute concentrations other than that of solute component k approach zero. Nevertheless, if there are no solute components other than k, and if fk, ck and Mk are known, Lk,k is the one phenomenological coefficient that can be calculated.   For a system of n components, there are n SI,TWI values and (n2 - n)/2 SI,T�I = ST�I,I values (assuming the absence of magnetic fields or Coriolis forces). Given n linearly independent equations in the form of Equation A1, in which the n values of SI,TWI, the n values of UHT, and the n values of GHI are known, the remaining unknowns, which are the (n2 - n)/2 SI,T�I = ST�I,I values, could be calculated for any part of the system in which n did not exceed 3, as for n > 3, (n2 - n)/2 > n.  Of all the parameters needed to calculate Lk,k, fk is the most challenging to determine. In the absence of solute components other than k, fk can be calculated from the Stokes equation, 
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�I = 6 ¡pI∗ , (A20) if pI∗ , the Stokes radius of an equivalent sphere of solute component k, and η, the solution viscosity, are known. The applicability of the Stokes equation, however, is questionable except as ck approaches zero, at which point, η becomes identical to the solvent viscosity. Given the restricted applicability of Equation A19, the prospects for calculating DDDDk,q or ssssk,q would hardly be less promising if Lk,k could not be calculated under any conditions. (Nevertheless, for a practical approach to using such coefficients, see Section N: Section N: Section N: Section N: A simple A simple A simple A simple coupledcoupledcoupledcoupled----flow equation for AUCflow equation for AUCflow equation for AUCflow equation for AUC.) The main utility of Equation A19 is to show that hydrodynamic parameters appear in the denominator of the one phenomenological coefficient that can be calculated. Thus, if expressions for other phenomenological coefficients were found, it would not be surprising if they too included hydrodynamic parameters in their denominators. (It should thus come as no surprise that no hydrodynamic parameters are found in Equation N10, from which the phenomenological coefficients of its sources cancel.)  In general, for n > 3 at least (see the discussion following Equation N44), Lk,q, DDDDk,q and ssssk,q cannot be calculated from other experimentally determinable parameters, and cannot be determined directly by any practical or routine approach. Informative parameters derived from Lk,q, DDDDk,q and ssssk,q can be determined experimentally, however. These experimentally determinable parameters are the apparent diffusion coefficient, the apparent sedimentation coefficient, and the apparent reduced molar mass coefficient. (In reference to these coefficients, the word “apparent” is dropped henceforth, except parenthetically in the three definitive descriptions that immediately follow.)  The (apparent) diffusion coefficient of solute component k is 
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¤I = OINI vwrsNIwm xy
R NTOT �wrsNTwm �y �I,T

V
TWX = OIvwNIwm xy

R 1OT �wNTwm �y �I,T
V

TWX
= OIvwNIwm xy

pq R SI,T �wrsNTwm �y z1 + NT R �wN�wNT �y �wrstTwN� �y,~,{,|���
V

�WX �V
TWX

= OIpq ¥ SI,T 1m vwrsNTwm xy �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���
V�WX �VTWX 1m vwNIwm xy

= OIvwNIwa xy
pq R SI,T �wrsNTwa �y z1 + NT R �wN�wNT �y �wrstTwN� �y,~,{,|���

V
�WX �V

TWX , 
  (A21) and the (apparent) sedimentation coefficient of solute component k is  

¦I = OINI R 1OT NT�I,T
V

TWX = OINI R SI,T
V

TWX OT�1 − P�T�� , 
(A22) where, for a multi-species component, Mk = (Mk)J is the molar-flow-average molar mass of component k. (See Section I: Calculating molar mass, chemical potential and partial specific Section I: Calculating molar mass, chemical potential and partial specific Section I: Calculating molar mass, chemical potential and partial specific Section I: Calculating molar mass, chemical potential and partial specific volume for a multivolume for a multivolume for a multivolume for a multi----species componentspecies componentspecies componentspecies component.) Resort to (Mk)J is necessary for the definition of the mass flow of component k in terms of the molar flow of component k. As mass is conserved but molarity is not, the mass flow of component k is preferable to the molar flow of component k when casting the continuity equation, the solution to which provides the sought-after description of transport in the system.     The (apparent) reduced molar mass coefficient of solute component k is defined as 
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§I = _`¦I¤I = _` 1NI ¥ 1OT NT�I,TVTWX1vwNIwm xy
¥ 1OT vwNTwm xy �I,TVTWX

= 1m _` vwrsNIwm xy ¥ 1OT NT�I,TVTWX1m ¥ 1OT vwNTwm xy �I,TVTWX

= vwrsNIwa xy _` ¥ 1OT NT�I,TVTWX
¥ 1OT vwNTwa xy �I,TVTWX

= vwrsNIwa xy ¥ 1OT NT¨I,TVTWX �I,T
¥ 1OT vwNTwa xy �I,TVTWX

=

= vwrsNIwa xy _` ¥  SI,TOT�1 − P�T��VTWX
pq ¥ SI,TVTWX vwrsNTwa xy �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX �. 
(A23) where, for the effect of component q on component k, σσσσk,q is the coupled-flow analogue of σk. As shown in Section N, σσσσk,q = ω2ssssk,q/DDDDk,q (Equation N10). Like ssssk,q and DDDDk,q, σσσσk,q links the molar flow of solute component k to the conjugate molar force of solute component q. Also like ssssk,q and DDDDk,q, σσσσk,q ≠ σσσσq,k. While σk cannot be completely defined without specifying ω2, on which it explicitly depends, this might be viewed as a virtue, as unlike sk, σk preserves information regarding the field dependence of transport, including some effects that might be expected in cases of field-dependent solvent compression.  Because σk is proportional to the ratio of sk and Dk, and because both sk and Dk, are proportional to the highly fraught parameter, (Mk)J (see Equations I13 to I15), the two (Mk)J terms cancel in σk. As shown in Section I, however, Mj and other parameters pertaining to multi-species components are no less inconvenient. Such issues are rendered moot, however, by working, as in Section C (A solution to the tA solution to the tA solution to the tA solution to the t----    and ξand ξand ξand ξ----dependent Lamm dependent Lamm dependent Lamm dependent Lamm equation in terms of speciesequation in terms of speciesequation in terms of speciesequation in terms of species), with species rather than components.  Along with Dk, either sk or σk are the transport coefficients needed to describe AUC results or simulate transport in AUC. In principle, for each solute component, all three of these parameters can be determined experimentally, though in practice, for complicated systems, it can be difficult to obtain more than an average or approximate value of some parameters 
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by analysis of experimental data.   The coupled flow coefficients, DDDDk,q and ssssk,q, are distinct from Dk,j and sk,j, respectively, which, respectively, are the t-dependent, ξ-independent scalar coefficients derived from Dk and sk in Section B (Steps taken to solve the tSteps taken to solve the tSteps taken to solve the tSteps taken to solve the t----    and ξand ξand ξand ξ----dependent Lamm equationdependent Lamm equationdependent Lamm equationdependent Lamm equation), and are also distinct from Dk,e and sk,e, respectively, which, respectively, are the diffusion and sedimentation coefficients of species e of component k in Section C. To highlight their distinction from similarly denoted parameters, DDDDk,q and ssssk,q are shown in bold typeface.  The relationship between Jk and Ik is given by Ik = MkJk, the derivation of which is shown in Section I (Calculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multi----species componentspecies componentspecies componentspecies component). Thus, in terms of Dk and sk, or Dk and σk, the mass flow of solute component k can be written as 
GIOI = [I = NI ª¦I_`m − ¤I vwrsNIwm xy« , 

GIOI = [I = NI¤I ª§Im − vwrsNIwm xy« 
or 

GIOI = [I = NI¤I �§I − vwrsNIwa xy� ¬2a . 
(A24) The total mass flow is 

[ = R [I
V

IWX  . 
(A25) As a function of t and r, the Lamm equation [Williams et al., 1958], which is the continuity equation for sedimentation, can be written as 

vwNwx® = − 1m vwm[wm xy  
or 
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R vwNIw x®
V

IWX = − 1m R vwm[Iwm xy
V

IWX ,  
and as a function of t and ξ, the Lamm equation can be written as 

vwNwx� = − �w¬2a[wa �y  
or  

R vwNIw x�
V

IWX = − R �w¬2a[Iwa �y
V

IWX ,  
(A26) where 

N = R NI
V

IWX   
(A27) is the total solute concentration.  Applying the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981], a numerical solution to the t- and r-dependent form or the t- and ξ-dependent form of the Lamm equation can be obtained. (See Section B: Steps taken to solve the Section B: Steps taken to solve the Section B: Steps taken to solve the Section B: Steps taken to solve the tttt----    and ξand ξand ξand ξ----dependent dependent dependent dependent Lamm equationLamm equationLamm equationLamm equation.)     AveragesAveragesAveragesAverages     Equations A24 and A25 can be combined to yield 

[ = ¬2a R �NI¤I§I − ¤I vwNIwa xy�V
IWX   

or 
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[ = ¬2a R �NI¦I_` − ¤I vwNIwa xy�V
IWX  , 

(A28) which is the equation of total mass flow.  The most useful averages that can be applied to the total mass flow equation are the overall gradient-average diffusion coefficient, DG, and the overall weight-average sedimentation coefficient, sw. The diffusion coefficients and concentration gradients of all solute components are used to calculate DG, while the sedimentation coefficients and concentrations of all solute components are used to calculate sw. Respectively, these averages can be calculated as 
¤¯ = ¥ ¤I vwNIwξ xyVIWX

¥ vwNIwξ xyVIWX = ¥ ¤I vwNIwr xyVIWX
¥ vwNIwr xyVIWX   

(A29) and, in terms of its product with ω2, 
_`¦� = _` ¥ ¦INIVIWX¥ NIVIWX = ¥ §I¤INIVIWX¥ NIVIWX =  (§¤)� , 

(A30) where (σD)w is the weight average of the product, σkDk, for all solute components. Applied to the flow equation, DG and sw yield 
[ = ¬2a �N¦�_` − ¤¯ vwNwaxy� . 

(A31) In general, at any time up to and including equilibrium, 
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_` ¦�¤¯ = �_` ¥ ¦INIVIWX¥ NIVIWX � ° ¥ vwNIwa xyVIWX
¥ ¤I vwNIwa xyVIWX ± = vwrsNwa xy ° _` ¥ ¦INIVIWX¥ ¤I vwNIwa xyVIWX ±

= vwrsNwa xy ° ¥ §I¤INIVIWX¥ ¤I vwNIwa xyVIWX ± . 
(A32) Though general, this equation cannot be applied to the case of all (∂ck/∂ξ)t = 0, except by taking the limit as all (∂ck/∂ξ)t become vanishingly small after having first been perturbed from zero. Such a limiting case pertains in the approach to equilibrium at zero field, provided that a field has been applied long enough to perturb (∂ck/∂ξ)t from zero. Equilibrium is dealt with next.  EquilibriumEquilibriumEquilibriumEquilibrium     Throughout an AUC system (hence, at all ξ) at equilibrium, (∂c/∂t)ξ = 0, I = I∞ = 0, and all derivatives of I∞ equal zero, where I∞ is the total mass flow of all solute components at equilibrium. Furthermore, at equilibrium, all system properties become t-independent, so that all partial differentials with respect to all spatial dimensions, including ξ, become ordinary differentials. Additionally, it is assumed here that all partial differentials with respect to the spatial dimensions other than ξ are zero. For the equilibrium condition, then, Equations A24 and A25 yield   

R ªNI¤I§I − ¤I �NI�a «V
IWX = R [I,³

V
IWX = [³ = 0 , 

or, applying the definition of σk in Equation A23,  
R ªNI¦I_` − ¤I �NI�a «V
IWX = R [I,³

V
IWX = [³ = 0 , 
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(A33) where the expression in square brackets is equal to Ik,∞, which is the mass flow of solute component k at equilibrium. Due to conservation of mass, at equilibrium, throughout the system, each Ik,∞ = 0 and each dIk,∞/dξ = 0. (Conservation of mass ensures that (∂ck/∂t)ξ = -(∂[2ξ]0.5Ik/∂ξ)t. Thus, when (∂ck/∂t)ξ = 0, as it does at equilibrium, (∂[2ξ]0.5Ik/∂ξ)t = 0.) Nevertheless, as a consequence of their concentration dependence, each Dk, σk and sk, can, and most likely will, be ξ-dependent at equilibrium, except for the zero-field case where each dck/dξ = 0 at all ξ.  Although the mass flow of each solute component is zero at equilibrium, the mass flows of individual species of a solute component may be nonzero at equilibrium. In general, throughout the system, the mass flows of the species of a solute component sum to zero at equilibrium. (The dependence of species concentrations on the concentration of the component comprising those species, versus the independence of the concentration of one component from the concentrations of other components, accounts for the difference in expectations for the mass flow of a species versus the mass flow of a component at equilibrium.)   In the limit as equilibrium, or infinite time, is approached, I approaches zero. Applying this limit to a re-arrangement of Equation A31 results in 
limy→³ _` ¦�¤¯ = limy→³ vwrsNwa xy = �rsN�a  . 

(A34) Applying the equilibrium condition, in which each Ik = 0, to Equation A28 (expressed in terms of σk and Dk) shows that, for each solute component, k, 
limy→³ �NI¤I§I − ¤I vwNIwa xy� = 0 .  

(A35)  Dividing this equation by Dk yields 
limy→³ �NI§I − vwNIwa xy� = 0 . 
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(A36) Taking the sum over all k results in 
limy→³ R �NI§I − vwNIwa xy�V

IWX = limy→³ zR NI§I
V

IWX − R vwNIwa xy
V

IWX � = limy→³ zN ¥ NI§IVIWX¥ NIVIWX − R vwNIwa xy
V

IWX �
= limy→³ �N§� − vwNwaxy� = 0 . 

(A37) Division by c yields 
limy→³ �§� − vwrsNwa xy� = 0. 

(A38) Thus, 
limy→³ §� = limy→³ vwrsNwa xy = �rsN�a  . 

(A39) Combining the results of Equations A34 and A39 shows that 
limy→³ _` ¦�¤¯ = limy→³ §� . 

(A40) Equation A40 only applies at equilibrium. Solving Equation A40 for DG shows that, at equilibrium, DG = ω2sw/σw. Furthermore, Equation A30 shows that, in general, ω2sw = (σD)w. Thus, at equilibrium, DG = (σD)w/σw. Neither of these expressions for DG is especially well defined for the case of equilibrium at zero field, however. Nevertheless, information about that system state can be gained from Equation A40 via Equation A39. As dlnc/dξ = 0 at zero field at equilibrium, Equation A39 shows that, at zero field at equilibrium, σw = 0. Applying this result to Equation A40 shows that ω2sw/DG = 0 at zero field at equilibrium. For all of this to hold, as the field approaches zero and the system approaches equilibrium at zero field, ω2sw must approach zero faster than DG. Expressed as limits applied to DG = (σD)w/σw, 
lim´µ®→Q ¶limy→³ ¤¯· = lim´µ®→Q �limy→³ (§¤)�§� � = §�¤�§� = ¤�  
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(A41) is obtained at equilibrium at zero field. (As the system approaches equilibrium at zero field, each σk approaches zero, as does σw, so that (σD)w can be equated to σwDw as ω2r approaches zero and t approaches infinity.) Plateau regionsPlateau regionsPlateau regionsPlateau regions     Plateau regions are defined as parts of the system where all (∂ck/∂ξ)t = 0. In the limit as all (∂ck/∂ξ)t approach 0, Equation A28 simplifies to 
limv¸|�¸� x¹→Q [ = ¬2a R NI¤I§I

V
IWX = N(§¤)�¬2a  

or 
limv¸|�¸� x¹→Q [ = ¬2a R NI¦I_`V

IWX = N¦�_`¬2a . 
(A42) Thus, using r in place of (2ξ)0.5, I = c(σD)wr = cω2swr in plateau regions.  ReferencesReferencesReferencesReferences     [A1] Onsager, L. (1931a) Reciprocal relations in irreversible processes, I. Phys. Rev. USA 37373737 405-426.  [A2] Onsager, L. (1931b) Reciprocal relations in irreversible processes, II. Phys. Rev. USA 38383838 2265-2279.   [A3] de Groot, S. R., and Mazur, P. (1962) "Nonequilibrium Thermodynamics." North Holland Publishing Company, Amsterdam.  [A4] Katchalsky, A., and Curran, P. F. (1965) "Nonequilibrium Thermodynamics in Biophysics." Harvard University Press, Cambridge, MA. 
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 [A5] Williams, J. W., van Holde, K. E., Baldwin, R. L., and Fujita, H. (1958) The theory of sedimentation analysis. Part II. Velocity sedimentation. Chem. Rev. 58585858 745-783.  [A6] Fujita, H. (1962) "Mathematical theory of sedimentation analysis." Academic Press, New York  [A7] Fujita, H. (1975) "Foundations of ultracentrifugal analysis." Wiley-Interscience, New York.  [A8] Claverie, J.-M., Dreux, H., and Cohen, R. (1975) Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers. 14141414 1685-1700.  [A9] Cox, D., and Dale, R. (1981) Simulation of Transport Experiments for Interacting Systems. In "Protein-Protein Interactions." (C. Frieden, and L. Nichol, editors.) pp. 173-211. John Wiley and Sons, New York.   Section B: Steps taken to solve the tSection B: Steps taken to solve the tSection B: Steps taken to solve the tSection B: Steps taken to solve the t----    and ξand ξand ξand ξ----dependent Lamm equationdependent Lamm equationdependent Lamm equationdependent Lamm equation     The following finite-element method for solving the t- and ξ-dependent continuity equation requires a resort to discrete spatial elements and a finite time increment. The method further requires the flow of each solute component to be zero at the system boundaries, ξm and ξb. As the flow of each component is expected to meet this boundary condition in a properly enclosed AUC system, the finite-element solution shown can be applied to all components, with solute components treated explicitly, and the solvent component treated implicitly.  The solution begins with an integration that takes advantage of the boundary conditions to eliminate the partial derivatives with respect to ξ. To that end, the continuity equation (Equation A26) is first multiplied by H, which is an arbitrary function of ξ, and then 
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integrated over the entire range of ξ. (Ultimately, H will be replaced by a set of N functions of ξ indexed by i, where 1 ≤ i ≤ N.) Thus, 
R � vwNIw x� ¼�a�½

��
V

IWX = − R � �w¬2a[Iwa �y ¼�a�½
��

V
IWX .  

(B1) Integrating the right hand side of this equation by parts results in 
− R � �w¬2a[Iwa �y ¼�a�½

��
V

IWX
= − zR¾¼(a¿)¬2a¿[I(a¿) − ¼(aÀ)¬2aÀ[I(aÀ)ÁV

IWX − R � vw¼wa xy ¬2a[I�a�½
��

V
IWX � ,  

(B2) where Ik(ξ) is Ik at ξ and H(ξ) is H at ξ. As the boundary conditions in AUC are Ik(ξm) = 0 and Ik(ξb) = 0, the preceding equation reduces to  
− R � �w¬2a[Iwa �y ¼�a�½

��
V

IWX = R � vw¼wa xy ¬2a[I�a�½
��

V
IWX  .  

(B3)  Furthermore, as H is independent of t, (∂H/∂ξ)t = dH/dξ. Thus, 
R � vw¼wa xy ¬2a[I�a�½

��
V

IWX = R � �¼�a ¬2a[I�a�½
��

V
IWX ,  

(B4) and Equation B1 becomes 
R � vwNIw x� ¼�a�½

��
V

IWX = R � �¼�a ¬2a[I�a�½
��

V
IWX .  

(B5) Next, ck is approximated as the sum of N products, each of which consists of a ξ-dependent function, Ph, multiplied by a corresponding ξ-independent coefficient, ck,h, which 
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nevertheless remains a function of t. With both Ph and ck,h indexed by h, where 1 ≤ h ≤ N,  
N = R NI

V
IWX = R R NI,Â}Â

Ã
ÂWX

V
IWX .  

(B6) Each element, h, corresponds to a point, ξh. By convention, ξ1 = ξm and ξN = ξb. Despite the association of h with spatial parameters such as ξh, ck,h is independent of ξ, so that (∂ck,h/∂ξ)t = dck,h/dξ = 0 at all ξ. (Each ck,h is ξ-independent, and at all ξ is equal to the value of ck at ξh.) Figures B1 through B6 show, for the case of equal spacing between adjacent ξh, the consequences of using the hat function (also known as the triangular function) for each Ph, along with the corresponding set of ξ-independent solute component concentration coefficients, ck,h.  
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 Figure B1. An example of ck versus ξ at a single time, t. Specific points, ξh, are shown, where 1 ≤ h ≤ N, and the points are equally spaced. A value of N = 11 was chosen for this example. 
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Figure B3. A detail of Figure B2, showing just three of the Ph functions versus ξ. The system boundaries are ξ1 = ξm = 17.2 cm2 and ξN = ξ11 = ξb = 26.3 cm2. In this example, where the points are equally spaced, each Δξh is the same, and is described by Equation B38. (Equations B53 to B57 describe each Δξh in general.) Calculation of ξh is given by Equation B36 in general, and by Equation B37 for the case of each Δξh being equal. Equations B58 to B63 describe each Ph function and its derivative. 
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 Figure B4. The ξ-independent concentrations, ck,h, that describe ck at time t. (Compare this figure with Figure B1, which shows ck as a function of ξ at time t.) Though each ck,h is ξ-independent, this figure shows that the value of each ck,h at all ξ is equal to the value of ck at ξh. (As ck depends on both ξ and t, each ck,h remains t-dependent, however.) 
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 For equally spaced points, ξh = ξ1 + [h - 1]Δξ, where Δξ is the spatial increment between any two adjacent points. Equations B54 to B57 describe Δξ for the general case, in which Δξ can be different for different pairs of adjacent spatial points. Equations B58 to B63 describe Ph and dPh/dξ for Ph in the form of the hat function, and the case of potentially variable Δξ.   As ck,h is independent of ξ, (∂ck,h/∂t)ξ = dck,h/dt, so that 
R R �NI,Â� � }Â¼�a�½

��
Ã

ÂWX
V

IWX = R � �¼�a ¬2a[I�a�½
��

V
IWX .  

(B7) Expanding Ik (Equation A24) as  
[I = NI¤I �§I − vwrsNIwa xy� ¬2a = �§I¤INI − ¤I vwNIwa xy� ¬2a , 

and re-writing Ik in terms of the ξ-independent component concentration coefficients and corresponding ξ-dependent functions results in  
[I = z§I¤I R NI,Â}Â

Ã
ÂWX − ¤I R NI,Â �}Â�a

Ã
ÂWX � ¬2a . 

(B8) Substituting this for Ik in Equation B7 and rearranging slightly yields  
R R �NI,Â� � }Â¼�a�½

��
Ã

ÂWX
V

IWX
= 2 R � �¼�a z§I¤I R NI,Â}Â

Ã
ÂWX � a�a�½

��
V

IWX − 2 R � �¼�a z¤I R NI,Â �}Â�a
Ã

ÂWX � a�a�½
��

V
IWX .  

(B9)  The dependence of Dk (Equation A21) and σk (Equation A23) on the concentration, cq, of 
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each explicitly included solute component, q, renders Dk and σk ξ-dependent in all but special cases, such as t = 0, when all (∂cq/∂ξ)t = 0 at all ξ. (Where the solvent is compressible, once ω exceeds zero, (∂ρ0/∂ξ)t ≠ 0, in which case, in all likelihood, (∂cq/∂ξ)t will not equal zero at any position at any subsequent time.) Previously described, first approximate solutions [Cox and Dale, 1981; Schuck et al., 1998] to the r- and t-dependent Lamm equation have been derived by treating Dk and sk as r-independent. To obtain a second approximate solution to the Lamm equation, Dk and σk are expressed in terms of ξ-independent coefficients that are separable from ξ-dependent functions. A first approximate solution that pertains to the case of (∂Dk/∂ξ)t = 0 and (∂σk/∂ξ)t = 0 at all ξ will then be derived from the second approximate solution later in this section (The case of The case of The case of The case of ((((∂∂∂∂σσσσkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 and (= 0 and (= 0 and (= 0 and (∂D∂D∂D∂Dkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 at all ξ= 0 at all ξ= 0 at all ξ= 0 at all ξ). In Section J (Form of the general solution from Form of the general solution from Form of the general solution from Form of the general solution from Equation C32Equation C32Equation C32Equation C32), a general solution based on the second approximate solution will be presented.  First approximate solutions to the Lamm equation have been, and in its initial application here, the second approximate solution will be, incorrectly applied to cases in which Dk, σk and sk are r- or ξ-dependent. Due to the typically weak r- or ξ-dependence of Dk, σk and sk, such first and second approximate solutions are likely to yield satisfactorily accurate results when applied to systems in which large and rapid concentration changes (as might arise from concentration gradients that are both high and steep) are absent. Sets of results obtained using the first approximate and second approximate solutions to the ξ- and t-dependent Lamm equation are compared in Section F Section F Section F Section F (ξξξξ----dependent functions to dependent functions to dependent functions to dependent functions to approximate Dapproximate Dapproximate Dapproximate Dk,ek,ek,ek,e    and σand σand σand σk,ek,ek,ek,e).  As it temporarily becomes more convenient to work with sk and Dk instead of σk and Dk, sk is approximated as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by a corresponding ξ-independent coefficient, sk,j, which nevertheless remains a function of t. With both Pj and sk,j indexed by j, where 1 ≤ j ≤ N,  
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¦I = R ¦I,Å}Å
Ã

ÅWX  ,  
 (B10) where each sk,j at all ξ is equal to sk at ξj. The result expresses sk as separable ξ-independent and ξ-dependent terms.  To express Dk as separable ξ-independent and ξ-dependent terms, this transport coefficient is also approximated as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by a corresponding ξ-independent coefficient, Dk,j, which nevertheless remains a function of t. With both Pj and Dk,j indexed by j, where 1 ≤ j ≤ N, 

¤I = R ¤I,Å}Å
Ã

ÅWX  , 
(B11)  where each Dk,j at all ξ is equal to Dk at ξj.  Equations A23, B10 and B11 are combined to express σk in terms of previously defined (Equations B10 and B11), separable ξ-independent and ξ-dependent terms. Thus, 

§I = _`¦I¤I = _` ¥ ¦I,Å}ÅÃÅWX¥ ¤I,Å}ÅÃÅWX  . 
(B12)  While the same approach has been used to express ck, Dk and sk in terms of ξ-independent coefficients of ξ-dependent functions, those ξ-independent coefficients and ξ-dependent functions are indexed by h in the case of ck, but indexed by j in the case of Dk or sk. At any given time, then, the ξ-dependent functions used in the description of ck are expressed in terms of ξh, while the ξ-dependent functions used in the descriptions of Dk and sk are expressed in terms of ξj. To use these parameters together in the same solution of the continuity equation, at each time point, the set of all ξj is made equivalent to the set of all ξh.  Using ω2sk in place of σkDk (from a re-arrangement of Equation A23) results in 
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R R �NI,Â� � }Â¼�a�½
��

Ã
ÂWX

V
IWX

= 2_` R R NI,Â � ¦I}Â �¼�a a�a�½
��

Ã
ÂWX

V
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��
Ã

ÂWX
V

IWX .  
(B13) Replacing sk with the expression in terms of sk,j, and replacing Dk with the expression in terms of Dk,j, yields 
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and permits the ξ-independent parameters, Dk,j and sk,j, to be factored out of the integrals. Thus, 
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(B14) Letting  
§I,Å = _`¦I,Å¤I,Å  , 

(B15) 
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where σk,j is ξ-independent by virtue of Dk,j and sk,j being ξ-independent, the solution can now be expressed, after some re-arrangement, as 
R R Æ�NI,Â� � }Â¼�a�½

�� − 2NI,Â R ¤I,Å �§I,Å � }Å}Â �¼�a a�a�½
�� − � }Å �}Â�a �¼�a a�a�½

�� �Ã
ÅWX ÇÃ

ÂWX
V

IWX = 0. 
 (B16) At all ξ, each of the N scalar coefficients, σk,j (defined in Equation B15) is equal to σk at ξj. As a result of using Equation B15 in Equation B16, the product, Dkσk, has been expressed as the sum of N products, each consisting of a ξ-dependent function, Pj, multiplied by a ξ-independent coefficient, Dk,jσk,j, which nevertheless remains a function of t. Additionally, the coefficient Dk,jσk,j is itself the product of the previously defined coefficients, Dk,j and σk,j.   Dividing Equation B16 by 2, and expressing dck,h/dt as Δck,h/Δt, where Δck,h and Δt are finite increments, yields  
R R Æ12 ∆NI,Â∆ � }Â¼�a�½

�� − NI,Â R ¤I,Å �§I,Å � }Å}Â �¼�a a�a�½
�� − � }Å �}Â�a �¼�a a�a�½

�� �Ã
ÅWX ÇÃ

ÂWX
V

IWX = 0.  
(B17) The difference between the unknown concentration, ck,h+ = ck,h at [t + Δt], and the known concentration, ck,h- = ck,h at t, is the change in concentration, Δck,h, during the time increment, Δt = [t + Δt] - t. Using Δck,h = ck,h+ - ck,h-, and multiplying by Δt, yields 

R R ÆNI,ÂÉ − NI,ÂÊ2 � }Â¼�a�½
��

Ã
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V
IWX

− NI,Â R ¤I,Å �§I,Å � }Å}Â �¼�a a�a�½
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�� � ∆Ã
ÅWX Ë = 0.  

 (B18) The remaining ck,h term can be replaced with either ck,h- , which would yield the less stable 
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explicit solution, or ck,h+, which would yield the more stable implicit solution. In the Crank-Nicholson approach [Schuck et al., 1998] used here, both substitutions are made, resulting in two forms of Equation 18. Additionally, σk,j+ and Dk,j+, which, respectively, represent σk,j and Dk,j at time [t + Δt], are used in conjunction with the explicit form of Equation B18, where ck,h is expressed in terms of ck,h+. Finally, σk,j- and Dk,j-, which, respectively, represent σk,j and Dk,j at time t, are used in conjunction with the implicit form of Equation B18, where ck,h is expressed in terms of ck,h-. The two resulting versions of Equation B18 are summed to yield, by virtue of the previous division by 2, their average. The average, like any sum of the two solutions, is considered stable, and is expected to permit the use of larger Δt values than either the explicit or implicit solution alone would.  Applying the Crank-Nicholson approach yields, after some rearrangement, 
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�� − � }Å �}Â�a �¼�a a�a�½

�� � ∆Ã
ÅWX Ë .  

 (B19)  As σk and Dk are functions of all ck (see Equations A21 to A23), and as each ck is time dependent (see Equation A26), σk and Dk are also time dependent. Thus, for the purpose of obtaining a general solution, σk,j- and Dk,j- must be expressed as functions of parameters equal to all ck,h- for which h = j, while σk,j+ and Dk,j+ must be expressed as functions of parameters equal to all ck,h+ for which h = j. General expressions of this sort are presented shortly. (See Evaluating the ξEvaluating the ξEvaluating the ξEvaluating the ξ----independent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by j.)   At this point, there are n equations and nN unknown values of ck,h+. To obtain the nN equations needed to solve for all values of ck,h+, H is replaced by N functions, 
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¼ = R }Ì
Ã

ÌWX  , 
(B20) where each Pi has the same functional form as each corresponding Ph. (For i = h, Pi = Ph.) Applying Equation B20, the set of equations describing the solution is given by 
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(B21) The result is solved for ck,h+ using the process described below. (See Solving for cSolving for cSolving for cSolving for ck,h+k,h+k,h+k,h+.) Interactions between solute components and within each solute component (involving its species) are handled separately between time steps. (See Section C: A solution to the tSection C: A solution to the tSection C: A solution to the tSection C: A solution to the t----    and and and and ξξξξ----dependent Lamm equation in terms of speciesdependent Lamm equation in terms of speciesdependent Lamm equation in terms of speciesdependent Lamm equation in terms of species.)   Evaluating the ξEvaluating the ξEvaluating the ξEvaluating the ξ----indepeindepeindepeindependent coefficients of the basis functions indexed by jndent coefficients of the basis functions indexed by jndent coefficients of the basis functions indexed by jndent coefficients of the basis functions indexed by j     Truncated virial expansions are used to approximate the dependence of Dk,j-, Dk,j+, σk,j- and σk,j+ on the concentration of each explicitly included solute component. To evaluate the ξ-independent coefficients of the ξ-dependent functions indexed by j (see Equations B10 and B11), prior to each time increment, Dk,j-, Dk,j+, σk,j- and σk,j+ are, to the extent possible, approximated by 

¤I,ÅÊ = ¤°I,ÅÊ
Î
ÏÐ¥ ¥ Ñ¿,I,T �NT,ÅÊ¿�NT,ÅÊVTWX³¿WX

¥ ¥ ℎ¿,I,T �NT,ÅÊ¿�NT,ÅÊVTWX³¿WX Ò
ÓÔ , 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

34 

 

 (B22-)  
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(B22+) 
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(B23-)  and 
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ÓÔ
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ÓÔ , 

(B23+) respectively, where n is the number of solute components, D°k,j- at all ξ equals Dk at ξj at time t in the limit as c approaches 0, D°k,j+ at all ξ equals Dk at ξj at time [t + Δt] in the limit as c approaches 0, σ°k,j- at all ξ equals σk at ξj at time t in the limit as c approaches 0, σ°k,j+ at all ξ equals σk at ξj at time [t + Δt] in the limit as c approaches 0, s°k,j- at all ξ equals sk at ξj at time t in the limit as c approaches 0, s°k,j+ at all ξ equals sk at ξj at time [t + Δt] in the limit as c approaches 0, cq,j- is the ξ-independent concentration coefficient of solute component q at time t (at time t, cq,j-, at all ξ, equals cq at ξj, just as ck,h, at all ξ, equals ck at ξh in Equation B6), cq,j+ is the ξ-independent concentration coefficient of solute component q at time [t + Δt] (at 
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time [t + Δt], cq,j+, at all ξ, equals cq at ξj, just as ck,h, at all ξ, equals ck at ξh in Equation B6), and where pb,k,q, yb,k,q and hb,k,q are the bth of up to an infinite number of coefficients of proportionality for the density increment, thermodynamic nonideality, and viscosity effects, respectively. By definition, ¥ ÕX,I,TVTWX , ¥ ÑX,I,TVTWX  and ¥ ℎX,I,TVTWX  are each equal to 1. Each of the pb,k,q, yb,k,q and hb,k,q coefficients couples the concentration of component q to an effect on the transport of component k. (See Section D for more details regarding these component-based virial expansions.)  With ∓ representing either – or +, the component-equivalents of Equations N23∓ and N24∓ can be used in place of Equations B22∓ and B23∓, respectively. Henceforth, cq is used to denote the concentration of solute component q at either time t or time [t + Δt], and some unspecified position, ξj.  Individually, the product of b(cq)b - 1 with the corresponding coefficient of proportionality pb,k,q yields the bth term for the contribution of cq to the density increment of the system as it affects the transport of component k, the product of b(cq)b - 1 with the corresponding coefficient of proportionality yb,k,q yields the bth term for the contribution of cq to the thermodynamic nonideality of the system as it affects the transport of component k, and the product of b(cq)b - 1 with the corresponding coefficient of proportionality hb,k,q yields the bth term for the contribution of cq to the viscosity of the system as it affects the transport of component k, where b(cq)b - 1 = d(cq)b/dcq.  Collectively, the sum of products given by ¥ Õ¿,I,TØNT¿ÊX³¿W`  is a measure of the total contribution of cq to the density increment of the system as it affects the transport of component k, the sum of products given by ¥ Ñ¿,I,TØNT¿ÊX³¿W`  is a measure of the total contribution of cq to the thermodynamic nonideality of the system as it affects the transport of component k, and the sum of products given by ¥ ℎ¿,I,TØNT¿ÊX³¿W`  is a measure of the total contribution of cq to the viscosity of the system as it affects the transport of component k.  Henceforth, σk,j, Dk,j and sk,j are used to denote the ξ-independent transport coefficients at 
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either time t or time [t + Δt], and σ°k,j, D°k,j and s°k,j are used to denote the ξ-independent transport coefficients at either time t or time [t + Δt] in the limit at c approaches zero.  By definition, σ°k,j, D°k,j and s°k,j, are ξ-independent, and for a given t-independent field strength, may also be t-independent. In the case of solvent compressibility however, the expectation is that Δσ°k,j/Δj ≠ 0 and ΔD°k,j/Δj ≠ 0, from which it follows that Δs°k,j/Δj ≠ 0. The condition that, for all solute components, Δσ°k,j/Δj = 0 and ΔD°k,j/Δj = 0, from which it would follow that Δs°k,j/Δj = 0, can only apply to a system with an incompressible solvent, in which case, σ°k,j, D°k,j and s°k,j can be replaced with their respective, system-wide constants, σ°k, D°k and s°k. (In writing Equations B22 and B23, it was assumed that Δpb,k,q/Δj = 0, Δyb,k,q/Δj = 0 and Δhb,k,q/Δj = 0 for any given pair of components k and q, even in the case of solvent compressibility. If required to deal adequately with the case of solvent compressibility, pb,k,q, yb,k,q and hb,k,q can be replaced with their respective j- and t-dependent coefficients, which would be pb,k,q,j-, yb,k,q,j- and hb,k,q,j- at time t, and would be pb,k,q,j+, yb,k,q,j+ and hb,k,q,j+ at time [t + Δt], where, denoting a coefficient at either time by dropping the – or + suffix, Δpb,k,q,j/Δj ≠ 0, Δyb,k,q,j/Δj ≠ 0 and Δhb,k,q,j/Δj ≠ 0 for any given pair of components k and q.)  To avoid quadratic and higher-order terms in cq,j- or cq,j+, along with other complicated terms arising from the presence of a truncated virial expansion in the denominators of σk,j and Dk,j in Equations B22 and B23, no effort is made, initially, to solve Equation B21 as written. Instead, Equation B21 is solved as if σk,j+ and Dk,j+ were independent of all cq,j+, and as if σk,j- and Dk,j- were independent of all cq,j-. Furthermore, because cq,j+ values are not known prior to their use in σk,j+ and Dk,j+, σk,j- and Dk,j- are used in place of σk,j+ and Dk,j+, respectively. The resulting solution is that referred to as the second approximate solution. (As previously mentioned, the first approximate solution that pertains to the case of (∂Dk/∂ξ)t = 0 and (∂σk/∂ξ)t = 0 at all ξ will be derived from the second approximate solution.) The discussion of this issue is continued following Equation B24.  Equations B22 and B23 use a set of power series of each solute component concentration to describe the thermodynamic nonideality, density and viscosity of the solution. For solutions 
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that are too concentrated to permit the use of highly truncated virial expansions in the description of parameters such as Dk, σk and sk, additional terms from the infinite series can be retained. (See Section D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from van    't Hoff behaviour and 't Hoff behaviour and 't Hoff behaviour and 't Hoff behaviour and other virial expansionsother virial expansionsother virial expansionsother virial expansions.) It is, however, incorrect to treat σk,j, Dk,j and sk,j as if they were functions of any terms involving solute concentrations in the second approximate solution, unless that solution is applied iteratively within each time increment. The general solution presented in Section J (ForForForForm of the general solution from Equation C32m of the general solution from Equation C32m of the general solution from Equation C32m of the general solution from Equation C32) does apply the second approximate solution iteratively, and thus permits the concentration dependence of σk,j, Dk,j and sk,j at times t and [t + Δt] to be treated correctly.   Solving for cSolving for cSolving for cSolving for ck,h+k,h+k,h+k,h+     There are now three sets of space-dependent, time-independent basis functions (the set of all Ph, Pi and Pj), and there are N functions per set of such basis functions (1 ≤ h ≤ N, 1 ≤ i ≤ N, and 1 ≤ j ≤ N). For each solute component, k, at either time t or [t + Δt]: there are N space-independent, time-dependent, concentration coefficients, ck,h; there are N space-independent, time-dependent, diffusion coefficients, Dk,j; and there are N space-independent, time-dependent, sedimentation coefficients, sk,j, which are related to the N space-independent, time-dependent, reduced molar mass coefficients through ω2sk,j = Dk,jσk,j. For the case of each Ph, Pi and Pj being a hat function (as described by Equations B58 to B63), for each solute component, k, at either time t or [t + Δt]: each product, ck,hPh, is maximal at spatial element h, and is zero below spatial element [h – 1] or above spatial element [h + 1]; while each of the products, Dk,jPj and Dk,jσk,jPj, is maximal at spatial element j, and is zero below spatial element [j – 1] or above spatial element [j + 1].  Let 
ÙI,Â,ÌÉ = � }Â}Ì�a�½

�� − R ¤I,ÅÉ �§I,ÅÉ � }Å}Â �}Ì�a a�a�½
�� − � }Å �}Â�a �}Ì�a a�a�½

�� �Ã
ÅWX ∆  

and 
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ÙI,Â,ÌÊ = � }Â}Ì�a�½
�� + R ¤I,ÅÊ �§I,ÅÊ � }Å}Â �}Ì�a a�a�½

�� − � }Å �}Â�a �}Ì�a a�a�½
�� �Ã

ÅWX ∆ . 
(B24) Equations B22 and B23 are used to calculate Dk,j and σk,j, respectively. Despite their dependence on all cq,j+, for each iteration (see Section J) of the second approximate solution, σk,j+ and Dk,j+ are treated as if they were independent of all ck,j+, and in the first iteration of any given time increment, σk,j+ and Dk,j+ are replaced with σk,j- and Dk,j-, respectively, all of which permits the set of solutions to be written as 

R R R NI,ÂÉÙI,Â,ÌÉ
Ã

ÌWX
Ã

ÂWX
V

IWX = R R R NI,ÂÊÙI,Â,ÌÊ
Ã

ÌWX
Ã

ÂWX
V

IWX  , 
(B25) where each Fk,h,i+ is treated as independent of all ck,j+. In the second approximate solution, it is permissible to treat Fk,h,i-, σk,j- and Dk,j- as dependent of all cq,j-. In the general solution (Section J), the dependence of Fk,h,i+, σk,j+ and Dk,j+ on all cq,j+ is repeatedly approximated, with the errors in those approximations approaching zero with a sufficient number of iterations.  Letting 

ÚI,ÌÊ = R NI,ÂÊÙI,Â,ÌÊ
Ã

ÂWX   
then results in 

R R ÚI,ÌÊ
Ã

ÌWX
V

IWX = R R R NI,ÂÉÙI,Â,ÌÉ
Ã

ÌWX
Ã

ÂWX
V

IWX . 
(B26) As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Ph and Pi results in most of the terms indexed by i and h being zero: Fk,h,1+ = 0 and Fk,h,1- = 0 for h > 2;  Fk,h,N+ = 0 and Fk,h,N- = 0 for h < [N - 1]; and  Fk, h,[1 < i < N]+ = 0 and Fk,h,[1 < i < N]- = 0 for [i – 2] < h < [i + 2].  Consequently, 
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R ÚI,XÊ
V

IWX = R�NI,XÉÙI,X,XÉ + NI,`ÉÙI,`,XÉ�V
IWX  , 

 
R ÚI,ÌÊ

V
IWX = R�NI,[ÌÊX]ÉÙI,[ÌÊX],ÌÉ + NI,ÌÉÙI,Ì,ÌÉ + NI,[ÌÉX]ÉÙI,[ÌÉX],ÌÉ�V

IWX   
 for 1 < i < N, and 

R ÚI,ÃÊ
V

IWX = R�NI,[ÃÊX]ÉÙI,[ÃÊX],ÃÉ + NI,ÃÉÙI,Ã,ÃÉ�V
IWX  . 

 (B27) Equation B27 is derived from Equation A26, according to which, (∂c/∂t)ξ = -(∂[2ξ]0.5I/∂ξ)t. Equation A26 does not state that each (∂ck/∂t)ξ = -(∂[2ξ]0.5Ik/∂ξ)t, but where this condition holds, each Zk,i- will equal the sum over all h of ck,h+Fk,h,i+. As each k refers to a solute component, conservation of mass ensures that each (∂ck/∂t)ξ does equal -(∂[2ξ]0.5Ik/∂ξ)t. Thus, equating corresponding terms indexed by k in Equation B27 is permissible, and results in ÚI,XÊ = NI,XÉÙI,X,XÉ + NI,`ÉÙI,`,XÉ ,  ÚI,ÌÊ = NI,[ÌÊX]ÉÙI,[ÌÊX],ÌÉ + NI,ÌÉÙI,Ì,ÌÉ + NI,[ÌÉX]ÉÙI,[ÌÉX],ÌÉ  for 1 < i < N, and ÚI,ÃÊ = NI,[ÃÊX]ÉÙI,[ÃÊX],ÃÉ + NI,ÃÉÙI,Ã,ÃÉ . (B28) (Mass is conserved, but molarity is not, in general. Consequently, in the case of a species, e, of a solute component, k, it is possible for (∂ck,e/∂t)ξ and -(∂[2ξ]0.5Ik,e/∂ξ)t to differ, where ck,e is the concentration and Ik,e is the mass flow, respectively, of species e of solute component k. Section C deals with the transport of species in detail.)  Equations C74 to C75 show the fully expanded forms of Equation C39, which is the species-by-species equivalent of Equation B28. 
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 Equation B28 permits the continuity equation to be solved component-by-component. For each component, the solution proceeds one concentration coefficient at a time. Solving first for ck,1+ yields NI,XÉ = ÜI,X − UI,XNI,`É , where  
ÜI,X = ÚI,XÊÙI,X,XÉ  

and  
UI,X = ÙI,`,XÉÙI,X,XÉ . 

(B29) For i < N, the solution for each subsequent ck,i+, in ascending order from 2 ≤ i < N, takes the form of  NI,ÌÉ = ÜI,Ì − UI,ÌNI,[ÌÉX]É , where  
ÜI,Ì = ÚI,ÌÊ − ÜI,[ÌÊX]ÙI,[ÌÊX],ÌÉÙI,Ì,ÌÉ − UI,[ÌÊX]ÙI,[ÌÊX],ÌÉ  

and  
UI,Ì = ÙI,[ÌÉX],ÌÉÙI,Ì,ÌÉ − UI,[ÌÊX]ÙI,[ÌÊX],ÌÉ . 

(B30) At i = N, the solution for ck,N+ is obtained. In terms of ck,[N-1]+, the solution for ck,N+ is  NI,ÃÉ = ÜI,Ã − UI,ÃNI,[ÃÊX]É , where 
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ÜI,Ã = ÚI,ÃÊÙI,Ã,ÃÉ  

and  
UI,Ã = ÙI,[ÃÊX],ÃÉÙI,Ã,ÃÉ  . 

(B31)  The solution for ck,[N-1]+ can now be substituted into the solution for ck,N+ to yield  NI,ÃÉ = ÜI,Ã − UI,Ã�ÜI,[ÃÊX] − UI,[ÃÊX]NI,ÃÉ� , (B32) which, solved for ck,N+, is  
NI,ÃÉ = ÜI,Ã − UI,ÃÜI,[ÃÊX]1 − UI,ÃUI,[ÃÊX]  , 

(B33a) alternative expressions of which are  
NI,ÃÉ = ÜI,ÃÙI,Ã,ÃÉ − ÙI,[ÃÊX],ÃÉÜI,[ÃÊX]ÙI,Ã,ÃÉ − ÙI,[ÃÊX],ÃÉUI,[ÃÊX]   

(B33b) and 
NI,ÃÉ = ÚI,ÃÊ − ÜI,[ÃÊX]ÙI,[ÃÊX],ÃÉÙI,Ã,ÃÉ − UI,[ÃÊX]ÙI,[ÃÊX],ÃÉ . 

 (B33c)  The above solution for ck,N+ does not require knowledge of ck,[N-1]+ or any other unknowns. This solution for ck,N+ can now be used, therefore, to solve the previously obtained expression for ck,[N-1]+ in terms of ck,N+ and other known parameters. Subsequently, using 
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ck,[N-1]+, the previously obtained expression for ck,[N-2]+ can be solved in terms of ck,[N-1]+ and other known parameters. Thus, once ck,N+ is known, each preceding ck,i+ is calculated in descending order from i = [N - 1] to i = 2 using Equation B30 until, upon reaching i = 1, ck,1+ is calculated using Equation B29, at which point, the entire array of ck,i+ values has been determined. For i = h, ck,i+ = ck,h+, so that the array of ck,i+ values obtained equals the array of ck,h+ values sought.  This process is carried out for each solute component, k, at each addition of a time increment. These new ck,h+ values are then used as the next ck,h- values after the addition of the next time increment, and the process is repeated until the desired time point is reached, at least in a noniterative application of the second approximate solution. (The general solution presented in Section J (Form of the general solution from Equation C32Form of the general solution from Equation C32Form of the general solution from Equation C32Form of the general solution from Equation C32) applies the second approximate solution iteratively, with the result that ck,h+ is repeatedly recalculated within each time increment until a convergence criterion (Equation J6) is met, or a maximum number of iterations is reached.)  It has been found that the process is made more robust by first calculating all ck,h+ in the forward direction starting from ck,1+, then recalculating all ck,h+ in reverse order (starting from ck,N+), and averaging the results. The calculation of all ck,h+ in reverse order is implemented by obtaining a solution to the t- and ξ-dependent Lamm equation with the set of all ξh reversed, so that ξ1 = ξb and ξN = ξm. The solution obtained is backwards in the sense that ck,1+ at all ξ is equal to the value of ck at ξb, while ck,N+ at all ξ is equal to the value of ck at ξm. In general, ξh, ck,h+, ck,h-, Dk,j+, σk,j+, Dk,j- and σk,j-, of the backwards solution are equal to ξ[N-h+1], ck,[N-h+1]+, ck,[N-h+1]-, Dk,[N-j+1]+, σk,[N-j+1]+, Dk,[N-j+1]- and σk,[N-j+1]-, respectively, of the forward solution, which is the solution described above for the original orientation. Solving for ck,h+ using the backwards solution then proceeds as described for the forward solution. Averaging is weighted toward the starting point of each solution, were artefacts appear to be minimal, so that, subscripting all concentration and spatial parameters by h as that index applies to the forward solution, the average value of ck,h+ is (ck,h+)avg = [(ξh - ξm)(ck,h+)R + (ξb - ξh)(ck,h+)F]/(ξb - ξm), where (ck,h+)F and (ck,h+)R are the values of ck,h+ obtained from the forward and backwards solutions, respectively. 
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 TimeTimeTimeTime     In terms of an unvarying time increment, Δt, the time after Ω time increments is Ω = Q + Ω∆ , (B34) where t0 is the initial time. In general, for Ω time increments, where each time increment, Δtε, may be different from some or all the rest, 
Ω = R ∆ß

Ω
ßWQ = R(ß − ßÊX)Ω

ßWQ  , 
(B35) where t -1 is defined as equal to zero, and t0 ≥ t -1.  SpaceSpaceSpaceSpace     Defining ξ0 as equal to zero makes 

aá = R ∆aâ
á

âWX = R(aâ − aâÊX)á
âWX   

(B36)  a general formula for calculating ξh. This equation does not require Δξ to be the same for all spatial increments between two adjacent points.   Where Δξ is the same for all spatial increments between two adjacent points,  aá = aX + [ℎ − 1]∆a , (B37) from which it follows, given ξN = ξb and ξ1 = ξm, that 
∆a = aã − aä� − 1  . 

(B38)  
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ReactionsReactionsReactionsReactions     As discussed in Section C (A solution to the tA solution to the tA solution to the tA solution to the t----    and ξand ξand ξand ξ----dependent Lamm equation in terms of dependent Lamm equation in terms of dependent Lamm equation in terms of dependent Lamm equation in terms of speciesspeciesspeciesspecies), it is more practical to explicitly include each solute species as if it were a solute component. In such implementations, prior to each addition of a time increment and the subsequent determination of the new ck,h+, each solute component’s current species concentrations (the sum of which equals ck,h-) are adjusted to account for the effects of any chemical reactions in the system, including any mass-action associations or dissociations between the species of an individual solute component. Thus, at each time point, the re-calculation of concentration takes place in two distinct steps: first, the effects of reaction flows are determined; second, the effects of mass transport flows are determined. Calculating concentration changes due to reaction flows is discussed in Section G (The The The The dissipation function and the Curiedissipation function and the Curiedissipation function and the Curiedissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle). Calculating concentration changes due to transport flows is described in this section (Equations B24 to B33) for the second approximate solution in terms of components, in Sections C (Equations C35 to C44) for the second approximate solution in terms of species, and in Section J (Form of the general Form of the general Form of the general Form of the general solution from Equation C32solution from Equation C32solution from Equation C32solution from Equation C32) for the general solution to the second approximate solution in terms of species.  The solutions to the ξThe solutions to the ξThe solutions to the ξThe solutions to the ξ––––dependendependendependendependent integralst integralst integralst integrals     In the notation used for the solutions to the ξ-dependent integrals that follow, a spatial increment from ξh-1 to ξh is indicated by appending a subscripted minus sign to Δξ, a spatial increment from ξh to ξh+1 is indicated by appending a subscripted plus sign to Δξ, ξm denotes ξ at the meniscus, and ξb denotes ξ at the base of the system. The integrals are solved for the forward solution, in which ξh-1 < ξh < ξh+1.  A minus sign, a letter x, or a plus sign is appended to a single equation number for each member of any set of two or three equations that reduces to a single equation in the case of (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0 at all ξ. Where one exists, an equation with a subscripted minus sign precedes one with a subscripted x, and, where one exists, an equation with a 
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subscripted plus sign follows one with a subscripted x, for a given equation number.  With the hat functions (see Figure B3, above, and Equations B58 to B63, below) used for Ph, Pi and Pj, the only nonzero solutions of the integrals in Equation B21 are: 
� }X}X�a�½

�� = � }X}X�a�åæå
�å = ΔaXÉ3  ; 

(B39) 
� }ÂÊX}Â�a�½

�� = � }ÂÊX}Â�a�ç
�çèå = ΔaÂÊ6  ; 

(B40) 
� }Â}Â�a�½

�� = � }Â}Â�a�çæå
�çèå = 2 �� }ÂÊX}Â�a�½

�� + � }ÂÉX}Â�a�½
�� � ; 

(B41) 
� }ÂÉX}Â�a�½

�� = � }ÂÉX}Â�a�çæå
�ç = ΔaÂÉ6  ; 

(B42) 
� }Ã}Ã�a�½

�� = � }Ã}Ã�a�é
�éèå = ΔaÃÊ3  ; 

(B43) 
� }X}X �}X�a a�a�½

�� = � }X}X �}X�a a�a�åæå
�å =  − aX3 − ê }X}X�a�½�� 4  ; 

(B44)  
� }ÂÊX}ÂÊX �}Â�a a�a�½

�� = � }ÂÊX}ÂÊX �}Â�a a�a =�ç
�çèå  aÂ3 − 32 � }ÂÊX}Â�a�½

�� ; 
(B45x) 

� }Â}ÂÊX �}Â�a a�a�½
�� = � }Â}ÂÊX �}Â�a a�a =�ç

�çèå
aÂ6 − 12 � }ÂÊX}Â�a�½

��  ; 
(B45+) 

� }ÂÊX}Â �}Â�a a�a�½
�� = � }ÂÊX}Â �}Â�a �a�ç

�çèå = � }Â}ÂÊX �}Â�a a�a�½
��  ; 

(B46-)  
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� }Â}Â �}Â�a a�a�½

��
= � }Â}Â �}Â�a a�a + � }Â}Â �}Â�a a�a�çæå

�ç =�ç
�çèå

− 12 �� }ÂÊX}Â�a�½
�� + � }ÂÉX}Â�a�½

�� � ; 
(B46x)  

� }ÂÉX}Â �}Â�a a�a�½
�� = � }ÂÉX}Â �}Â�a a�a�çæå

�ç = � }Â}ÂÉX �}Â�a a�a�½
�� ; 

(B46+)  
� }Â}ÂÉX �}Â�a a�a�½

�� = � }Â}ÂÉX �}Â�a a�a�çæå
�ç = − aÂ6 − 12 � }ÂÉX}Â�a�½

��  ; 
(B47-) 

� }ÂÉX}ÂÉX �}Â�a a�a�½
�� = � }ÂÉX}ÂÉX �}Â�a a�a�çæå

�ç =  − aÂ3 − 32 � }ÂÉX}Â�a�½
�� ; 

(B47x) 
� }Ã}Ã �}Ã�a a�a�½

�� = � }Ã}Ã �}Ã�a a�a�é
�éèå =  aÃ3 − ê }Ã}Ã�a�½�� 4 ; 

(B48) 
� }X �}X�a �}X�a a�a�½

�� = � }X �}X�a �}X�a a�a�åæå
�å = 16 v 3aXΔaXÉ + 1x ; 

(B49) 
� }ÂÊX �}ÂÊX�a �}Â�a a�a�½

�� = � }ÂÊX �}ÂÊX�a �}Â�a a�a =�ç
�çèå − 16 v 3aÂΔaÂÊ − 2x  

= − � }ÂÊX �}Â�a �}Â�a a�a�½
�� ; 

(B50x) 
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� }Â �}ÂÊX�a �}Â�a a�a�½
�� = � }ÂÊX �}ÂÊX�a �}Â�a a�a�ç

�çèå = − 16 v 3aÂΔaÂÊ − 1x
= − 16 − � }ÂÊX �}Â�a �}Â�a a�a�½

��  ; 
(B50+)  

� }ÂÊX �}Â�a �}Â�a a�a�½
�� = � }ÂÊX �}Â�a �}Â�a a�a�ç

�çèå = 16 v 3aÂΔaÂÊ − 2x ; 
(B51-)  

� }Â �}Â�a �}Â�a a�a�½
�� = � }Â �}Â�a �}Â�a a�a�çæå

�çèå = aÂ2 v 1ΔaÂÊ + 1ΔaÂÉx
= � }ÂÊX �}Â�a �}Â�a a�a�½

�� + � }ÂÉX �}Â�a �}Â�a a�a�½
��  ; 

(B51x) 
� }ÂÉX �}Â�a �}Â�a a�a�½

�� = � }ÂÉX �}Â�a �}Â�a a�a�çæå
�ç = 16 v 3aÂΔaÂÉ + 2x ; 

(B51+)  
� }Â �}ÂÉX�a �}Â�a a�a�½

�� = � }Â �}ÂÉX�a �}Â�a a�a�çæå
�ç = − 16 v 3aÂΔaÂÉ + 1x

= 16 − � }ÂÉX �}Â�a �}Â�a a�a�½
��  ; 

(B52-)  
� }ÂÉX �}ÂÉX�a �}Â�a a�a�½

�� = � }ÂÉX �}ÂÉX�a �}Â�a a�a�çæå
�ç = − 16 v 3aÂΔaÂÉ + 2x

= − � }ÂÉX �}Â�a �}Â�a a�a�½
�� ; 

(B52x) and 
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� }Ã �}Ã�a �}Ã�a a�a�½
�� = � }Ã �}Ã�a �}Ã�a a�a�é

�éèå = 16 v 3aÃΔaÃÊ − 1x , 
(B53) where ΔaXÉ = aXÉX − aX , (B54) ΔaÂÊ = aÂ − aÂÊX , (B55) ΔaÂÉ = aÂÉX − aÂ , (B56) and ΔaÃÊ = aÃ − aÃÊX . (B57)  The hat functions and their derivatives can be described as follows: For ξ < ξh-1 or ξ > ξh+1,  }Â = 0  (B58)  and �}Â�a = 0 ; 
(B59) for ξh-1 ≤ ξ ≤ ξh, 

}Â = (a − aÂÊX)ΔaÂÊ   
(B60)  and �}Â�a = 1ΔaÂÊ  ; 
(B61) and for ξh ≤ ξ ≤ ξh+1,  
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}Â = 1 − (a − aÂ)ΔaÂÉ   

(B62)  and �}Â�a = − 1ΔaÂÉ . 
(B63)  Replacing the subscript, h, with i or j in Equations B58 to B63 yields the equations that describe Ph, Pj and their derivatives with respect to ξ.  Each integral in Equations B39 to B53 need only be evaluated within the domain where its integrand is not equal to zero.   Where the integrand is P1P1, P1P1(dP1/dξ)ξ, or P1(dP1/dξ)(dP1/dξ)ξ, the integral is evaluated from ξ1 to ξ1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dξ, respectively.  Where the integrand is Ph-1Ph, Ph-1Ph-1(dPh/dξ)ξ, Ph-1(dPh-1/dξ)(dPh/dξ)ξ, PhPh-1(dPh/dξ)ξ (identical to Ph-1Ph(dPh/dξ)ξ), Ph(dPh-1/dξ)(dPh/dξ)ξ, or Ph-1(dPh/dξ)(dPh/dξ)ξ, the integral is evaluated from ξh-1 to ξh.   Where the integrand is PhPh, PhPh(dPh/dξ)ξ, or Ph(dPh/dξ)(dPh/dξ)ξ, and where 1 < h < N, the integral is split in two, with one integral evaluated from ξh-1 to ξh, and the other integral evaluated from ξh to ξh+1. The two integrals are then summed.  Where the integrand is Ph+1Ph, Ph+1Ph(dPh/dξ)ξ (identical to PhPh+1(dPh/dξ)ξ), Ph+1(dPh/dξ)(dPh/dξ)ξ, Ph(dPh+1/dξ)(dPh/dξ)ξ, Ph+1Ph+1(dPh/dξ)ξ, or Ph+1(dPh+1/dξ)(dPh/dξ)ξ, the integral is evaluated from ξh to ξh+1.   Where the integrand is PNPN, PNPN(dPN/dξ)ξ, or PN(dPN/dξ)(dPN/dξ)ξ, the integral is 
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evaluated from ξN-1 to ξN. Equations B60 and B61, with h = N, describe PN and dPN/dξ, respectively.  Equations B60 and B61 give the functions used for Ph and dPh/dξ, respectively, in integrals evaluated from ξh-1 to ξh. Equations B62 and B63 give the functions used for Ph and dPh/dξ, respectively, in integrals evaluated from ξh to ξh+1.  Of the 23 types (within 15 groups) of integrals in Equations B39 to B53, 17 (Equations B40 to B42, B45x to B47x, and B50x to B52x) apply to 1 < h < N, so that each one is evaluated for [N - 2] different values of h. Of the remaining 6 types of integrals in Equations B39 to B53, 3 (Equations B39, B44, and B49) apply to h = 1, and 3 (Equations B43, B48, and B53) apply to h = N, so that each one is evaluated for just one value of h.  Of the solutions to the 23 types (within 15 groups) of integrals in Equations B39 to B53: 5 (Equations B39 to B43) are multiples of Δξh-/6 and Δξh+/6; 2 (Equations B44 and B48) are equal to -ξ1/3 - B39/4 or ξN/3 - B43/4; 7 (Equations B45x to B47x) are multiples of ξh/6, B44/2 and B42/2; 2 (B49 and B53) are equal to ξ1/2Δξ1+ + 1/6 or ξN/2ΔξN- - 1/6; and 7 (B50x to B52x) are multiples of B51- and B51+. For equally spaced points, Δξ1+ = ΔξN- = Δξh+ = Δξh- = Δξ for all h, in which case, the solutions to the 14 integrals in Equations B39 to B48 become independent of ξ. Where Equations B40 to B42 and B45x to B47x are independent of ξ, each one can be evaluated just one time, and the result applied to all values of h.  The number, N, and therefore the spacing, of spatial elements, ξh (Equations B54 to B57) can be changed between time increments. Doing so, however, requires recalculating the basis functions (Ph, Pi and Pj) and their derivatives (Equations B58 to B63), as a consequence of which, the solutions to the integrals (Equations B39 to B53) must also be recalculated. Furthermore, whenever changes in the number or spacing of spatial elements requires the creation of a new, ξ-independent concentration coefficient, that coefficient’s value must be interpolated from the values of its most closely related prior concentration coefficients. Exploiting mass conservation can help to ensure that minimal error is introduced in the process of interpolation, but also requires that mass conservation is 
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always enforced between time increments. (As the finite-element method does not inherently ensure mass conservation, other methods must be employed for that purpose.) Despite how all this may appear, changing the number or spacing of spatial elements does not alter the time-independent nature of the basis functions. Instead, the map of the system is altered. Thus, changing the number or spacing of spatial elements requires the application of a wholly new solution of the continuity equation.  The case of (The case of (The case of (The case of (∂∂∂∂σσσσkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 and (= 0 and (= 0 and (= 0 and (∂D∂D∂D∂Dkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 at all ξ= 0 at all ξ= 0 at all ξ= 0 at all ξ     In the case of (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0 at all ξ, each σk,j is equal to the ξ-invariant value of σk and each Dk,j is equal to the ξ-invariant value Dk, which permits σk,j and Dk,j to be factored out of the summations indexed by j in Equations B16 to B24. The consequences to Equations B39 to B53 are described below. The numbering system for the equations of this special case (where σk and Dk are constant with ξ) follows that used for the more general case (where σk and Dk can vary with ξ) above, with an asterisk appended to the number of each equation that applies to the special case.  Equations B39* to B43* are unchanged from Equations B39 to B43:  
� }X}X�a�½

�� = � }X}X�a�åæå
�å = ΔaXÉ3  ; 

(B39*) 
� }ÂÊX}Â�a�½

�� = � }ÂÊX}Â�a�ç
�çèå = ΔaÂÊ6  ; 

(B40*) 
� }Â}Â�a�½

�� = � }Â}Â�a�çæå
�çèå = 2 �� }ÂÊX}Â�a�½

�� + � }ÂÉX}Â�a�½
�� � ; 

(B41*) 
� }ÂÉX}Â�a�½

�� = � }ÂÉX}Â�a�çæå
�ç = ΔaÂÉ6 ; 

(B42*) 
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� }Ã}Ã�a�½
�� = � }Ã}Ã�a�é

�éèå = ΔaÃÊ3  ; 
(B43*)  

R �� }Å}X �}X�a a�a�½
�� �Ã

ÅWX = � }X �}X�a a�a�½
�� = � }X �}X�a a�a�åæå

�å = − ÆaX + ê }X}X�a�½��2 Ç  
(B44*)  replaces Equation B44; 

R �� }Å}ÂÊX �}Â�a a�a�½
�� �Ã

ÅWX = � }ÂÊX �}Â�a a�a�½
�� = � }ÂÊX �}Â�a a�a�ç

�çèå = aÂ2 − 2 � }ÂÊX}Â�a�½
��   

(B45*) replaces the sum of Equations B45x and B45+;  
R �� }Å}Â �}Â�a a�a�½

�� �Ã
ÅWX = � }Â �}Â�a a�a�½

�� = � }Â �}Â�a a�a�çæå
�çèå

= − 12 � }Â}Â�a = − �� }ÂÊX}Â�a�½
�� + � }ÂÉX}Â�a�½

�� ��½
��   

(B46*)  replaces the sum of Equations B46-, B46x and B46+;  
R �� }Å}ÂÉX �}Â�a a�a�½

�� �Ã
ÅWX = � }ÂÉX �}Â�a a�a�½

�� = � }ÂÉX �}Â�a a�a�çæå
�ç = − aÂ2 − 2 � }ÂÉX}Â�a�½

��   
(B47*) replaces the sum of Equations B47- and B47x;  

R �� }Å}Ã �}Ã�a a�a�½
�� �Ã

ÅWX = � }Ã �}Ã�a a�a�½
�� = � }Ã �}Ã�a a�a�é

�éèå = aÃ − ê }Ã}Ã�a�½��2   
(B48*) replaces Equation B48; 
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R �� }Å �}X�a �}X�a a�a�½

�� �Ã
ÅWX = � �}X�a �}X�a a�a�½

�� = � �}X�a �}X�a a�a�åæå
�å = aXΔaXÉ + 12

= aX3 ê }X}X�a�½��
+ 12  

(B49*) replaces Equation B49;  
R �� }Å �}ÂÊX�a �}Â�a a�a�½

�� �Ã
ÅWX = � �}ÂÊX�a �}Â�a a�a�½

�� = � �}ÂÊX�a �}Â�a a�a�ç
�çèå = − aÂΔaÂÊ + 12  

= aÂ−6 ê }ÂÊX}Â�a�½��
+ 12 

(B50*) replaces the sum of Equations B50x and B50+;  
R �� }Å �}Â�a �}Â�a a�a�½

�� �Ã
ÅWX = � �}Â�a �}Â�a a�a�½

�� = � �}Â�a �}Â�a a�a�çæå
�çèå

= − �� �}ÂÊX�a �}Â�a a�a�½
�� + � �}ÂÉX�a �}Â�a a�a�½

�� �  
(B51*) replaces the sum of Equations B51-, B51x and B51+;  

R �� }Å �}ÂÉX�a �}Â�a a�a�½
�� �Ã

ÅWX = � �}ÂÉX�a �}Â�a a�a�½
�� = � �}ÂÉX�a �}Â�a a�a�çæå

�ç = − aÂΔaÂÉ − 12
= aÂ−6 ê }ÂÉX}Â�a�½��

− 12  
(B52*) replaces the sum of Equations B52-, B52x; and  
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R �� }Å �}Ã�a �}Ã�a a�a�½
�� �Ã

ÅWX = � �}Ã�a �}Ã�a a�a�½
�� = � �}Ã�a �}Ã�a a�a�é

�éèå = aÃΔaÃÊ − 12
= aÃ3 ê }Ã}Ã�a�½��

− 12  
(B53*) replaces Equation B53.  Each integral in Equations B39* to B53* need only be evaluated within the domain where its integrand is not equal to zero.   Where the integrand is P1P1, P1(dP1/dξ)ξ, or (dP1/dξ)(dP1/dξ)ξ, the integral is evaluated from ξ1 to ξ1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dξ, respectively.  Where the integrand is Ph-1Ph, Ph-1(dPh/dξ)ξ, or (dPh-1/dξ)(dPh/dξ)ξ, the integral is evaluated from ξh-1 to ξh.   Where the integrand is PhPh, Ph(dPh/dξ)ξ, or (dPh/dξ)(dPh/dξ)ξ, and where 1 < h < N, the integral is split in two, with one integral evaluated from ξh-1 to ξh, and the other integral evaluated from ξh to ξh+1. The two integrals are then summed.  Where the integrand is Ph+1Ph, Ph+1(dPh/dξ)ξ, or (dPh+1/dξ)(dPh/dξ)ξ, the integral is evaluated from ξh to ξh+1.   Where the integrand is PNPN, PN(dPN/dξ)ξ, or (dPN/dξ)(dPN/dξ)ξ, the integral is evaluated from ξN-1 to ξN. Equations B60 and B61, with h = N, describe PN and dPN/dξ, respectively.  Equations B60 and B61 give the functions used for Ph and dPh/dξ, respectively, in integrals evaluated from ξh-1 to ξh. Equations B62 and B63 give the functions used for Ph and dPh/dξ, respectively, in integrals evaluated from ξh to ξh+1.  
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Of the fifteen types of integrals in Equations B39* to B53*, nine (Equations B40* to B42*, B45* to B47*, and B50* to B52*) apply to 1 < h < N, so that each one is evaluated for [N - 2] different values of h. Of the remaining six types of integrals in Equations B39* to B53*, three (Equations B39*, B44*, and B49*) apply to h = 1, and three (Equations B43*, B48*, and B53*) apply to h = N, so that each one is evaluated for just one value of h.  Of the solutions to the fifteen types of integrals in Equations B39* to B53*, eleven (Equation B41* and Equations B44* to B53*) can be defined in terms of one or two of the other four (Equations B39*, B40*, B42* and B43*, each of which is a multiple of Δξh-/6 and Δξh+/6). For equally spaced points, Δξ1+ = ΔξN- = Δξh+ = Δξh- = Δξ for all h, in which case Equations B39* to B43* would be independent of ξ. Where Equations B40* to B42* are independent of ξ, each one can be evaluated just one time, and the result applied to all values of h.   Equations B39* to B53* are equivalent to the integrals obtained when Equation A26 in terms of t and ξ is solved for the case of (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0 at all ξ. (Details not shown). That equivalence is further evidence that the first approximate solution can be derived from the second.  Tests of different solutionsTests of different solutionsTests of different solutionsTests of different solutions     The integrals in the solution to the t- and ξ-dependent Lamm equation (Equation B21) have been replaced with their evaluations shown in Equations B39 to B53 or Equations B39* to B53*, and those expanded forms of the solution to the continuity equation for AUC have been used in finite-element simulations. Simulations of AUC based on the second approximate solution (using Equations B39 to B53) have been found to perform at least as well as simulations based on the first approximate solution (using Equations B39* to B53*). (Highly contrived results for comparison can be found in Section F: ξSection F: ξSection F: ξSection F: ξ----dependent functions to dependent functions to dependent functions to dependent functions to approximate Dapproximate Dapproximate Dapproximate Dk,ek,ek,ek,e    and σand σand σand σk,ek,ek,ek,e.) Additionally, finite-element simulations of sedimentation based on the first approximate solution to the t- and ξ-dependent Lamm equation have been found to perform at least as well as finite-element simulations based on the first approximate solution to the t- and r-dependent Lamm equation [Cox and Dale, 1981; Schuck et al., 1998]. 
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(Results not shown.)   First approximate solutionFirst approximate solutionFirst approximate solutionFirst approximate solution     To express σk and Dk in terms of pseudo-ξ-independent parameters, each one is initially approximated as a set of N scalar coefficients that can be a function of t but must be invariant with ξ. For σk, at all ξh, where 1 ≤ h ≤ N, those coefficients are §I,Â = §I ì aÂ, (B64) and for Dk, at all ξh, where 1 ≤ h ≤ N, those coefficients are ¤I,Â = ¤I ì aÂ. (B65)   When it temporarily becomes more convenient to work with sk and Dk instead of σk and Dk, sk is also initially approximated as a set of N scalar coefficients that can be a function of t but must be invariant with ξ. At all ξh, where 1 ≤ h ≤ N, those coefficients are  ¦I,Â = ¦I ì aÂ.   (B66)  Equations B64 to B66 define σk,h, Dk,h and sk,h as constants with respect to ξ, and in the first approximate solution, are used in place of Equations B10 to B12. The resulting first approximate solution to the Lamm equation can be written as 
R R R NI,ÂÉ �� }Â}Ì�a�½

�� − ¤I,ÂÉ �§I,ÂÉ � }Â �}Ì�a a�a�½
�� − � �}Â�a �}Ì�a a�a�½

�� � ∆�Ã
ÌWX

Ã
ÂWX

V
IWX

= R R R NI,ÂÊ �� }Â}Ì�a�½
��

Ã
ÌWX

Ã
ÂWX

V
IWX

+ ¤I,ÂÊ �§I,ÂÊ � }Â �}Ì�a a�a�½
�� − � �}Â�a �}Ì�a a�a�½

�� � ∆� . 
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(B67) 
As usual, a minus or plus subscript refers to time t or [t + Δt], respectively. Equation B67 of the first approximate solution is obtained by applying Equations B64 and B65 to Equation B21 of the second approximate solution in the case of (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0 at all ξ. Thus, when σk,h and Dk,h are used as they are in Equation B67, each σk,h should equal ξ-independent σk, each Dk,h should equal ξ-independent Dk and, given that (∂sk/∂ξ)t = 0 when (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0, each sk,h should equal ξ-independent sk. Furthermore, these conditions make it highly likely that (∂sk/∂t)ξ = 0 and (∂Dk/∂t)ξ = 0 in general, and that (∂σk/∂t)ξ = 0 at constant field. Therefore, sk,h and Dk,h are likely to be t-independent in general, and σk,h is likely to be t-independent at constant field. All such constraints are purposefully violated in the following treatment of the first approximate solution. 
As typically, but incorrectly, applied, the constants, σk,h, Dk,h and sk,h, of the first approximate solution are treated as if they were functions of solute concentration. Thus, σk,h, Dk,h and sk,h become pseudoconstants with respect to ξ. Truncated virial expansions are used to approximate the dependence of σk,h and Dk,h on the concentration, cq, of each explicitly included solute component, q. To evaluate these pseudo-ξ-independent constants indexed by h, prior to each time increment, Dk,h and σk,h are approximated by 

¤I,Â = ¤°I
Î
ÏÐ¥ ¥ Ñ¿,I,T �NT,Â¿�NT,ÂVTWX³¿WX

¥ ¥ ℎ¿,I,T �NT,Â¿�NT,ÂVTWX³¿WX Ò
ÓÔ  

 (B68)  and 
§I,Â = §°I

Î
ÏÐ¥ ¥ Õ¿,I,T �NT,Â¿�NT,ÂVTWX³¿WX

¥ ¥ Ñ¿,I,T �NT,Â¿�NT,ÂVTWX³¿WX Ò
ÓÔ , 

(B69)  respectively, where n is the number of solute components, D°k at all ξ equals Dk at ξh at time 
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t in the limit as c approaches 0, σ°k at all ξ equals σk at ξh at time t in the limit as c approaches 0, cq,h is the ξ-independent concentration coefficient of solute component q at time t or [t + Δt] (cq,h, at all ξ, equals cq at ξh, just as ck,h, at all ξ, equals ck at ξh in Equation B6), and where pb,k,q, yb,k,q and hb,k,q are the bth of up to an infinite number of coefficients of proportionality for the density increment, thermodynamic nonideality, and viscosity effects, respectively. By definition, ¥ ÕX,I,TVTWX , ¥ ÑX,I,TVTWX  and ¥ ℎX,I,TVTWX  are each equal to 1. (Each of the pb,k,q, yb,k,q and hb,k,q coefficients couples the concentration of component q to an effect on the transport of component k. See Section D for more details regarding these component-based virial expansions.)  Both σ°k and D°k are ξ-independent by definition. Furthermore, the first approximate solution cannot be applied to systems in which changes in solvent density cause (∂ρ0/∂ξ)t to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied to systems in which solute concentration gradients cause (∂ρ0/∂ξ)t to differ from zero.) As discussed in the definitions of D°k,j (Equation B22) and σ°k,j (Equation B23), the condition that ΔD°k,j/Δj = 0 and Δσ°k,j/Δj = 0 for all solute components can only apply to a system with an incompressible solvent, in which case, D°k,j and σ°k,j can be replaced with D°k, and σ°k, respectively. Hence, the use of D°k and σ°k in the first approximate solution.  As noted, when σk,h and Dk,h are used as they are in Equation B67, each σk,h should equal ξ-independent σk, and each Dk,h should equal ξ-independent Dk. Thus, the use of Equations B68 and B69 is incorrect, except where all coefficients of b(cq)b - 1 for b > 1, which is to say all pb,k,q, yb,k,q and hb,k,q for b > 1, equal zero, and where, as previously noted, the solvent is incompressible and (∂ρ/∂ξ)t = 0 at all ξ and t. (Compare the properties and uses of Equations B68 and B69, with those of Equations B22 and B23, respectively.)  PosPosPosPossible advantages to working in equisible advantages to working in equisible advantages to working in equisible advantages to working in equi----gravitationalgravitationalgravitationalgravitational----potential spacepotential spacepotential spacepotential space     There are two possible advantages of the finite-element solution to the t- and ξ-dependent Lamm equation: the resulting integrals have simpler solutions than the t- and r-dependent equivalent, making recalculation of the integral solutions less computationally costly; and 
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the element spacing, in terms of r, decreases in proportion to the increase in the gravitational potential from the innermost to the outermost point, with the result that, where Δξ is the same for all spatial increments between two adjacent points, simulated transport takes place over equi-gravitational-potential steps with the t- and ξ-dependent Lamm equation solution and may, therefore, be more computationally stable than simulated transport using the t- and r-dependent Lamm equation solution in the case of Δr being the same for all spatial increments between two adjacent points.  ReferencesReferencesReferencesReferences     [B1] Cox, D., and Dale, R. (1981) Simulation of Transport Experiments for Interacting Systems. In "Protein-Protein Interactions." (C. Frieden, and L. Nichol, editors.) pp. 173-211. John Wiley and Sons, New York.  [B2] Schuck, P., McPhee, C. E., and Howlett, G. J. (1998) Determination of sedimentation coefficients for small peptides. Biophys J. 74747474 466-474.   Section C: A solution to the tSection C: A solution to the tSection C: A solution to the tSection C: A solution to the t----    and ξand ξand ξand ξ----dependent Lamm equation in terms of speciesdependent Lamm equation in terms of speciesdependent Lamm equation in terms of speciesdependent Lamm equation in terms of species     In a completely proper application of irreversible thermodynamics, the summations in the equations for concentration, flow and continuity, and hence the summations in any solution to the Lamm equation, would be over solute components rather than solute species, and at a given spatial position (expressed as r or ξ) and time, it might be expected that the transport coefficients needed for each solute component, k, would be its weight-average (over all species of component k) sedimentation coefficient, (sk)w, and its gradient-average (over all species of component k) diffusion coefficient [Johnson et al., 1973], (Dk)G, the expectation being that (sk)w = sk and (Dk)G = Dk. To account for the t- and ξ-dependent changes in the concentrations of the individual species that sum to ck, in addition to the aforementioned transport coefficients, (sk)w and (Dk)G, the chemical equations that describe mass-action associations, dissociations or other reaction flows linking any of the species of 
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a solute component would be needed. (See Section G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle.) 
If the diffusion and sedimentation coefficients of a solute component’s individual species could be defined, (Dk)G and (sk)w could be calculated. (The diffusion coefficients and concentration gradients of a solute component’s individual species would be used to calculate (Dk)G, and the sedimentation coefficients and concentrations of a solute component’s individual species would be used to calculate (sk)w.) The reduced molar mass coefficients of a solute component’s individual species could then be defined in terms of the diffusion and sedimentation coefficients of a solute component’s individual species. Finally, on the basis of the above expectations and Equation A23, the relationship of σk to the reduced molar mass coefficients of a solute component’s individual species could be determined using σk = ω2(sk)w/(Dk)G. What follows is an approach to defining these transport coefficients for each solute component’s individual species. The transport coefficients obtained are then applied to the solution of the continuity equation expressed in terms of species. 
Letting nk represent the number of species that constitute solute component k, and indexing the species by e, 

¤I = (¤I)¯ = ¥ ¤I,í vwNI,íwξ xyV�íWX
¥ vwNI,íwξ xyV�íWX

 , 
(C1) 
and 

¤I§I = _`¦I = _`(¦I)� = _` ¥ ¦I,íNI,íV�íWX¥ NI,íV�íWX  = ¥ ¤I,í§I,íNI,íV�íWX¥ NI,íV�íWX =  (§I¤I)� , 
 (C2)  
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where ck,e is the concentration of species e of solute component k, Dk,e is the diffusion coefficient of species e of solute component k, σk,e is the reduced molar mass coefficient of species e of solute component k, sk,e is the sedimentation coefficient of species e of solute component k, σk,eDk,e is defined (by analogy with Equation A23) as equal to ω2sk,e, and (σkDk)w is the weight average of the product, σk,eDk,e, for all species of solute component k. The concentration of component k is equal to the sum of the concentrations of all species of solute component k. Thus, 
NI = R NI,í

V�
íWX  . 

(C3) 
The definitions above permit Equation A24 to be rewritten as 

[I = R [I,í
V�

íWX = R NI,í¤I,í �§I,í − vwrsNI,íwa xy� ¬2aV�
íWX = NI �_`(¦I)� − (¤I)¯ vwrsNIwa xy� ¬2a

= NI¤I �§I − vwrsNIwa xy� ¬2a , 
(C4) where Ik,e is the mass flow of species e of solute component k. A comparison of Equations A24 and C4 shows that, if Equation C4 is valid, (Dk)G = Dk and (sk)w = sk, and thus, 

§I = _`¦I¤I = _`(¦I)�(¤I)¯ = vwrsNIwξ xy îïï
ð ¥ ¤I,í§I,íNI,íV�íWX¥ ¤I,í vwNI,íwξ xyV�íWX

 ñòò
ó. 

(C5) 
Note that (Dk)G and (sk)w are averages for all species of a single solute component, k, while DG and sw (described in Section A) are averages for all solute components. (Equations A30 and C1 describe DG and (Dk)G, respectively. Equations A31 and C3 describe sw and (sk)w, respectively.) There is no simple relationship between σw and any average of the σk,e 
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coefficients. (See Equations A36 to A40, which show the relationships between σw, the σk coefficients, and the equilibrium value of ω2sw/DG.) 
The diffusion coefficients and concentration gradients of all solute species can now be used to calculate the overall gradient-average diffusion coefficient, 

¤¯ = ¥ vwNIwξ xy ¤IVIWX
¥ vwNIwξ xyVIWX = ¥ vwNIwξ xy (¤I)¯VIWX

¥ vwNIwξ xyVIWX =
¥ °vwNIwξ xy

¥ ¤I,í vwNI.íwξ xyV�íWX¥ vwNI.íwξ xyV�íWX ±VIWX
¥ vwNIwξ xyVIWX

= ¥ ¥ ¤I,í vwNI.íwξ xyV�íWXVIWX
¥ ¥ vwNI.íwξ xyV�íWXVIWX   

(C6) 
(see Equations A29 and C1). The sedimentation coefficients and concentrations of all solute species can now be used to calculate the overall weight-average sedimentation coefficient, which, multiplied by ω2, is 

_`¦� = _` ¥ NI¦IVIWX¥ NIVIWX = _` ¥ NI(¦I)�VIWX¥ NIVIWX = _` ¥ �NI ¥ ¦I,íNI,íV�íWX¥ NI,íV�íWX �VIWX ¥ NIVIWX
= _` ¥ ¥ ¦I,íNI,íV�íWXVIWX¥ ¥ NI,íV�íWXVIWX   

(C7)  
(see Equations A30 and C2). 
The reduced molar mass coefficients, concentrations and concentration gradients of all solute species are related to ω2sw/DG through 
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_`¦�¤¯ = (§¤)�¤¯ = ¥ NI(§I¤I)�VIWX¥ NIVIWX¤¯ = ¥ ¥ §I,í¤I,íNI,íV�íWXVIWX ¥ NIVIWX¤¯ = ¥ ¥ §I,í¤I,íNI,íV�íWXVIWX ¥ NIVIWX¥ ¥ ¤I,í vwNI.íwξ xyV�íWXVIWX ¥ vwNIwξ xyVIWX
= vwrsNwa xy ° ¥ ¥ §I,í¤I,íNI,íV�íWXVIWX¥ ¥ ¤I,í vwNI.íwξ xyV�íWXVIWX ±  

(C8)  
(see Equations A30, A32 and A40). 
A comparison of Equations A32 and C8 shows that 

¥ §I¤INIVIWX¥ ¤I vwNIwa xyVIWX = ¥ ¥ §I,í¤I,íNI,íV�íWXVIWX¥ ¥ ¤I,í vwNI.íwξ xyV�íWXVIWX  . 
 (C9)  Using Equation C5, Equation A40, which describes the concentration distribution of solute components at equilibrium in AUC, can be rewritten in terms of solute species as 

§� = ¥ §INIVIWX¥ NIVIWX =
¥ îïï

ðvwNIwξ xy
¥ ¤I,í§I,íNI,íV�íWX¥ ¤I,í vwNI,íwξ xyV�íWX ñòò

óVIWX
¥ NIVIWX = ¥ �¥ ¤I,í§I,íNI,íV�íWX ¤I �VIWX ¥ NIVIWX  , 

(C10) 
where, as in Equation C5, use has been made of the equivalence, assuming Equation C4 is valid, of Dk and (Dk)G. As a comparison of Equations A39 and C10 shows, at equilibrium, the numerator in each expression on the right-hand side of Equation C10 is equal to dc/dξ. 
Transport and reaction flowsTransport and reaction flowsTransport and reaction flowsTransport and reaction flows 
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If a mass flow changes the concentration of a component that chemically reacts with other components, a reaction flow may further change the concentrations of all participating components. (See reference to the Curie-Prigogine principle, below.) Thus, reaction flows describe how the local concentration of each component depends on the local concentrations of any reactively linked components. (The change in the concentration of a component, in turn, will tend to be the main factor determining how the concentrations of that component’s solute species change, at least in the absence of a mass flow.) The irreversible thermodynamic expressions for Dk, sk, and σk (Equations A21 to A23) describe how the transport coefficients change as local properties of the system (mainly solute component concentrations) change. These transport coefficients, then, pertain to the transport flows. If these transport coefficients were sufficiently sophisticated, they could be used to adequately treat any system on a component-by-component basis, so that the values of Dk and sk calculated for each solute component would be the appropriate average values, (Dk)G and (sk)w, respectively, again assuming Equation C4 is valid. Such an approach would accurately reflect the underlying irreversible thermodynamic theory, but at a cost of much effort to determine and evaluate the required functions. 
In the actual application of the finite-element method described here, the transport of each species of a multi-species solute component is, in fact, treated as if it were the transport of a single-species solute component. Thus, the transport of a solute component is handled species-by-species, and any reactive interaction (typically mass-action association/dissociation) between species is implemented as a distinct operation conducted prior to, and separately from, the set of transport operations for all species for a given, finite time increment. (See Section B: Steps taken to solve the tSection B: Steps taken to solve the tSection B: Steps taken to solve the tSection B: Steps taken to solve the t----    and ξand ξand ξand ξ----dependent dependent dependent dependent Lamm equationLamm equationLamm equationLamm equation.) The reaction forces and flows are scalars (tensorial order 0), while transport forces and flows are vectors (tensorial order 1), and the Curie-Prigogine principle states that there is no coupling between flows and forces of different tensorial order [de Groot and Mazur, 1962; Katchalsky and Curran, 1965]. As such, reaction flows are not expected to drive transport flows when the system is isotropic, and there are no phenomenological coefficients linking reaction forces to transport flows, or transport forces to reaction flows. (See Section G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle.) 
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Thus, treating the transport and reaction flows separately is theoretically sound. Furthermore, much that applies to solving the continuity equation in terms of components (Section B) can be applied to solving the continuity equation in terms of species (this section). 
Using the above parameters described in terms of solute species (Equations C1 to C10), the solution to the Lamm equation in terms of solute components, which is derived in Section B (Equations B1 to B33), can be revised to obtain a solution to the Lamm equation in terms of solute species. Near the end of this section (Consequences for average parametersConsequences for average parametersConsequences for average parametersConsequences for average parameters), evidence will be presented in support of the hypothesis that the finite-element solution to the t- and ξ-dependent Lamm equation in terms of solute components can be obtained from the finite-element solution to the t- and ξ-dependent Lamm equation in terms of solute species. To the extent that this hypothesis is valid, the practicality that led to the following solution in terms of species can be said to yield a solution that can be properly cast in terms of components. 
Steps taken to solve the tSteps taken to solve the tSteps taken to solve the tSteps taken to solve the t----    and ξand ξand ξand ξ----dependent Lamm equation in terms of solute speciesdependent Lamm equation in terms of solute speciesdependent Lamm equation in terms of solute speciesdependent Lamm equation in terms of solute species     As in Section B (Steps taken to solve the tSteps taken to solve the tSteps taken to solve the tSteps taken to solve the t----    and ξand ξand ξand ξ----dependent continuity equation for AUCdependent continuity equation for AUCdependent continuity equation for AUCdependent continuity equation for AUC), the following finite-element method for solving the t- and ξ-dependent continuity equation in terms of species requires a resort to discrete spatial elements and a finite time increment. Here, too, this method for solving the continuity equation further requires the flow of each solute species to be zero at the system boundaries, ξm and ξb. As the flow of each species is expected to meet this boundary condition in a properly enclosed AUC system, the finite-element solution shown can be applied to all species, with solute species treated explicitly, and the solvent component treated implicitly.  Using Equations C3 and C4, the continuity equation (Equation A26) is re-written in terms of species to yield 

R R vwNI,íw x�
V�

íWX
V

IWX = − R R �w¬2a[I,íwa �V�
íWX y

V
IWX .  
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(C11)  The solution begins with an integration that takes advantage of the boundary conditions to eliminate the partial derivatives with respect to ξ. To that end, the above form of the continuity equation is multiplied by H, which is an arbitrary function of ξ, and then integrated over the entire range of ξ. (Ultimately, H will be replaced by a set of N functions of ξ indexed by i, where 1 ≤ i ≤ N.) Thus, 
R R � vwNI,íw x� ¼�a�½

��
V�

íWX
V

IWX = − R R � �w¬2a[I,íwa �y ¼�a�½
��

V�
íWX

V
IWX .  

(C12) Integrating the right hand side of this equation by parts results in 
− R R � �w¬2a[I,íwa �y ¼�a�½

��
V�

íWX
V

IWX
= − ôR R¾¼(a¿)¬2a¿[I,í(a¿) − ¼(aÀ)¬2aÀ[I,í(aÀ)ÁV�

íWX
V

IWX
− R R � vw¼wa xy ¬2a[I,í�a�½

��
V�

íWX
V

IWX � ,  
(C13) where Ik,e(ξ) is Ik,e at ξ and H(ξ) is H at ξ. As the boundary conditions in AUC are Ik,e(ξm) = 0 and Ik,e(ξb) = 0, the preceding equation reduces to  

− R R � �w¬2a[I,íwa �y ¼�a�½
��

V�
íWX

V
IWX = R R � vw¼wa xy ¬2a[I,í�a�½

��
V�

íWX
V

IWX  .  
(C14)  Furthermore, as H is independent of t, (∂H/∂ξ)t = dH/dξ. Thus, 

R R � vw¼wa xy ¬2a[I,í�a�½
��

V�
íWX

V
IWX = R R � �¼�a ¬2a[I,í�a�½

��
V�

íWX
V

IWX ,  
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(C15) and Equation C12 becomes 
R R � vwNI,íw x� ¼�a�½

��
V�

íWX
V

IWX = R R � �¼�a ¬2a[I,í�a�½
��

V�
íWX

V
IWX .  

(C16) Next, ck,e is approximated as the sum of N products, each of which consists of a ξ-dependent function, Ph, multiplied by a corresponding ξ-independent coefficient, ck,e,h, which nevertheless remains a function of t. With both Ph and ck,e,h indexed by h, where 1 ≤ h ≤ N,  
N = R NI

V
IWX = R R NI,í

V�
íWX

V
IWX = R R R NI,í,Â}Â

Ã
ÂWX

V�
íWX

V
IWX .  

(C17) Each element, h, corresponds to a point, ξh. By convention, ξ1 = ξm and ξN = ξb. Despite the association of h with spatial parameters such as ξh, ck,e,h is independent of ξ, so that (∂ck,e,h/∂ξ)t = dck,e,h/dξ = 0 at all ξ. (Each ck,e,h is ξ-independent, and at all ξ is equal to the value of ck,e at ξh.) See Figures B1 through B6, which, for the case of equal spacing between adjacent ξh, show the consequences of using the hat function (also known as the triangular function) for each Ph, along with the corresponding set of ξ-independent solute species concentration coefficients, ck,e,h. (Equations B54 to B57 describe Δξ for the general case, in which Δξ can be different for different pairs of adjacent points. Equations B58 to B63 describe Ph and dPh/dξ for Ph in the form of the hat function, and the case of potentially variable Δξ.)  As ck,e,h is independent of ξ, (∂ck,e,h/∂t)ξ = dck,e,h/dt, so that 
R R R �NI,í,Â� � }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX = R R � �¼�a ¬2a[I,í�a�½
��

V�
íWX

V
IWX .  

(C18) Expanding Ik (Equation C4) as 
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[I = R [I,í

V�
íWX = R NI,í¤I,í �§I,í − vwrsNI,íwa xy� ¬2aV�

íWX = R �§I,íNI,í¤I,í − ¤I,í vwNI,íwa xy� ¬2aV�
íWX  , 

and re-writing each Ik,e in terms of the ξ-independent concentration coefficients and corresponding ξ-dependent functions results in 
[I = R [I,í

V�
íWX = R z§I,í¤I,í R NI,í,Â}Â

Ã
ÂWX − ¤I,í R NI,í,Â �}Â�a

Ã
ÂWX � ¬2aV�

íWX  . 
(C19) Using Equation C19 to substituting for Ik,e in Equation C18 yields 

R R R �NI,í,Â� � }Â¼�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

= 2 R R � �¼�a z§I,í¤I,í R NI,í,Â}Â
Ã

ÂWX − ¤I,í R NI,í,Â �}Â�a
Ã

ÂWX � a�a�½
��

V�
íWX

V
IWX ,  

which expands to 
R R R �NI,í,Â� � }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
= 2 R R � �¼�a z§I,í¤I,í R NI,í,Â}Â

Ã
ÂWX � a�a�½

��
V�

íWX
V

IWX
− 2 R R � �¼�a z¤I,í R NI,í,Â �}Â�a

Ã
ÂWX � a�a�½

��
V�

íWX
V

IWX ,  
and rearranges to 

R R R �NI,í,Â� � }Â¼�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

= 2 R R R NI,í,Â � §I,í¤I,í}Â �¼�a a�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

− 2 R R R NI,í,Â � ¤I,í �}Â�a �¼�a a�a�½
��

Ã
ÂWX

V�
íWX

V
IWX .  
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(C20)  The dependence of Dk (Equation A21) and σk (Equation A23) on the concentration, cq, of each explicitly included solute component, q, renders Dk,e and σk,e dependent on the concentration, cq,a, of each species, a, of each explicitly included solute component, q. This concentration dependence, in turn, makes Dk,e and σk,e ξ-dependent in all but special cases, such as t = 0, when all (∂cq,a/∂ξ)t = 0 at all ξ. (Where the solvent is compressible, once ω exceeds zero, (∂ρ0/∂ξ)t ≠ 0, in which case, in all likelihood, (∂cq,a/∂ξ)t will not equal zero at any position at any subsequent time.) In Section F (ξξξξ----dependent functions to approximate dependent functions to approximate dependent functions to approximate dependent functions to approximate DDDDk,ek,ek,ek,e    and σand σand σand σk,ek,ek,ek,e), the second approximate solution is compared with a first approximate solution that pertains to the case of (∂Dk,e/∂ξ)t = 0 and (∂σk,e/∂ξ)t = 0 at all ξ. The solutions of the integrals of first approximate solution were derived from those of the second approximate solution in Section B (The case of (The case of (The case of (The case of (∂∂∂∂σσσσkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 and (= 0 and (= 0 and (= 0 and (∂D∂D∂D∂Dkkkk////∂∂∂∂ξ)ξ)ξ)ξ)tttt    = 0 at all ξ= 0 at all ξ= 0 at all ξ= 0 at all ξ).  As it temporarily becomes more convenient to work with sk,e and Dk,e instead of σk,e and Dk,e, sk,e is approximated as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by a corresponding ξ-independent coefficient, sk,e,j, which nevertheless remains a function of t. With both Pj and sk,e,j indexed by j, where 1 ≤ j ≤ N,  
¦I,í = R ¦I,í,Å}Å

Ã
ÅWX  ,  

 (C21) where each sk,e,j at all ξ is equal to sk,e at ξj. The result expresses sk,e as separable ξ-independent and ξ-dependent terms.  To express Dk,e as separable ξ-independent and ξ-dependent terms, this transport coefficient is also approximated as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by a corresponding ξ-independent coefficient, Dk,e,j, which nevertheless remains a function of t. With both Pj and Dk,e,j indexed by j, where 1 ≤ j ≤ N, 
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¤I,í = R ¤I,í,Å}Å
Ã

ÅWX  , 
(C22)  where each Dk,e,j at all ξ is equal to Dk,e at ξj.  Equations C21 and C22 are combined to define σk,e in terms of separable ξ-independent and ξ-dependent terms, which results in the species analogue of Equation A23, 

§I,í = _`¦I,í¤I,í = _` ¥ ¦I,í,Å}ÅÃÅWX¥ ¤I,í,Å}ÅÃÅWX  . 
(C23)  While the same approach has been used to express ck,e, Dk,e and sk,e in terms of ξ-independent coefficients of ξ-dependent functions, those ξ-independent coefficients and ξ-dependent functions are indexed by h in the case of ck,e, but indexed by j in the case of Dk,e or sk,e. At any given time, then, the ξ-dependent functions used in the description of ck,e are expressed in terms of ξh, while the ξ-dependent functions used in the descriptions of Dk,e and sk,e are expressed in terms of ξj. To use these parameters together in the same solution of the continuity equation, at each time point, the set of all ξj is made equivalent to the set of all ξh.  Using ω2sk,e in place of σk,eDk,e (from a re-arrangement of Equation C23) results in 

R R R �NI,í,Â� � }Â¼�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

= 2_` R R R NI,í,Â � ¦I,í}Â �¼�a a�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

− 2 R R R NI,í,Â � ¤I,í �}Â�a �¼�a a�a�½
��

Ã
ÂWX

V�
íWX

V
IWX .  

(C24) Replacing sk,e with the expression in terms of sk,e,j, and replacing Dk,e with the expression in 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

71 

 

terms of Dk,e,j, yields 
R R R �NI,í,Â� � }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
= 2_` R R R NI,í,Â � R ¦I,í,Å}Å

Ã
ÅWX }Â �¼�a a�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
− 2 R R R NI,í,Â � R ¤I,í,Å}Å

Ã
ÅWX

�}Â�a �¼�a a�a�½
��

Ã
ÂWX

V�
íWX

V
IWX ,  

and permits the ξ-independent parameters, Dk,e,j and sk,e,j, to be factored out of the integrals. Thus, 
R R R �NI,í,Â� � }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
= 2_` R R R NI,í,Â R ¦I,í,Å �� }Å}Â �¼�a a�a�½

�� �Ã
ÅWX

Ã
ÂWX

V�
íWX

V
IWX

− 2 R R R NI,í,Â R ¤I,í,Å �� }Å �}Â�a �¼�a a�a�½
�� �Ã

ÅWX
Ã

ÂWX
V�

íWX
V

IWX .  
(C25) Letting  

§I,í,Å = _`¦I,í,Å¤I,í,Å  , 
(C26) where σk,e,j is ξ-independent by virtue of Dk,e,j and sk,e,j being ξ-independent, the solution can now be expressed, after some rearrangement, as 
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R R R Æ�NI,í,Â� � }Â¼�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

− 2NI,í,Â R ¤I,í,Å �§I,í,Å � }Å}Â �¼�a a�a�½
�� − � }Å �}Â�a �¼�a a�a�½

�� �Ã
ÅWX Ë = 0. 

 (C27)  At all ξ, each of the N scalar coefficients, σk,e,j (defined in Equation C26) is equal to σk,e at ξj. As a result of using Equation C26 in Equation C27, the product, Dk,eσk,e, has been expressed as the sum of N products, each consisting of a ξ-dependent function, Pj, multiplied by a ξ-independent coefficient, Dk,e,jσk,e,j, which nevertheless remains a function of t. Additionally, the coefficient Dk,e,jσk,e,j is itself the product of the previously defined coefficients, Dk,e,j and σk,e,j.  Dividing Equation C27 by 2, and expressing dck,e,h/dt as Δck,e,h/Δt, where Δck,e,h and Δt are finite increments, yields  
R R R Æ12 ∆NI,í,Â∆ � }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
− NI,í,Â R ¤I,í,Å �§I,í,Å � }Å}Â �¼�a a�a�½

�� − � }Å �}Â�a �¼�a a�a�½
�� �Ã

ÅWX Ë = 0.  
(C28) The difference between the unknown concentration, ck,e,h+ = ck,e,h at [t + Δt], and the known concentration, ck,e,h- = ck,e,h at t, is the change in concentration, Δck,e,h, during the time increment, Δt = [t + Δt] - t. Using Δck,e,h = ck,e,h+ - ck,e,h-, and multiplying by Δt, yields 
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R R R ÆNI,í,ÂÉ − NI,í,ÂÊ2 � }Â¼�a�½
��

Ã
ÂWX

V�
íWX

V
IWX

− NI,í,Â R ¤I,í,Å �§I,í,Å � }Å}Â �¼�a a�a�½
�� − � }Å �}Â�a �¼�a a�a�½

�� � ∆Ã
ÅWX Ë = 0.  

 (C29) The remaining ck,e,h term can be replaced with either ck,e,h- , which would yield the less stable explicit solution, or ck,e,h+, which would yield the more stable implicit solution. In the Crank-Nicholson approach [Schuck et al., 1998] used here, both substitutions are made, resulting in two forms of Equation C29. Additionally, σk,e,j+ and Dk,e,j+, which, respectively, represent σk,e,j and Dk,e,j at time [t + Δt], are used in conjunction with the explicit form of Equation C29, where ck,e,h is expressed in terms of ck,e,h+. Finally, σk,e,j- and Dk,e,j-, which, respectively, represent σk,e,j and Dk,e,j at time t, are used in conjunction with the implicit form of Equation C29, where ck,e,h is expressed in terms of ck,e,h-. The two resulting versions of Equation C29 are summed to yield, by virtue of the previous division by 2, their average. The average, like any sum of the two solutions, is considered stable, and is expected to permit the use of larger Δt values than either the explicit or implicit solution alone would.   Applying the Crank-Nicholson approach yields, after some rearrangement, 
R R R NI,í,ÂÉ Æ� }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
− R ¤I,í,ÅÉ �§I,í,ÅÉ � }Å}Â �¼�a a�a�½

�� − � }Å �}Â�a �¼�a a�a�½
�� � ∆Ã

ÅWX Ë
= R R R NI,í,ÂÊ Æ� }Â¼�a�½

��
Ã

ÂWX
V�

íWX
V

IWX
+ R ¤I,í,ÅÊ �§I,í,ÅÊ � }Å}Â �¼�a a�a�½

�� − � }Å �}Â�a �¼�a a�a�½
�� � ∆Ã

ÅWX Ë .  
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 (C30) As σk and Dk are functions of all ck (see Equations A21 to A23), and as each ck is time dependent (see Equation A26), σk and Dk are also time dependent. Thus, for the purpose of obtaining a general solution, σk,e,j- and Dk,e,j- must be expressed as functions of parameters equal to all ck,e,h- for which h = j, while σk,e,j+ and Dk,e,j+ must be expressed as functions of parameters equal to all ck,e,h+ for which h = j. General expressions of this sort are presented shortly. (See Evaluating the ξEvaluating the ξEvaluating the ξEvaluating the ξ----independent coefficients ofindependent coefficients ofindependent coefficients ofindependent coefficients of    the basis functions indexed by jthe basis functions indexed by jthe basis functions indexed by jthe basis functions indexed by j.)  At this point, there are n equations and nN unknown values of ck,e,h+. To obtain the nN equations needed to solve for all values of ck,e,h+, H is replaced by N functions, 
¼ = R }Ì

Ã
ÌWX  , 

(C31) where each Pi has the same functional form as each corresponding Ph. (For i = h, Pi = Ph.) Applying Equation C31, the set of equations describing the solution is given by 
R R R R NI,í,ÂÉ Æ� }Â}Ì�a�½

��
Ã

ÌWX
Ã

ÂWX
V�

íWX
V

IWX
− R ¤I,í,ÅÉ �§I,í,ÅÉ � }Å}Â �}Ì�a a�a�½

�� − � }Å �}Â�a �}Ì�a a�a�½
�� � ∆Ã

ÅWX Ë
= R R R R NI,í,ÂÊ Æ� }Â}Ì�a�½

��
Ã

ÌWX
Ã

ÂWX
V�

íWX
V

IWX
+ R ¤I,í,ÅÊ �§I,í,ÅÊ � }Å}Â �}Ì�a a�a�½

�� − � }Å �}Â�a �}Ì�a a�a�½
�� � ∆Ã

ÅWX Ë . 
(C32) The result is solved for ck,e,h+ using the process described below. (See Solving for cSolving for cSolving for cSolving for ck,e,h+k,e,h+k,e,h+k,e,h+.) Interactions between solute components are handled separately between time steps. (Also see Solving for cSolving for cSolving for cSolving for ck,e,h+k,e,h+k,e,h+k,e,h+.)  
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Evaluating the ξEvaluating the ξEvaluating the ξEvaluating the ξ----independent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by jindependent coefficients of the basis functions indexed by j     Truncated virial expansions are used to approximate the dependence of Dk,e,j-, Dk,e,j+, σk,e,j- and σk,e,j+ on the concentration of each explicitly included species of each explicitly included solute component. To evaluate the ξ-independent coefficients of ξ-dependent functions indexed by j (see Equations C21 and C22), prior to each time increment, Dk,e,j-, Dk,e,j+, σk,e,j- and σk,e,j+ are, to the extent possible, approximated by 
¤I,í,ÅÊ = ¤°I,í,ÅÊ

Î
ÏÐ¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
ÓÔ , 

 (C33-)  
¤I,í,ÅÉ = ¤°I,í,ÅÉ

Î
ÏÐ¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
ÓÔ , 

(C33+) 

§I,í,ÅÊ = _`¦I,í,ÅÊ¤I,í,ÅÊ = _`¦°I,í,ÅÊ¤°I,í,ÅÊ Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
ÓÔ

Î
Ð¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
Ô

= §°I,í,ÅÊ
Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
ÓÔ  

(C34-)  and 
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§I,í,ÅÉ = _`¦I,í,ÅÉ¤I,í,ÅÉ = _`¦°I,í,ÅÉ¤°I,í,ÅÉ Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
ÓÔ

Î
Ð¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
Ô

= §°I,í,ÅÉ
Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
ÓÔ , 

(C34+) respectively, where n is the number of solute components, nq is the number of species that constitute solute component q, D°k,e,j- at all ξ equals Dk,e at ξj at time t in the limit as c approaches 0, D°k,e,j+ at all ξ equals Dk,e at ξj at time [t + Δt] in the limit as c approaches 0, σ°k,e,j- at all ξ equals σk,e at ξj at time t in the limit as c approaches 0, σ°k,e,j+ at all ξ equals σk,e at ξj at time [t + Δt] in the limit as c approaches 0, s°k,e,j- at all ξ equals sk,e at ξj at time t in the limit as c approaches 0, s°k,e,j+ at all ξ equals sk,e at ξj at time [t + Δt] in the limit as c approaches 0, cq,a,j- is the ξ-independent concentration coefficient of species a of solute component q at time t (at time t, cq,a,j-, at all ξ, equals cq,a at ξj, just as ck,e,h, at all ξ, equals ck,e at ξh in Equation C17), cq,a,j+ is the ξ-independent concentration coefficient of species a of solute component q at time [t + Δt] (at time [t + Δt], cq,a,j+, at all ξ, equals cq,a at ξj, just as ck,e,h, at all ξ, equals ck,e at ξh in Equation C17), and where pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a are the bth of up to an infinite number of coefficients of proportionality for the density increment, thermodynamic nonideality, and viscosity effects, respectively. By definition, ¥ ¥ ÕX,I,í,T,õV�õWXVTWX , ¥ ¥ ÑX,I,í,T,õV�õWXVTWX  and ¥ ¥ ℎX,I,í,T,õV�õWXVTWX  are each equal to 1. Each of the pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a coefficients couples the concentration of species a of component q to an effect on the transport of species e of component k. (See Section D for the component-based equivalents of these virial expansions.)  With ∓ representing either – or +, Equations N23∓ and N24∓ can be used in place of 
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Equations C33∓ and C34∓, respectively. Henceforth, cq,a is used to denote the concentration of species a of solute component q at either time t or time [t + Δt].  Individually, the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality pb,k,e,q,a yields the bth term for the contribution of cq,a to the density increment of the system as it affects the transport of species e of component k, the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality yb,k,e,q,a yields the bth term for the contribution of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e of component k, and the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality hb,k,e,q,a yields the bth term for the contribution of cq,a to the viscosity of the system as it affects the transport of species e of component k, where b(cq,a)b - 1 = d(cq,a)b/dcq,a.  Collectively, the sum of products given by ¥ ¥ Õ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the density increment of the system as it affects the transport of species e of component k, the sum of products given by ¥ ¥ Ñ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e of component k, and the sum of products given by ¥ ¥ ℎ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the viscosity of the system as it affects the transport of species e of component k.  Henceforth, σk,e,j, Dk,e,j and sk,e,j are used to denote the ξ-independent transport coefficients at either time t or time [t + Δt], and σ°k,e,j, D°k,e,j and s°k,e,j are used to denote the ξ-independent transport coefficients at either time t or time [t + Δt] in the limit at c approaches zero.  By definition, σ°k,e,j, D°k,e,j and s°k,e,j, are ξ-independent, and for a given t-independent field strength, may also be t-independent. In the case of solvent compressibility however, the expectation is that Δσ°k,e,j/Δj ≠ 0 and ΔD°k,e,j/Δj ≠ 0, from which it follows that Δs°k,e,j/Δj ≠ 0. The condition that, for all solute species, Δσ°k,e,j/Δj = 0 and ΔD°k,e,j/Δj = 0, from which it 
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would follow that Δs°k,e,j/Δj = 0, can only apply to a system with an incompressible solvent, in which case, σ°k,e,j, D°k,e,j and s°k,e,j can be replaced with their respective, system-wide constants, σ°k,e, D°k,e and s°k,e. (In writing Equations C33 and C34, it was assumed that Δpb,k,e,q,a/Δj = 0, Δyb,k,e,q,a/Δj = 0 and Δhb,k,e,q,a/Δj = 0 for any given pair of species e and a of their respective components k and q, even in the case of solvent compressibility. If required to deal adequately with the case of solvent compressibility, pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a can be replaced with their respective j- and t-dependent coefficients, which would be pb,k,e,q,a,j-, yb,k,e,q,a,j- and hb,k,e,q,a,j- at time t, and would be pb,k,e,q,a,j+, yb,k,e,q,a,j+ and hb,k,e,q,a,j+ at time [t + Δt], where, denoting a coefficient at either time by dropping the – or + suffix, Δpb,k,e,q,a,j/Δj ≠ 0, Δyb,k,e,q,a,j/Δj ≠ 0 and Δhb,k,e,q,a,j/Δj ≠ 0 for any given pair of species e and a of their respective components k and q.)  To avoid quadratic and higher-order terms in cq,a,j- or cq,a,j+, along with other complicated terms arising from the presence of a truncated virial expansion in the denominators of σk,e,j and Dk,e,j in Equations C33 and C34, no effort is made, initially, to solve Equation C32 as written. Instead, Equation C32 is solved as if σk,e,j+ and Dk,e,j+ were independent of all cq,a,j+, and as if σk,e,j- and Dk,e,j- were independent of all cq,a,j-. Furthermore, because cq,a,j+ values are not known prior to their use in σk,e,j+ and Dk,e,j+, σk,e,j- and Dk,e,j- are used in place of σk,e,j+ and Dk,e,j+, respectively. The resulting solution is that referred to as the second approximate solution. (As previously mentioned, the first approximate solution that pertains to the case of (∂Dk,e/∂ξ)t = 0 and (∂σk,e/∂ξ)t = 0 at all ξ will be derived from the second approximate solution.) The discussion of this issue is continued following Equation C35.  Equations C33 and C34 use a set of power series of each solute species concentration to describe the thermodynamic nonideality, density and viscosity of the solution. For solutions that are too concentrated to permit the use of highly truncated virial expansions in the description of parameters such as Dk,e, σk,e and sk,e, additional terms from the infinite series can be retained. (See Section D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from van    't Hoff behaviour and 't Hoff behaviour and 't Hoff behaviour and 't Hoff behaviour and other virial expansionsother virial expansionsother virial expansionsother virial expansions. The expressions shown in Section D are based on a component-by-component description of the system, but by extension, corresponding expressions based on a species-by-species description of the system can be obtained.) It is, however, incorrect 
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to treat σk,e,j, Dk,e,j and sk,e,j as if they were functions of any terms involving solute concentrations in the second approximate solution, unless that solution is applied iteratively within each time increment. The general solution presented in Section J (Form of Form of Form of Form of the general solution from Equation C32the general solution from Equation C32the general solution from Equation C32the general solution from Equation C32) does apply the second approximate solution iteratively, and thus permits the concentration dependence of σk,e,j, Dk,e,j and sk,e,j at times t and [t + Δt] to be treated correctly.  Solving for cSolving for cSolving for cSolving for ck,e,h+k,e,h+k,e,h+k,e,h+     There are now three sets of space-dependent, time-independent basis functions (the set of all Ph, Pi and Pj), and there are N functions per set of such basis functions (1 ≤ h ≤ N, 1 ≤ i ≤ N, and 1 ≤ j ≤ N). For each species e of solute component k, at either time t or [t + Δt]: there are N space-independent, time-dependent, concentration coefficients, ck,e,h; there are N space-independent, time-dependent, diffusion coefficients, Dk,e,j; and there are N space-independent, time-dependent, sedimentation coefficients, sk,e,j, which are related to the N space-independent, time-dependent, reduced molar mass coefficients through ω2sk,e,j = Dk,e,jσk,e,j. For the case of each Ph, Pi and Pj being a hat function (as described by Equations B58 to B63), for each species e of solute component k, at either time t or [t + Δt]: each product, ck,e,hPh, is maximal at spatial element h, and is zero below spatial element [h – 1] or above spatial element [h + 1]; while each of the products, Dk,e,jPj and Dk,e,jσk,e,jPj, is maximal at spatial element j, and is zero below spatial element [j – 1] or above spatial element [j + 1].  Let 
ÙI,í,Â,ÌÉ = � }Â}Ì�a�½

�� − R ¤I,í,ÅÉ �§I,í,ÅÉ � }Å}Â �}Ì�a a�a�½
�� − � }Å �}Â�a �}Ì�a a�a�½

�� �Ã
ÅWX ∆  

and 
ÙI,í,Â,ÌÊ = � }Â}Ì�a�½

�� + R ¤I,í,ÅÊ �§I,í,ÅÊ � }Å}Â �}Ì�a a�a�½
�� − � }Å �}Â�a �}Ì�a a�a�½

�� �Ã
ÅWX ∆ . 

(C35) 
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Equations B33 and B34 are used to calculate Dk,e,j and σk,e,j, respectively. Despite their dependence on all cq,a,j+, for each iteration (see Section J) of the second approximate solution, σk,e,j+ and Dk,e,j+ are treated as if they were independent of all ck,e,j+, and in the first iteration of any given time increment, σk,e,j+ and Dk,e,j+ are replaced with σk,e,j- and Dk,e,j-, respectively, all of which permits the set of solutions to be written as 
R R R R NI,í,ÂÉÙI,í,Â,ÌÉ

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX = R R R R NI,í,ÂÊÙI,í,Â,ÌÊ

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX  , 

(C36) where each Fk,e,h,i+ is treated as independent of all ck,e,j+. In the second approximate solution, it is permissible to treat Fk,e,h,i-, σk,e,j- and Dk,e,j- as dependent of all cq,a,j-. In the general solution (Section J), the dependence of Fk,e,h,i+, σk,e,j+ and Dk,e,j+ on all cq,a,j+ is repeatedly approximated, with the errors in those approximations approaching zero with a sufficient number of iterations.  Letting 
ÚI,í,ÌÊ = R NI,í,ÂÊÙI,í,Â,ÌÊ

Ã
ÂWX   

then results in 
R R R ÚI,í,ÌÊ

Ã
ÌWX

V�
íWX

V
IWX = R R R R NI,í,ÂÉÙI,í,Â,ÌÉ

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX . 

(C37)  As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Ph and Pi results in most of the terms indexed by i and h being zero: Fk,e,h,1 + = 0 and Fk,e,h,1- = 0 for h > 2;  Fk,e,h,N+ = 0 and Fk,e,h,N- = 0 for h < [N - 1]; and  Fk,e,h,[1 < i < N]+ = 0 and Fk,e,h,[1 < i < N]- = 0 for [i – 2] < h < [i + 2].  Consequently, 
R R ÚI,í,XÊ

V�
íWX

V
IWX = R R�NI,í,XÉÙI,í,X,XÉ + NI,í,`ÉÙI,í,`,XÉ�V�

íWX
V

IWX  , 
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R R öI,í,ÌÊ

V�
íWX

V
IWX = R R�NI,í,[ÌÊX]ÉÙI,í,[ÌÊX],ÌÉ + NI,í,ÌÉÙI,í,Ì,ÌÉ + NI,í,[ÌÉX]ÉÙI,í,[ÌÉX],ÌÉ�V�

íWX
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 for 1 < i < N, and 

R R ÚI,í,ÃÊ
V�

íWX
V

IWX = R R�NI,í,[ÃÊX]ÉÙI,í,[ÃÊX],ÃÉ + NI,í,ÃÉÙI,í,Ã,ÃÉ�V�
íWX

V
IWX  . 

 (C38) Equating corresponding terms indexed by e results in ÚI,í,XÊ = NI,í,XÉÙI,í,X,XÉ + NI,í,`ÉÙI,í,`,XÉ ,  ÚI,í,ÌÊ = NI,í,[ÌÊX]ÉÙI,í,[ÌÊX],ÌÉ + NI,í,ÌÉÙI,í,Ì,ÌÉ + NI,í,[ÌÉX]ÉÙI,í,[ÌÉX],ÌÉ  for 1 < i < N, and ÚI,í,ÃÊ = NI,í,[ÃÊX]ÉÙI,í,[ÃÊX],ÃÉ + NI,í,ÃÉÙI,í,Ã,ÃÉ . (C39) The equalities in Equation C39 are permissible by virtue of the Curie-Prigogine principle. (See Section G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle.) In the case here, where e is a solute species, it is possible for (∂ck,e/∂t)ξ and -(∂[2ξ]0.5Ik,e/∂ξ)t to differ. This would appear to invalidate the step of equating each Zk,e,i- to the sum over all h of ck,e,h+Fk,e,h,i+. As mentioned with respect to Equations B26 to B28, for the case of a solute component, k, (∂ck/∂t)ξ does equal -(∂[2ξ]0.5Ik/∂ξ)t, which makes each Zk,i- equal the sum over all h of ck,h+Fk,h,i+ in those equations. Therefore,  
ÚI,XÊ = R ÚI,í,XÊ

V�
íWX = R�NI,í,XÉÙI,í,X,XÉ + NI,í,`ÉÙI,í,`,XÉ�V�
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for 1 < i < N, and 
ÚI,ÃÊ = R ÚI,í,ÃÊ

V�
íWX = R�NI,í,[ÃÊX]ÉÙI,í,[ÃÊX],ÃÉ + NI,í,ÃÉÙI,í,Ã,ÃÉ�V�

íWX   
 (C40) are valid equations. The fact that there are no phenomenological coefficients linking reaction forces to transport flows, or transport forces to reaction flows, permits the transport and reaction flows to be dealt with separately, however. Furthermore, the reaction flow is the sole source of the potential inequality between (∂ck,e/∂t)ξ and -(∂[2ξ]0.5Ik,e/∂ξ)t. Thus, when the reaction flow is handled separately, the transport flow can be handled as it would be for a solute component. As reaction flows are, in fact, handled separately from transport flows in this method, it is valid to equate each Zk,e,i- to the sum over all h of ck,e,i+Fk,e,h,i+ (as shown in Equation C39), which is the approach taken to obtain a solution here.   Equations C74 to C75 show the fully expanded forms of Equation C39.  Equation C39 permits the continuity equation to be solved species-by-species and component-by-component. For each species of a given component, the solution proceeds one concentration coefficient at a time. Solving first for ck,e,1+ yields NI,í,XÉ = ÜI,í,X − UI,í,XNI,í,`É , where  

ÜI,í,X = ÚI,í,XÊÙI,í,X,XÉ  
and  

UI,í,X = ÙI,í,`,XÉÙI,í,X,XÉ . 
(C41) For i < N, the solution for each subsequent ck,e,i+, in ascending order from 2 ≤ i < N, takes 
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the form of  NI,í,ÌÉ = ÜI,í,Ì − UI,í,ÌNI,í,[ÌÉX]É , where  
ÜI,í,Ì = ÚI,í,ÌÊ − ÜI,í,[ÌÊX]ÙI,í,[ÌÊX],ÌÉÙI,í,Ì,ÌÉ − UI,í,[ÌÊX]ÙI,í,[ÌÊX],ÌÉ  

and  
UI,í,Ì = ÙI,í,[ÌÉX],ÌÉÙI,í,Ì,ÌÉ − UI,í,[ÌÊX]ÙI,í,[ÌÊX],ÌÉ . 

(C42) At i = N, the solution for ck,e,N+ is obtained. In terms of ck,e,[N-1]+, the solution for ck,e,N+ is  NI,í,ÃÉ = ÜI,í,Ã − UI,í,ÃNI,í,[ÃÊX]É , where  
ÜI,í,Ã = ÚI,í,ÃÊÙI,í,Ã,ÃÉ  

and  
UI,í,Ã = ÙI,í,[ÃÊX],ÃÉÙI,í,Ã,ÃÉ  . 

(C43)  The solution for ck,e,[N-1]+ can now be substituted into the solution for ck,e,N+ to obtain  NI,í,ÃÉ = ÜI,í,Ã − UI,í,Ã�ÜI,í,[ÃÊX] − UI,í,[ÃÊX]NI,í,ÃÉ� , (C44) which, solved for ck,e,N+, is  
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NI,í,ÃÉ = ÜI,í,Ã − UI,í,ÃÜI,í,[ÃÊX]1 − UI,í,ÃUI,í,[ÃÊX]  , 
(C45a) alternative expressions of which are  

NI,í,ÃÉ = ÜI,í,ÃÙI,í,Ã,ÃÉ − ÙI,í,[ÃÊX],ÃÉÜI,í,[ÃÊX]ÙI,í,Ã,ÃÉ − ÙI,í,[ÃÊX],ÃÉUI,í,[ÃÊX]   
(C45b) and 

NI,í,ÃÉ = ÚI,í,ÃÊ − ÜI,í,[ÃÊX]ÙI,í,[ÃÊX],ÃÉÙI,í,Ã,ÃÉ − UI,í,[ÃÊX]ÙI,í,[ÃÊX],ÃÉ . 
 (C45c)   The above solution for ck,e,N+ does not require knowledge of ck,e,[N-1]+ or any other unknowns. This solution for ck,e,N+ can now be used, therefore, to solve the previously obtained expression for ck,e,[N-1]+ in terms of ck,e,N+ and other known parameters. Subsequently, using ck,[N-1]+, the previously obtained expression for ck,e,[N-2]+ can be solved in terms of ck,e,[N-1]+ and other known parameters. Thus, once ck,e,N+ is known, each preceding ck,e,i+ is calculated in descending order from i = [N - 1] to i = 2 using Equation C42 until, upon reaching i = 1, ck,e,1+ is calculated using Equation C41, at which point, the entire array of ck,e,i+ values has been determined. For i = h, ck,e,i+ = ck,e,h+, so that the array of ck,e,i+ values obtained equals the array of ck,e,h+ values sought.  This process is carried out for each species, e, of each solute component, k, at each addition of a time increment. These new ck,e,h+ values are then used as the next ck,e,h- values after the addition of the next time increment, and the process is repeated until the desired time point is reached, at least in a noniterative application of the second approximate solution. (The general solution presented in Section J (Form of the general solution from EquationForm of the general solution from EquationForm of the general solution from EquationForm of the general solution from Equation    C32C32C32C32) applies the second approximate solution iteratively, with the result that ck,e,h+ is repeatedly recalculated within each time increment until a convergence criterion (Equation J6) is met, 
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or a maximum number of iterations is reached.)  It has been found that the process is made more robust by first calculating all ck,e,h+ in the forward direction starting from ck,e,1+, then recalculating all ck,e,h+ in reverse order (starting from ck,e,N+), and averaging the results. The calculation of all ck,e,h+ in reverse order is implemented by obtaining a solution to the t- and ξ-dependent Lamm equation with the set of all ξh reversed, so that ξ1 = ξb and ξN = ξm. The solution obtained is backwards in the sense that ck,e,1+ at all ξ is equal to the value of ck,e at ξb, while ck,e,N+ at all ξ is equal to the value of ck,e at ξm. In general, ξh, ck,e,h+, ck,e,h-, Dk,e,j+, σk,e,j+, Dk,e,j- and σk,e,j-, of the backwards solution are equal to ξ[N-h+1], ck,e,[N-h+1]+, ck,e,[N-h+1]-, Dk,e,[N-j+1]+, σk,e,[N-j+1]+, Dk,e,[N-j+1]- and σk,e,[N-j+1]-, respectively, of the forward solution, which is the solution described above for the original orientation. Solving for ck,e,h+ using the backwards solution then proceeds as described for the forward solution. Averaging is weighted toward the starting point of each solution, were artefacts appear to be minimal, so that, subscripting all concentration and spatial parameters by h as that index applies to the forward solution, the average value of ck,e,h+ is (ck,e,h+)avg = [(ξh - ξm)(ck,e,h+)R + (ξb - ξh)(ck,e,h+)F]/(ξb - ξm), where (ck,e,h+)F and (ck,e,h+)R are the values of ck,e,h+ obtained from the forward and backwards solutions, respectively.  For the remainder of the solution, Equations B34 to B63 apply as written, except that the case of (∂σk/∂ξ)t = 0 and (∂Dk/∂ξ)t = 0 at all ξ is replaced with the case of (∂σk,e/∂ξ)t = 0 and (∂Dk,e/∂ξ)t = 0 at all ξ, which is covered in Section F (ξξξξ----dependent functions to dependent functions to dependent functions to dependent functions to approximate Dapproximate Dapproximate Dapproximate Dk,ek,ek,ek,e    and σand σand σand σk,ek,ek,ek,e).  Consequences for average parametersConsequences for average parametersConsequences for average parametersConsequences for average parameters        ExaminExaminExaminExamining whether (Fing whether (Fing whether (Fing whether (Fk,h,i+k,h,i+k,h,i+k,h,i+))))wwww    = F= F= F= Fk,h,i+k,h,i+k,h,i+k,h,i+    and (Fand (Fand (Fand (Fk,h,ik,h,ik,h,ik,h,i----))))wwww    = F= F= F= Fk,h,ik,h,ik,h,ik,h,i----     Given that 
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(C46) (see Equation C36), weight averages of Fk,e,h,i+ and Fk,e,h,i- can be calculated for all species of a given solute component. Averaging the terms indexed by e in Equation C46 results in 
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(C47) which yields 
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(C48) where (Fk,h,i+)w and (Fk,h,i-)w are the weight-average values of Fk,e,h,i+ and Fk,e,h,i-, respectively, for all species e of solute component k. Using Equation C35 to express Fk,e,h,i+ and Fk,e,h,i- in expanded form results, after some re-arrangement, in NI,ÂÉ�ÙI,Â,ÌÉ��

= NI,ÂÉ Æ� }Â}Ì�a�½
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(C49) and 
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(C50) where 
¶¾¤I,ÅÊ§I,ÅÊÁÂ·� = ¥ NI,í,ÂÊV�íWX ¤I,í,ÅÊ§I,í,ÅÊ¥ NI,í,ÂÊV�íWX  , 

(C51) 
¶¾¤I,ÅÊÁÂ·� = ¥ NI,í,ÂÊV�íWX ¤I,í,ÅÊ¥ NI,í,ÂÊV�íWX  , 

(C52) 
¶¾¤I,ÅÉ§I,ÅÉÁÂ·� = ¥ NI,í,ÂÉV�íWX ¤I,í,ÅÉ§I,í,ÅÉ¥ NI,í,ÂÉV�íWX   

(C53) and 
¶¾¤I,ÅÉÁÂ·� = ¥ NI,í,ÂÉV�íWX ¤I,í,ÅÉ¥ NI,í,ÂÉV�íWX  . 

(C54) Equations C51 and C52, respectively, show that ([σk,j-Dk,j-]h)w and ([Dk,j-]h)w are ck,e,h--weighted averages of all σk,e,j-Dk,e,j- and Dk,e,j-, respectively, of component k. Equations C53 and C54, respectively, show that ([σk,j+Dk,j+]h)w and ([Dk,j+]h)w are ck,e,h+-weighted averages of all σk,e,j+Dk,e,j+ and Dk,e,j+, respectively, of component k. Based on the gradient average, (Dk)G, obtained in Equation C1, however, gradient averages of Dk,e,j- and Dk,e,j+ might have been expected in place of the weight averages obtained in Equations C52 and C54, respectively. (Equation C1 yields one of the averages, (Dk)G, required to express Ik in terms 
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of component parameters in Equation C4. Equation C2 yields the other, which can be expressed as (σkDk)w.)   In Equations C52 and C54 , the occurrence of weight averages in place of gradient averages is due to there being no derivatives of ck,e,h- and ck,e,h+ with respect to ξ in Equation C36 (as expanded using Equation C35), because ck,e,h- and ck,e,h+ are ξ-independent. Instead, the partial derivatives of ck,e and ck with respect to ξ in Equation C4 give rise to ordinary derivatives of Ph with respect to ξ in Equations C35, B24 and anyplace else where the continuity equation has been solved by separation of variables and integration with respect to ξ. The situation is akin to Equations A40 and A41, where DG approaches Dw in the limit as t approaches infinity at zero field, at which point, the concentration of each component becomes ξ-independent and thus indistinguishable from ck,h- and ck,h+.   As noted where Equation C38 is obtained from Equation C37, and as shown in the next section, for j < [h - 1] or j > [h + 1], the integrals in the summations indexed by j are equal to zero. As ([σk,j-Dk,j-]h)w, ([Dk,j-]h)w, ([σk,j+Dk,j+]h)w and ([Dk,j+]h)w are multiplied by such integrals, only ([σk,j-Dk,j-]h)w and ([Dk,j-]h)w for which [h - 1] ≤ j ≤ [h + 1] contribute to (Fk,h,i-)w, and only ([σk,j+Dk,j+]h)w and ([Dk,j+]h)w for which [h - 1] ≤ j ≤ [h + 1] contribute to (Fk,h,i+)w.  The transport coefficients associated with the left-hand (Fk,e,h,i+) side of Equation C47 are Dk,e,j+σk,e,j+ and Dk,e,j+, while the transport coefficients associated with the right-hand (Fk,e,h,i-) side of Equation C47 are Dk,e,j-σk,e,j- and Dk,e,j-. Thus, as described by Equations C49 to C54, Dk,e,j+σk,e,j+ and Dk,e,j+ are averaged with respect to ck,e,h+ on the left-hand side of Equations C47 and C48, while Dk,e,j-σk,e,j- and Dk,e,j- are averaged with respect to ck,e,h- on the right-hand side of Equations C47 and C48. As discussed with respect to Equations C32, C33 and C34, in the second approximate solution used initially, Dk,e,j+σk,e,j+ and Dk,e,j+ are replaced, respectively, with Dk,e,j-σk,e,j- and Dk,e,j-. Hence, in the initial iteration within a given time increment, (Fk,h,i+)w, the average obtained for the [t + Δt] part of the second approximate solution, would be incorrect. Within a given time increment, the correct value of (Fk,h,i+)w would be obtained by the iterative approach of the general solution (Section J), 
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but only after ck,e,h+ had ceased to change significantly with continued iterations of the second approximate solution.   Using Equations C49 and C50, Equation C48 can now be written as 
R R R NI,ÂÉ Æ� }Â}Ì�a�½
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�� ø ∆ Ë . 
(C55) This equation corresponds to Equation B21, which is the solution to the continuity equation with respect to components. If 
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(C56) and if 
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(C57) then Equations B21 and C55 are identical, in which case, (Fk,h,i+)w = Fk,h,i+, (Fk,h,i-)w = Fk,h,i- and σk,j-Dk,j-, Dk,j-, σk,j+Dk,j+ and Dk,j+, respectively, of Equation B21 equal ([σk,j-Dk,j-]h)w, ([Dk,j-]h)w, ([σk,j+Dk,j+]h)w and ([Dk,j+]h)w, respectively, of Equation C55. The equivalence of Equations B21 and C55 would indicate that the solution in terms of components can be derived from the solution in terms of species. The question of whether Equations B21 and C55 are identical is revisited after calculating the weight averages of Fk,h,i+ and Fk,h,i- for all solute components.  DefiningDefiningDefiningDefining    (F(F(F(Fh,i+h,i+h,i+h,i+))))wwww    = F= F= F= Fh,i+h,i+h,i+h,i+    and (Fand (Fand (Fand (Fh,ih,ih,ih,i----))))wwww    = F= F= F= Fh,ih,ih,ih,i----  Given that 
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(C58) (see Equation C48), weight averages of Fk,h,i+ and Fk,h,i- can be calculated for all solute components. First, however, it is useful to define the total solute concentration before and after the time increment as c+ and c-, respectively. Next, the sums of ck,h+ and ck,h- over all solute components are defined as ch+ and ch-, respectively, through 
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and  
NÊ = R NÂÊ}Â
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(C59)  respectively. (Each ch, either as ch+ or ch-, is ξ-independent, and at all ξ is equal to the value of c at ξh. Equation B6 describes ck,h and Ph.) Penultimately, Equation C58 and C59 are used to obtain 
R R ùR NI,ÂÉ

V
IWX Ë ¥ NI,ÂÉ�ÙI,Â,ÌÉ��VIWX¥ NI,ÂÉVIWX

Ã
ÂWX

Ã
ÌWX = R R ùR NI,ÂÊ

V
IWX Ë ¥ NI,ÂÊ�ÙI,Â,ÌÊ��V�íWX¥ NI,ÂÊVIWX

Ã
ÂWX

Ã
ÌWX  , 

 which, finally, yields 
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(C60) where (Fh,i+)w and (Fh,i-)w are the weight-average values of Fk,h,i+ and Fk,h,i-, respectively, for all solute components.  In the general solution (Section J) in terms of components, Dk,jσk,j+ and Dk,j+ are the transport coefficients associated with the left-hand side of Equation C60 (expressed in terms of Fk,h,i+ on a component basis, or (Fh,i+)w on a weight-average basis), while Dk,j-σk,j- and Dk,j- are the transport coefficients associated with the right-hand side of Equation C60 (expressed in terms of Fk,h,i- on a component basis, or (Fh,i-)w on a weight-average basis). Thus, in the general solution in terms of components, Dk,j+σk,j+ and Dk,j+ are averaged with respect to ck,h+ on the left-hand side of Equation C60, while Dk,j-σk,j- and Dk,j- are averaged with respect to ck,h- on the right-hand side of Equation C60. As discussed with respect to Equations B21, B22 and B23, in the second approximate solution used initially, Dk,j+σk,j+ and Dk,j+ are replaced, respectively, with Dk,j-σk,j- and Dk,j-. Hence, in the initial iteration within a given time increment, the average obtained for the [t + Δt] part of the second approximate solution, (Fh,i+)w, would be incorrect. Within a given time 
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increment, the correct value of (Fh,i+)w would be obtained by the iterative approach of the general solution (Section J), but only after ck,h+ had ceased to change significantly with continued iterations of the second approximate solution.  Using Equation B24 to express Fk,h,i+ and Fk,h,i- in expanded form results, after some re-arrangement, in 
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(C61) and 
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(C62) where 
¶¾¤ÅÊ§ÅÊÁÂ·� = ¥ NI,ÂÊV�íWX ¤I,ÅÊ§I,ÅÊ¥ NI,ÂÊV�íWX  , 

(C63) 
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(C64) 
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(C65) and 
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¶¾¤ÅÉÁÂ·� = ¥ NI,ÂÉV�íWX ¤I,ÅÉ¥ NI,ÂÉV�íWX  . 
(C66) Equations C63 and C64, respectively, show that ([σj-Dj-]h)w and ([Dj-]h)w are ck,h--weighted averages of all σk,j-Dk,j- and Dk,j-, respectively. Equations C65 and C66, respectively, show that ([σj+Dj+]h)w and ([Dj+]h)w are ck,h+-weighted averages of all σk,j+Dk,j+ and Dk,j+, respectively.  Using Equations C61 and C62, Equation C60 can now be written as 
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(C67) This equation corresponds to a solution of the continuity equation with respect to total concentration and total mass flow. (See Equation A26.) Defining Fh,i+ and Fh,i- as (Fh,i+)w and (Fh,i-)w, respectively, results in 
R R NÂÉ�ÙÂ,ÌÉ��

Ã
ÌWX

Ã
ÂWX = R R ùR NI,ÂÉ

V
IWX Ë ¥ NI,ÂÉÙI,Â,ÌÉVIWX¥ NI,ÂÉVIWX

Ã
ÌWX

Ã
ÂWX = R R R NI,ÂÉÙI,Â,ÌÉ

V
IWX

Ã
ÌWX

Ã
ÂWX

= R R NÂÉÙÂ,ÌÉ
Ã

ÌWX
Ã

ÂWX   
(C68) which is analogous to Equation C56, and 
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(C69) which is analogous to Equation C57. Next, defining σj-Dj-, Dj-, σj+Dj+ and Dj+, respectively, as ([σj-Dj-]h)w, ([Dj-]h)w, ([σj+Dj+]h)w and ([Dj+]h)w, respectively, Equation C67 can be written as 
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(C70) where 
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ÅWX  , 
(C71) 

(§¤)� = R §Å¤Å}Å
Ã

ÅWX  , 
(C72)  Dj and σjDj at time t are denoted as Dj- and σj-Dj-, respectively, and Dj and σjDj at time [t + Δt] are denoted as Dj+ and σj+Dj+, respectively. Rather than yielding DG, as in Equation A29, Equation C71 expresses the weight-average diffusion coefficient, Dw, as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by a corresponding ξ-independent coefficient, Dj, which nevertheless remains a function of t. Each Dj at all ξ is equal to Dw at ξj. Similarly, Equation C72 expresses (σD)w of Equation A30 as the sum of N products, each of which consists of a ξ-dependent function, Pj, multiplied by 
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a corresponding ξ-independent coefficient, σjDj, which nevertheless remains a function of t. Each σjDj at all ξ is equal to (σD)w at ξj.   In Equation C70, Dj- and Dj+ are weight-average parameters for the same reason that ([Dk,j-]h)w and ([Dk,j+]h)w are weight-average parameters in Equation C55. It should be expected that weight-average diffusion coefficients would be calculated from the solution of the continuity equation obtained by separation of variables and integration with respect to ξ, and it should be expected that gradient-average diffusion coefficients would be calculated from the continuity equation itself.  In using the continuity equation, something akin to a frame-of-reference problem arises when determining whether Dk, which is the diffusion coefficient of solute component k, should be viewed as representing (Dk)G, which is the gradient average of the diffusion coefficients of all the constituent species of component k (Equation C1), or whether Dk itself represents the defining measure of the diffusion coefficient of solute component k. As the implicit solvent and the explicit solutes are quantified component-by-component in an irreversible thermodynamic context, all species-specific parameters can be considered improper, which would mean that Dk represents a measure of the diffusion coefficient of solute component k that is properly dependent on component concentrations (including component k) only. At best, then, species-specific parameters such as ck,e, Dk,e, σk,e, etcetera, are improper means to a proper end. The proper end being sought is a solution to the continuity equation in terms of components. As developed here, that proper solution to the continuity equation in terms of components can be derived from the improper solution to the continuity equation in terms of species, but only to the extent that improper species-specific parameters can be chosen so that ([σk,j-Dk,j-]h)w, ([Dk,j-]h)w, ([σk,j+Dk,j+]h)w and ([Dk,j+]h)w of Equation C55 equal σk,j-Dk,j-, Dk,j-, σk,j+Dk,j+ and Dk,j+, respectively, of Equation B21, in which case, Equations C55 and B21 are identical.  As there is nothing improper about component-specific parameters in an irreversible thermodynamic context, there should be no doubt that DG, the gradient-average diffusion coefficient for all solute components, is the correct average of all Dk to use in the continuity 
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equation expressed in terms of the total solute concentration, as is the case when Equation A31 is used to expand the total-solute-concentration form of Equation A26. Nevertheless, Dw would be the correct average to use in Equation C70 or any other form of the integral solution to the continuity equation expressed in terms of the total solute concentration. The fact that Equations C55 and C70 both yield analogous weight-average parameters is evidence in support of the hypothesis that Equation C55 is identical to Equation B21.  Expanded solution from Equation C32Expanded solution from Equation C32Expanded solution from Equation C32Expanded solution from Equation C32     The solution to the Lamm equation can be written as 
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(See Equation C32.) For species e of solute component k, at a specific value of index i (other than 1 or N), the nonzero terms are 
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 (C73) as shown in Equations C37 to C40. Expanded fully, for species e of solute component k, at a specific value of index i (other than 1 or N), the nonzero terms of Zk,e,i- are 
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NI,í,[ÌÊX]É �� }[ÌÊX]}Ì�a�½
��

+ ÷¤I,í,[ÌÊX]É �§I,í,[ÌÊX]É � }[ÌÊX]}[ÌÊX] �}Ì�a a�a�½
�� − � }[ÌÊX] �}[ÌÊX]�a �}Ì�a a�a�½

�� �
+ ¤I,í,ÌÉ �§I,í,ÌÉ � }Ì}[ÌÊX] �}Ì�a a�a�½

�� − � }Ì �}[ÌÊX]�a �}Ì�a a�a�½
�� �ø ∆�

+ NI,í,ÌÉ �� }Ì}Ì�a�½
��

+ ÷¤I,í,[ÌÊX]É �§I,í,[ÌÊX]É � }[ÌÊX]}Ì �}Ì�a a�a�½
�� − � }[ÌÊX] �}Ì�a �}Ì�a a�a�½

�� �
+ ¤I,í,ÌÉ �§I,í,ÌÉ � }Ì}Ì �}Ì�a a�a�½

�� − � }Ì �}Ì�a �}Ì�a a�a�½
�� �

+ ¤I,í,[ÌÉX]É �§I,í,[ÌÉX]É � }[ÌÉX]}Ì �}Ì�a a�a�½
�� − � }[ÌÉX] �}Ì�a �}Ì�a a�a�½

�� �ø ∆�
+ NI,í,[ÌÉX]É �� }[ÌÉX]}Ì�a�½

��
+ ÷¤I,í,ÌÉ �§I,í,ÌÉ � }Ì}[ÌÉX] �}Ì�a a�a�½

�� − � }Ì �}[ÌÉX]�a �}Ì�a a�a�½
�� �

+ ¤I,í,[ÌÉX]É �§I,í,[ÌÉX]É � }[ÌÉX]}[ÌÉX] �}Ì�a a�a�½
��

− � }[ÌÉX] �}[ÌÉX]�a �}Ì�a a�a�½
�� �ø ∆� , 

(C74) Equation C74 shows that for a given i within 1 < i < N, there are 17 integrals to evaluate.  Expanded fully, for species e of solute component k, at i = 1, the nonzero terms of Zk,e,i- are  
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ÚI,í,XÊ = NI,í,XÊ �� }X}X�a�½
��

+ ÷¤I,í,XÊ �§I,í,XÊ � }X}X �}X�a a�a�½
�� − � }X �}X�a �}X�a a�a�½

�� �
+ ¤I,í,`Ê �§I,í,`Ê � }̀ }X �}X�a a�a�½

�� − � }̀ �}X�a �}X�a a�a�½
�� �ø ∆�

+ NI,í,`Ê �� }̀ }X�a�½
��

+ ÷¤I,í,XÊ �§I,í,XÊ � }X}̀ �}X�a a�a�½
�� − � }X �}̀�a �}X�a a�a�½

�� �
+ ¤I,í,`Ê �§I,í,`Ê � }̀ }̀ �}X�a a�a�½

�� − � }̀ �}̀�a �}X�a a�a�½
�� �ø ∆�

= NI,í,XÉ �� }X}X�a�½
��

+ ÷¤I,í,XÉ �§I,í,XÉ � }X}X �}X�a a�a�½
�� − � }X �}X�a �}X�a a�a�½

�� �
+ ¤I,í,`É �§I,í,`É � }̀ }X �}X�a a�a�½

�� − � }̀ �}X�a �}X�a a�a�½
�� �ø ∆�

+ NI,í,`É �� }̀ }X�a�½
��

+ ÷¤I,í,XÉ �§I,í,XÉ � }X}̀ �}X�a a�a�½
�� − � }X �}̀�a �}X�a a�a�½

�� �
+ ¤I,í,`É �§I,í,`É � }̀ }̀ �}X�a a�a�½

�� − � }̀ �}̀�a �}X�a a�a�½
�� �ø ∆� . 

(C75) Equation C75 shows that for i = 1, there are 10 integrals to evaluate.  Expanded fully, for species e of solute component k, at i = N, the nonzero terms of Zk,e,i- are 
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ÚI,í,ÃÊ = NI,í,[ÃÊX]Ê �� }[ÃÊX]}Ã�a�½
��

+ ÷¤I,í,[ÃÊX]Ê �§I,í,[ÃÊX]Ê � }[ÃÊX]}[ÃÊX] �}Ã�a a�a�½
��

− � }[ÃÊX] �}[ÃÊX]�a �}Ã�a a�a�½
�� �

+ ¤I,í,ÃÊ �§I,í,ÃÊ � }Ã}[ÃÊX] �}Ã�a a�a�½
�� − � }Ã �}[ÃÊX]�a �}Ã�a a�a�½

�� �ø ∆�
+ NI,í,ÃÊ �� }Ã}Ã�a�½

��
+ ÷¤I,í,[ÃÊX]Ê �§I,í,[ÃÊX]Ê � }[ÃÊX]}Ã �}Ã�a a�a�½

�� − � }[ÃÊX] �}Ã�a �}Ã�a a�a�½
�� �

+ ¤I,í,ÃÊ �§I,í,ÃÊ � }Ã}Ã �}Ã�a a�a�½
�� − � }Ã �}Ã�a �}Ã�a a�a�½

�� �ø ∆�
= NI,í,[ÃÊX]É �� }[ÃÊX]}Ã�a�½

��
+ ÷¤I,í,[ÃÊX]É �§I,í,[ÃÊX]É � }[ÃÊX]}[ÃÊX] �}Ã�a a�a�½

��
− � }[ÃÊX] �}[ÃÊX]�a �}Ã�a a�a�½

�� �
+ ¤I,í,ÃÉ �§I,í,ÃÉ � }Ã}[ÃÊX] �}Ã�a a�a�½

�� − � }Ã �}[ÃÊX]�a �}Ã�a a�a�½
�� �ø ∆�

+ NI,í,ÃÉ �� }Ã}Ã�a�½
��

+ ÷¤I,í,[ÃÊX]É �§I,í,[ÃÊX]É � }[ÃÊX]}Ã �}Ã�a a�a�½
�� − � }[ÃÊX] �}Ã�a �}Ã�a a�a�½

�� �
+ ¤I,í,ÃÉ �§I,í,ÃÉ � }Ã}Ã �}Ã�a a�a�½

�� − � }Ã �}Ã�a �}Ã�a a�a�½
�� �ø ∆� . 

(C76) Equation C76 shows that for i = N, there are 10 integrals to evaluate.   
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[C1] Johnson, M. L., Yphantis, D. A., and Weiss, G. H. (1973) Instability in Pressure Dependent Sedimentation of Monomer-Polymer Systems. Biopolymers 12121212 2477-2490.  [C2] de Groot, S. R., and Mazur, P. (1962) "Nonequilibrium Thermodynamics." North Holland Publishing Company, Amsterdam.  [C3] Katchalsky, A., and Curran, P. F. (1965) "Nonequilibrium Thermodynamics in Biophysics." Harvard University Press, Cambridge, MA.  Section D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from vanSection D: Expressions for the deviation from van    't't't't    Hoff behaviour and other virial Hoff behaviour and other virial Hoff behaviour and other virial Hoff behaviour and other virial expansionsexpansionsexpansionsexpansions    
A minimally restrictive expression of the deviation from van 't Hoff behaviour can be written as 

1 + R Ø ÆR Ñ¿,I,TNT¿ÊXV
TWX Ç³

¿W` = R ÆR Ñ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX  , 

(D1) 
where b is the index of the virial expansion, cq is the concentration of component q, yb,k,q is the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq, which makes yb,k,q the bth of an infinite number of coefficients accounting for the thermodynamic nonideality effect of component q on the transport of component k, and 

lim|→Q R ÆR Ñ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX = R ÑX,I,T

V
TWX = 1 . 

(D2) 
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A truncated, linear equation is restricted to solutions that are sufficiently dilute to permit use of an approximation, such as, 
limúÌûüyí ýYûüyÌYV R ÆR Ñ¿,I,T �NT¿�NT

V
TWX Ç³

¿WX ≅ 1 + 2 R Ñ`,I,TNT
V

TWX = 1 + R ÑI,TNT
V

TWX  , 
(D3) 
where  

ÑI,T = 2Ñ`,I,T . 
(D4) 
As with the van ‘t Hoff expression, density increment and viscosity expressions can be expanded as infinite series, so that σk (the reduced molar mass coefficient of component k) and Dk (the diffusion coefficient of component k) can be described, respectively, by  

§I = §°I
Î
ÏÐ¥ �¥ Õ¿,I,T �NT¿�NTVTWX �³¿WX

¥ �¥ Ñ¿,I,T �NT¿�NTVTWX �³¿WX Ò
ÓÔ  

(D5) 
and 
 

¤I = ¤°I
Î
ÏÐ¥ �¥ Ñ¿,I,T �NT¿�NTVTWX �³¿WX

¥ �¥ ℎ¿,I,T �NT¿�NTVTWX �³¿WX Ò
ÓÔ , 

(D6) 
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where yb,k,q is the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq defined as for Equation D1; hb,k,q is the component-k affecting viscosity coefficient of dcqb/dcq, which makes hb,k,q the bth of an infinite number of coefficients accounting for the viscosity effect of component q on the transport of component k; and pb,k,q is the component-k affecting density increment coefficient of dcqb/dcq, which makes pb,k,q the bth of an infinite number of coefficients accounting for the density increment effect of component q on the transport of component k. 
From the above equations, it follows that  

¦I = §°I¤°I_` Î
ÏÐ¥ �¥ Õ¿,I,T �NT¿�NTVTWX �³¿WX

¥ �¥ ℎ¿,I,T �NT¿�NTVTWX �³¿WX
 
Ò
ÓÔ , 

(D7) 
where 

lim|→Q R ÆR Õ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX = R ÕX,I,T

V
TWX = 1  

(D8) 
and 

lim|→Q R ÆR ℎ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX = R ℎX,I,T

V
TWX = 1 . 

(D9) 
Truncated, linear equations are restricted to solutions that are sufficiently dilute to permit use of approximations, such as, 
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limúÌûüyí ýYûüyÌYV R ÆR Õ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX ≅ 1 + 2 R Õ`,I,TNT

V
TWX = 1 + R ÕI,TNT

V
TWX  , 

(D10) 
where 

ÕI,T = 2Õ`,I,T , 
(D11) 
and 

limúÌûüyí ýYûüyÌYV R ÆR ℎ¿,I,T �NT¿�NT
V

TWX Ç³
¿WX ≅ 1 + 2 R ℎ`,I,TNT

V
TWX = 1 + R ℎI,TNT

V
TWX  , 

(D12) 
where 

ℎI,T = 2ℎ`,I,T . 
(D13) 
Equations D3, D10 and D12 are virial expressions that are truncated at b = 2. Equations D4, D11 and D13 are the second virial coefficients that apply to Equations D3, D10 and D12, respectively. 
In some cases [Johnson et al., 1981], the deviation from van 't Hoff behaviour can be described by a virial expansion in terms of c, Mw, and an infinite series of global nonideality coefficients, each denoted by Bb, where b is the index of the summation. That virial expansion can be written as 

1 + R ÑI,TNT
À

TWX = 1 + O� R Ø�¿N¿ÊX³
¿W` = O� R �¿ �N¿�N

³
¿WX  , 
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(D14) 
where 

lim|→Q O� R�¿ �N¿�N
³

¿WX = O��X = 1 . 
(D15) 
ReferencesReferencesReferencesReferences    
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Section E: Presenting concentration data from calculationsSection E: Presenting concentration data from calculationsSection E: Presenting concentration data from calculationsSection E: Presenting concentration data from calculations    as fringe displacement dataas fringe displacement dataas fringe displacement dataas fringe displacement data     To present results that are comparable to the fringe displacement data observed experimentally, at each time t, at each point ξ, the concentration, ck,e (in g/ml) of each species, e, of each solute component, k, is multiplied by L and kλ,k,e, where L is the optical pathlength (in cm), and kλ,k,e is an estimate of the specific fringe displacement [Gray et al., 1995] for species e of solute component k at wavelength λ. For species e of solute component k at a concentration of ck,e in an AUC experiment using an optical pathlength of L and a wavelength of λ (in cm), the specific fringe displacement (in fringe∙cm2/g) is 

��,I,í = � ws�wNI,í�� �m�sb�	 = ΔG�,I,íSNI,í  . 
(E1) 
where (∂nλ/∂ck,e)µ is the refractive index increment (in cm3/g) at wavelength λ for a solution of species e of solute component k at dialysis equilibrium with the solvent, and ΔJλ,k,e is the observed fringe displacement for species e of solute component k at wavelength λ. As ΔJλ,k,e = Lkλ,k,eck,e, the total fringe displacement, which is equal to the sum of all ΔJλ,k,e, is dependent on the concentration of each species of each solute component. 
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Section F: ξSection F: ξSection F: ξSection F: ξ----dependent functions to approximdependent functions to approximdependent functions to approximdependent functions to approximate Date Date Date Dk,ek,ek,ek,e    and σand σand σand σk,ek,ek,ek,e     Tests of different solutionsTests of different solutionsTests of different solutionsTests of different solutions     The integrals in the solution to the t- and ξ-dependent Lamm equation (Equation B21) have been replaced with their evaluations shown in Equations B39 to B53 or Equations B39* to B53*, and those expanded forms of the solution to the continuity equation for AUC have been used in finite-element simulations. Simulations of AUC based on the second approximate solution (using Equations B39 to B53) have been found to perform at least as well as simulations based on the first approximate solution (using Equations B39* to B53*). Additionally, finite-element simulations of sedimentation based on the first approximate solution to the t- and ξ-dependent Lamm equation have been found to perform at least as well as finite-element simulations based on the first approximate solution to the t- and r-dependent Lamm equation [Cox and Dale, 1981; Schuck et al., 1998]. (Results not shown.)  First approximate solutionFirst approximate solutionFirst approximate solutionFirst approximate solution     To express σk,e and Dk,e in terms of pseudo-ξ-independent parameters, each one is approximated as a set of N scalar coefficients that can be a function of t but must be invariant with ξ. For σk,e, at all ξh, where 1 ≤ h ≤ N, those coefficients are §I,í,Â = §I,í  ì aÂ, (F1) and for Dk,e, at all ξh, where 1 ≤ h ≤ N, those coefficients are ¤I,í,Â = ¤I,í  ì aÂ. (F2)  
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(Compare Equations F1 and F2 with Equations C22 and C23, which describe the functions that express Dk,e and σk,e in terms of sums of products of ξ-independent coefficients (Dk,e,j and σk,e,j, respectively) and ξ-dependent basis functions (Pj). It is the ξ-independence of the coefficients that permits their being factored out of the summations indexed by j in Equations C25 to C35.)  When it temporarily becomes more convenient to work with sk,e and Dk,e instead of σk,e and Dk,e, sk,e is also approximated as a set of N scalar coefficients that can be a function of t but must be invariant with ξ. At all ξh, where 1 ≤ h ≤ N, those coefficients are  ¦I,í,Â = ¦I,í  ì aÂ.   (F3) (Compare Equation F3 with Equation C21.)  Equations F1 to F3 define σk,e,h, Dk,e,h and sk,e,h as constants with respect to ξ, and in the first approximate solution, are used in place of Equations C21 to C23. The resulting first approximate solution to the Lamm equation can be written as 
R R R R NI,í,ÂÉ �� }Â}Ì�a�½

�� − ¤I,í,ÂÉ �§I,í,ÂÉ � }Â �}Ì�a a�a�½
�� − � �}Â�a �}Ì�a a�a�½

�� � ∆�Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX

= R R R R NI,í,ÂÊ �� }Â}Ì�a�½
��

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX

+ ¤I,í,ÂÊ �§I,í,ÂÊ � }Â �}Ì�a a�a�½
�� − � �}Â�a �}Ì�a a�a�½

�� � ∆� . 
(F4) 
As usual, a minus or plus subscript refers to time t or [t + Δt], respectively. Equation F4 of the first approximate solution is obtained by applying Equations F1 and F2 to Equation C32 of the second approximate solution in the case of (∂σk,e/∂ξ)t = 0 and (∂Dk,e/∂ξ)t = 0 at all ξ. Thus, when σk,e,h and Dk,e,h are used as they are in Equation F4, each σk,e,h should equal ξ-independent σk,e, each Dk,e,h should equal ξ-independent Dk,e and, given that (∂sk,e/∂ξ)t = 0 
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when (∂σk,e/∂ξ)t = 0 and (∂Dk,e/∂ξ)t = 0, each sk,e,h should equal ξ-independent sk,e. Furthermore, these conditions make it highly likely that (∂sk,e/∂t)ξ = 0 and (∂Dk,e/∂t)ξ = 0 in general, and that (∂σk,e/∂t)ξ = 0 at constant field. Therefore, sk,e,h and Dk,e,h are likely to be t-independent in general, and σk,e,h is likely to be t-independent at constant field. All such constraints are purposefully violated in the following treatment of the first approximate solution. 
As typically, but incorrectly, applied, the constants, σk,e,h, Dk,e,h and sk,e,h, of the first approximate solution are treated as if they were functions of solute concentration. Thus, σk,e,h, Dk,e,h and sk,e,h become pseudoconstants with respect to ξ. Truncated virial expansions are used to approximate the dependence of σk,e,h and Dk,e,h on the concentration, cq,a, of each explicitly included species, a, of each explicitly included solute component, q. To evaluate these pseudo-ξ-independent constants indexed by h, prior to each time increment, Dk,e,h and σk,e,h are approximated by 

¤I,í,Â = ¤°I,í
Î
ÏÐ¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,Â¿�NT,õ,ÂV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,Â¿�NT,õ,ÂV�õWXVTWX³¿WX Ò
ÓÔ  

 (F5)  and 
§I,í,Â = §°I,í

Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,Â¿�NT,õ,ÂV�õWXVTWX³¿WX

¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,Â¿�NT,õ,ÂV�õWXVTWX³¿WX Ò
ÓÔ , 

(F6)  respectively, where n is the number of solute components, nq is the number of species that constitute solute component q, D°k,e at all ξ equals Dk,e at ξh at time t or [t + Δt] in the limit as c approaches 0, σ°k,e at all ξ equals σk,e at ξh at time t or [t + Δt] in the limit as c approaches 0, cq,a,h is the ξ-independent concentration coefficient of species a of solute component q at time t or [t + Δt] (cq,a,h, at all ξ, equals cq,a at ξh, just as ck,e,h, at all ξ, equals ck,e at ξh in Equation C17), and where pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a are the bth of up to an infinite 
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number of coefficients of proportionality for the density increment, thermodynamic nonideality, and viscosity effects, respectively. By definition, ¥ ¥ ÕX,I,í,T,õV�õWXVTWX , ¥ ¥ ÑX,I,í,T,õV�õWXVTWX  and ¥ ¥ ℎX,I,í,T,õV�õWXVTWX  are each equal to 1. (Each of the pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a coefficients couples the concentration of species a of component q to an effect on the transport of species e of component k. See Section D for the component-based equivalents of these virial expansions.)  Both σ°k,e and D°k,e are ξ-independent by definition. Furthermore, the first approximate solution cannot be applied to systems in which changes in solvent density cause (∂ρ0/∂ξ)t to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied to systems in which solute concentration gradients cause (∂ρ/∂ξ)t to differ from zero.) As discussed in the definitions of D°k,e,j, (Equation C33) and σ°k,e,j (Equation C34), the condition that ΔD°k,e,j/Δj = 0 and Δσ°k,e,j/Δj = 0 for all species of all solute components can only apply to a system with an incompressible solvent, in which case, D°k,e,j and σ°k,e,j can be replaced with D°k,e, and σ°k,e, respectively. Hence, the use of D°k,e and σ°k,e in the first approximate solution.  As noted, when σk,e,h and Dk,e,h are used as they are in Equation F4, each σk,e,h should equal ξ-independent σk,e, and each Dk,e,h should equal ξ-independent Dk,e. Thus, the use of Equations F5 and F6 is incorrect, except where all coefficients of b(cq,a)b - 1 for b > 1, which is to say all pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a for b > 1, equal zero, and where, as previously noted, the solvent is incompressible and (∂ρ/∂ξ)t = 0 at all ξ and t. (Compare the properties and uses of Equations F5 and F6, with those of Equations C33 and C34, respectively.)  Results of the first approximate solution compared with those of the second approximResults of the first approximate solution compared with those of the second approximResults of the first approximate solution compared with those of the second approximResults of the first approximate solution compared with those of the second approximate ate ate ate solutionsolutionsolutionsolution     
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)  Figure F1. Results, as Zk,e,i- = Z1,1,i- versus ξ, from the first approximate and second approximate solutions, compared after a 1 s time increment for 87 three-element, single solute component (k = 1), single solute species (e= 1) systems. (Each system consists of 3 adjacent spatial elements, [h - 1], h and [h + 1], where 1 < h < 31, ξmin = ξ1 = 21.1250 cm2, ξmax = ξ31 = 21.5210 cm2, Δξh- = Δξh+ = Δξ = 0.0132 cm2, and each system is characterised by one of three concentration gradients, dc1,1,h/dξ, in which (c1,1,[h-1] + c1,1,h + c1,1,[h+1])/3 = 0.1 g/ml.) The central values of, and gradients in c1,1,h, σ1,1,h and D1,1,h are given to the right of the graph. At the scale shown, Z1,1,i- from the first approximate and second approximate solutions for the case of dc1,1,h/dξ = 0 are indistinguishable. (See Section C in general, and Equations C39 and C74 in particular, for details regarding Zk,e,i-.) 
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)  Figure F2. Results, as ΔZk,e,i- = ΔZ1,1,i- versus ξ, from Z1,1,i- of the first approximate solution minus Z1,1,i- of the second approximate solution after a 1 s time increment for the 29 dc1,1,h/dξ = 0 systems shown in Figure F1. The central values of, and gradients in c1,1,h, σ1,1,h and D1,1,h are given to the right of the graph. This figure shows that Z1,1,i- from the first approximate and second approximate solutions differ, even for the case of dc1,1,h/dξ = 0.  ReferencesReferencesReferencesReferences     [F1] Cox, D., and Dale, R. (1981) Simulation of Transport Experiments for Interacting Systems. In "Protein-Protein Interactions." (C. Frieden, and L. Nichol, editors.) pp. 173-211. John Wiley and Sons, New York.  [F2] Schuck, P., McPhee, C. E., and Howlett, G. J. (1998) Determination of sedimentation coefficients for small peptides. Biophys J. 74747474 466-474.   Section G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the CurieSection G: The dissipation function and the Curie----Prigogine principlePrigogine principlePrigogine principlePrigogine principle     The formalism of irreversible thermodynamics applies when flows can be expressed as linear functions of the forces present [de Groot and Mazur, 1962; Tanford, 1961]. The forces 
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that give rise to flows in the AUC instrument are assumed to be small enough that this formalism is applicable. Given this assumption, and denoting the solvent as component 0, the equation for GIKLLLH, the molar flow of component k in the solvent frame of reference, can be written as 
GIKLLLH = R SI,TUHT

V
TWX = GHI − NIOI

OQNQ GHQ = GHI − NIOI PHQ , 
(G1) where Lk,q is the phenomenological coefficient linking the transport of component k to UHT [Tanford, 1961], and UHT is the conjugate molar force (Equations A2, A14 and I16) of GHT , which is the molar flow of component q in the system frame of reference [Katchalsky and Curran, 1965]. (See the dissipation function, Equation G2, which shows how a conjugate force is assigned to each flow through the system [Katchalsky and Curran, 1965]. Also see Equations I6 to I14 for further discussion of GHT .) The sum over all q is taken over all linearly independent forces [Katchalsky and Curran, 1965]. Each conjugate molar force is a vector, UHT = -∇Uq, where Uq is the total molar potential of solute component q. In the AUC instrument, in cases where the Earth’s gravitational acceleration makes no significant contribution the molar gravitational potential of any component, UHT has no component along the φ- or z-axis of the system, so that Xq = (Xq)r, which is the r-component of UHT, can be used in place of the vector. In total, there are n + 1 conjugate molar forces, but X0, that of the solvent, has been expressed in terms of the others in Equation G1. The bulk fluid velocity in the system frame of reference is described by v0, the nonvector representation of PHY , which is the velocity of the solvent flow through the system in the frame of reference of the system. In the absence of any forces other than that associated with solvent flow, Xq≠0 = 0, and the system-frame-of-reference velocity of solute component q, vq, equals v0, from which it follows, in such cases, that Jk = (ck/Mk)v0. As the AUC system is closed, v0 must be zero at the boundaries, and is likely to be negligibly small elsewhere.  The phenomenological coefficients are functions of system properties, such as temperature, pressure, and the concentrations of solute components, but are independent of the 
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magnitudes of any forces present, provided that those forces are sufficiently small [Tanford, 1961]. The phenomenological coefficients pertaining to coupled flows are the Lk,q terms for which q ≠ k. By a statistical mechanical treatment of microscopically reversible processes, Onsager showed that these cross terms are symmetric in the absence of magnetic fields or Coriolis forces in the system, in which case, the reciprocal relations are Lk,q = Lq,k for all k and q [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962]. Denoting any magnetic fields or Coriolis forces by H, the most general expression of the reciprocal relations is Lk,q(H) = ϵqϵkLq,k(-H), where Lk,q(H) is Lk,q in the presence of H, Lq,k(-H) is Lq,k in the presence of -H, ϵq is the indicator of time parity for UHT and ϵk is the indicator of time parity for UHI [Jou, Casas-Vázquez and Lebon, 2010; Jou, Casas-Vázquez and Criado-Sancho, 2011]. If a conjugate molar force, such as UHT or UHI, is even under time reversal, its indicator of time parity, ϵq or ϵk, respectively, is equal to 1. If a conjugate molar force is odd under time reversal, its indicator of time parity is equal to -1.  In the AUC instrument, under the usual operating conditions, H may not be negligible, but as neither Lk,q nor Lq,k is likely to be known or experimentally determinable, data analysis and simulations generally take place at the next highest level of abstraction, for which Dk (Equation A21) and either sk (Equation A22) or σk (Equation A23) are the accessible parameters. As such, details regarding the applicable forms of Lk,q(H) = ϵqϵkLq,k(-H) are not explored here, except in the latter part of Section N (A simple coupledA simple coupledA simple coupledA simple coupled----flow eqflow eqflow eqflow equation for uation for uation for uation for AUCAUCAUCAUC). Nevertheless, a large body of experimental evidence suggests that the applicability of the reciprocal relations is broader than might be expected, given that their theoretical basis deals only with processes that are close to equilibrium [Katchalsky and Curran, 1965].  The dissipation function, 
Φ = R GHI ∙ UHI

V
IWQ + R G����

V�
�WX = GHQ ∙ UHQ + R GHI ∙ UHI

V
IWX + R G����

V�
�WX = R GIKLLLH ∙ UHI

V
IWX + R G����

V�
�WX , 

 (G2) 
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measures the local rate of free energy dissipation per unit volume [Katchalsky and Curran, 1965]. This equation is used to determine the proper flows and forces to include in Equation G1. In the AUC instrument, all significant flows are either those of transport (the molar flows and mass flows discussed throughout this work) or those of chemical reactions. The summation indexed by k gives the contribution of independent particle flows to Φ. The summation indexed by g gives the contribution of independent chemical reaction flows to Φ. Each term in the summation indexed by g is the product of the molar reaction flow, G�� , of reaction g, times the conjugate molar affinity, Ag, of reaction g.  The total number of all possible flows is 1 + n + nR, where 1 + n is the number of possible molar flows, and nR = n is the number of possible independent chemical reaction flows [de Groot and Mazur, 1962]. The total number of all possible forces is also 1 + n + nR. As G�� and Ag are scalars, their tensorial order is 0. As GHI and UHI are vectors, their tensorial order is 1. Given that reaction flows are not expected to produce molar flows when the system is isotropic, it is assumed that the Curie-Prigogine principle [de Groot and Mazur, 1962; Katchalsky and Curran, 1965] applies in the AUC system. Accordingly, there is assumed to be no coupling between flows and forces of different tensorial order, with the result that no phenomenological coefficients link the molar affinities of any chemical reactions to the conjugate molar forces in Equation G1.   Without the nR molar affinities to contend with in Equation G1, there remain n + 1 conjugate molar forces, one of which may be expressed in terms of the others, so that only n linearly independent forces appear in Equation G1. The Gibbs-Duhem relation is used to express UHQ in terms of the other conjugate molar forces, each of which is associated with one solute component.  Conjugate molar forcesConjugate molar forcesConjugate molar forcesConjugate molar forces  The cylindrical coordinate system, where r is the radial coordinate, z is the longitudinal coordinate, and φ is the angular coordinate (the segment of arc), is well suited to describing 
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the geometry of an AUC system. It is assumed that an AUC system develops gradients in the gravitational potential and chemical potentials mainly, and these potentials are expected to be invariant with respect to φ in most systems. Furthermore, in many systems, the gravitational potential and chemical potentials are expected to be invariant with respect to z. In general, UHT = Mq(ω2∇ξ - ∇gEh) - ∇μq, where, as discussed with respect to Equation A2, μq is the chemical potential of solute component q, Mq is the molar mass of solute component q, gE is the magnitude of the gravitational field at the Earth’s surface, and h is the height above the Earth’s surface.  In cases where the Earth’s contribution to the molar gravitational potential gradient, -Mq∇gEh, is significant, -∇gEh will not be negligible, and UHT will vary significantly with respect to r and z, but is still likely to be invariant with respect to φ. (For further details about the consequences of significant values of -Mq∇gEh, see Section H: The Section H: The Section H: The Section H: The contribution of the Earth’s gravitational field to transport in AUCcontribution of the Earth’s gravitational field to transport in AUCcontribution of the Earth’s gravitational field to transport in AUCcontribution of the Earth’s gravitational field to transport in AUC.) In general, (∂ξ/∂r)t,φ,z = (∂ξ/∂r)t. Thus, where -gE∇h is negligible, in all likelihood, (∂μq/∂r)t,φ,z = (∂μq/∂r)t as a result of which, UHT can be described by 
Xq = Mqω2(∂ξ/∂r)t - (∂μq/∂r)t. For definitions of μq and Mq, see Section I (Calculating molar Calculating molar Calculating molar Calculating molar mass, chemical potential and partial specific volume for a multimass, chemical potential and partial specific volume for a multimass, chemical potential and partial specific volume for a multimass, chemical potential and partial specific volume for a multi----species componentspecies componentspecies componentspecies component).  Chemical reactionsChemical reactionsChemical reactionsChemical reactions  The contribution of the chemical molar flows to the dissipation function (Equation G2) is 

Φ� = R G����
V�

�WX  , 
 (G3) where nR = n is the number of possible independent chemical reaction flows [de Groot and Mazur, 1962], which are indexed by g. Each term in the summation is the product of the molar reaction flow, G�� , of reaction g, times the conjugate molar affinity, Ag, of reaction g.  



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

117 

 

Following Equation G20, the molar reaction flow and molar affinity are discussed further, utilising some of the results that are obtained between here and there. What follows immediately is the development of the equations that, in Section K (Reaction flow Reaction flow Reaction flow Reaction flow algorithmsalgorithmsalgorithmsalgorithms), are applied to the practical problem of calculating the concentrations of solutes that participate in a chemical reaction. The examples of the various types of reactions presented in Section K painstakingly illustrate, and may thus help clarify, some of the considerably tedious material that is covered next.  A chemical reaction involving components 1 ≤ k ≤ n can be cast in terms of Sk,e, where Sk,e represents the formula notation of species e of component k. The sum over all of the independent chemical reactions that are possible yields 
R R R���,�,I,í�SI,í

V�
íWX

V
IWX

V�
�WX ⇌ R R R��{,�,I,í�SI,í

V�
íWX

V
IWX

V�
�WX  , 

(G4) where νR,g,k,e is the signed stoichiometry of reactant species e of component k in reaction g, and νP,g,k,e is the signed stoichiometry of product species e of component k in reaction g. A convention is employed where, by definition, νR,g,k,e ≤ 0 and νP,g,k,e ≥ 0. Furthermore, by definition, νR,g,k,e = 0 if species e of component k is not a reactant in reaction g, and νP,g,k,e = 0 if species e of component k is not a product in reaction g.  Throughout the equations and examples that follow, the activity of species e of solute component k will be given by γk,eck,e, where γk,e is the activity coefficient of that species, the concentration of which is ck,e, as usual. Furthermore, if species e of solute component k is a product or reactant of a chemical reaction, γ�I,í and c�I,í will denote the activity coefficient and the concentration, respectively, that the species would exhibit if the chemical reaction were at equilibrium.  The association constant of independent chemical reaction g is given by 
��,� = ��,��®,� = � � �γ�I,íc�I,í����,�,�, �V�íWXVIWX� � �γ�I,íc�I,í����,�,�, �V�íWXVIWX = !!�γ�I,íc�I,í����,�,�, É��,�,�, �V�

íWX
V

IWX  , 
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(G5) where, for independent chemical reaction g, kf,g is the forward rate constant and kr,g is the reverse rate constant. Letting Υ represent the unit solute concentration (with dimensions such as 1 g/cm3), the dimensions of kf,g are given by 1¦ ΥXÊ¥ ¥ ���,�,�, �#� $å#�$å  , 
(G6) and the dimensions of kr,g are given by 1¦ ΥXÊ¥ ¥ ���,�,�, �#� $å#�$å  . 
(G7)  The net stoichiometry of species e of component k in independent chemical reaction g is defined as νg,k,e = νR,g,k,e + νP,g,k,e, so that, due to conservation of mass,  

R R ��,I,íMI,í
V�

íWX
V

IWX = 0 . 
(G8) The net rate of independent chemical reaction g, given by 

��,� !!�γI,ícI,í����,�,�, �V�
íWX

V
IWX − �®,� !!�γI,ícI,í����,�,�, �V�

íWX
V

IWX  , 
(G9)  is zero when the reaction is at equilibrium.  Explicitly including the forward and reverse reactions of each component, the continuity equation for all components is  
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R vwNIw x�
V

IWX = − R �w¬2a[Iwa �y
V

IWX  – R Æ��,� !!�γI,ícI,í����,�,�, �V�
íWX

V
IWX

V�WV
�WX

− �®,� !!�γI,ícI,í����,�,�, �V�
íWX

V
IWX Ë , 

(G10)  where the sum of the net reaction rates, 
R Æ��,� !!�γI,ícI,í����,�,�, �V�

íWX
V

IWX − �®,� !!�γI,ícI,í����,�,�, �V�
íWX

V
IWX ÇV�WV

�WX  , 
(G11)  is zero when all reactions are at equilibrium.  A convention is now adopted in which the simplest species of each component is assigned the lowest number, 1, of the species index, e. Higher-order species of component k are thus those for which 2 ≤ e ≤ nk. Furthermore, in view of the fact that there are as many independent chemical reactions (nR) as there are components (n), the reaction index, g, can be reused as an additional component index. Thus, the composition of each higher-order species (e > 1) of component k is given by the set of νg,k,e for which 1 ≤ g ≤ n, where νg,k,e is defined as the stoichiometry of species 1 of component g, with the constraint that 1 ≤ νg=k,k,e < ∞ for g = k, while 0 ≤ νg≠k,k,e < ∞ for g ≠ k.  To describe the reactions that form each higher-order species (e > 1) of each component (1 ≤ k ≤ n), an additional species index, a, is applied to the association constant, forward rate constant and reverse rate constant of these reactions. To describe reactions in which the reactants or products include higher-order species (e > 1) of any components (1 ≤ k ≤ n), the additional species index (a) is also applied to the stoichiometries of each species. Henceforth, the reaction that produces species a of component g is referred to as reaction a/g.  For components indexed by g, species are indexed by a. As ng is the number of species that 
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constitute solute component g, for g = k, ng = nk. After further indexing the stoichiometries by a, Equation G4 is summed over all species to obtain 
R R R R���,�,õ,I,í�SI,í

V�
íWX

V
IWX

V�

õWX
V�WV
�WX ⇌ R R R R��{,�,õ,I,í�SI,í

V�
íWX

V
IWX

V�

õWX
V�WV
�WX  , 

(G12) where νR,g,a,k,e is the signed stoichiometry of reactant species e of component k in reaction a/g, and νP,g,a,k,e is the signed stoichiometry of product species e of component k in reaction a/g. By definition, νR,g,a,k,e ≤ 0 and νP,g,a,k,e ≥ 0, where νR,g,a,k,e = 0 if species e of component k is not a reactant in reaction a/g, and νP,g,a,k,e = 0 if species e of component k is not a product in reaction a/g.  The association constant of reaction a/g is given by 
��,�,õ = ��,�,õ�®,�,õ = � � �γ�I,íc�I,í����,�,�,�, �V�íWXVIWX� � �γ�I,íc�I,í����,�,�,�, �V�íWXVIWX = !!�γ�I,íc�I,í����,�,�,�, É��,�,�,�, �V�

íWX
V

IWX  , 
(G13) where kf,g,a is the forward rate constant and kr,g,a is the reverse rate constant of reaction a/g. The dimensions of kf,g,a are given by 1¦ ΥXÊ¥ ¥ ���,�,�,�, �#� $å#�$å  , 
(G14) and the dimensions of kr,g,a are given by 1¦ ΥXÊ¥ ¥ ���,�,�,�, �#� $å#�$å  , 
(G15) where Υ is the unit solute concentration.  The net stoichiometry of species e of component k in reaction a/g is defined as νg,a,k,e = νR,g,a,k,e + νP,g,a,k,e, so that, due to conservation of mass,  
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R R ��,õ,I,íMI,í
V�

íWX
V

IWX = 0 . 
(G16) The net rate of reaction a/g, given by 

��,�,õ !!�γI,ícI,í����,�,�,�, �V�
íWX

V
IWX − �®,�,õ !!�γI,ícI,í����,�,�,�, �V�

íWX
V

IWX  , 
(G17)  is zero when the reaction is at equilibrium.  Explicitly including the forward and reverse reactions of each species, the continuity equation for all species is  
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(G18)  where the sum of the net reaction rates, 
R R Æ��,�,õ !!�γI,ícI,í����,�,�,�, �V�

íWX
V
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õWX
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�WX  , 

(G19)  is zero when all reactions are at equilibrium.  Equation G18 applies to simulations based on the solution to the continuity equation in terms of species. Where the pressure in the system is ξ-dependent, KA,g,a, kf,g,a and kr,g,a may be functions of ξ, and may be worth treating as such. A ξ-dependence in pressure may also 
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give rise to an additional ξ-dependence in γk,e, beyond that which may result from gradients in the concentrations of any solute species. Following Equations J2 to J5, the topic of how to model a pressure-induced ξ-dependence is discussed in connection with the species-e-of-component-k affecting density increment, thermodynamic nonideality, and viscosity coefficients.  Equilibrium constantEquilibrium constantEquilibrium constantEquilibrium constant     Properly speaking, the association constant should be defined in such a way that it is dimensionless. It is convenient, however, to preserve the dimensionality of KA,g,a as defined by Equation G13. To deal with situations where the numerically equivalent but dimensionless constant is needed, the dimensionless equilibrium constant of reaction a/g is defined as 
�íT,�,õ = � � vγ�I,íc�I,íΥ x���,�,�,�, �V�íWXVIWX

� � vγ�I,íc�I,íΥ x���,�,�,�, �V�íWXVIWX
= !! vγ�I,íc�I,íΥ x���,�,�,�, É��,�,�,�, �V�

íWX
V

IWX  , 
(G20) where Υ is the unit solute concentration. The dimensionless aspect of the equilibrium constant makes it suitable for calculations that require its logarithm, such as ΔG° = -RTlnKeq,g,a, and is the parameter obtained from exponential operations, such as Keq,g,a = e-ΔG°/RT, where ΔG° is the standard Gibbs free energy change of reaction a/g.   Obtaining conjugate molar affinities from the molar reaction flowsObtaining conjugate molar affinities from the molar reaction flowsObtaining conjugate molar affinities from the molar reaction flowsObtaining conjugate molar affinities from the molar reaction flows  The molar reaction flow on an independent reaction is equal to the portion of the time-derivative of molar concentration that is a direct result of a chemical reaction [Onsager, 1931a]. Thus, for reaction g/a, the molar reaction flow can be defined as 
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V
IWX  , 

 (G21) which is the molar equivalent of Expression G17. Wherever and whenever reaction g/a is at chemical equilibrium, G�,õ�  = 0 and each γI,ícI,í = γ�I,íc�I,í, in which case, the association constant of reaction a/g can be redefined as 
� �,�,õ|YûûÌ� = � � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX ���,�,õ

ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ
= �¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX ���,�,õ

ù� � MI,í���,�,�,�, �V�íWXVIWX� � MI,í���,�,�,�, �V�íWXVIWX Ë�®,�,õ

= �¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX � ��,�,õ�®,�,õ� � MI,í���,�,�,�, É��,�,�,�, �V�íWXVIWX  
(G22) (compare with Equation G13), while the dimensionless equilibrium constant of reaction a/g can be redefined as 

�íT,�,õ|YûûÌ� = � � vγ�I,íc�I,íΥMI,í x���,�,�,�, �V�íWXVIWX
� � vγ�I,íc�I,íΥMI,í x���,�,�,�, �V�íWXVIWX

= !!�γ�I,íc�I,íΥMI,í ����,�,�,�, É��,�,�,�, �V�
íWX

V
IWX  , 

(G23) where Υ is now the molar unit solute concentration. (Compare this result with Equation G20.) The addition of "collig" in their subscripts indicates that these association and equilibrium constants are defined colligatively, and distinguishes them from their respective counterparts of Equations G13 and G20, which are defined using mass concentrations.  As calculated from the colligative equilibrium constant (Equation G23), the standard Gibbs 
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free energy change of reaction a/g is thus 
∆° = −pqrs v�íT,�,õ|YûûÌ�x = −pqrs ô!! �γ�I,íc�I,íΥMI,í ����,�,�,�, É��,�,�,�, �V�

íWX
V

IWX %
= −pq R R��{,�,õ,I,í + ��,�,õ,I,í�rs �γ�I,íc�I,íΥMI,í �V�

íWX
V

IWX  . 
(G24)  For values of γI,ícI,í that differ from their corresponding values of γ�I,íc�I,í,  

∆ = ∆° + pqrs ô!!�γI,ícI,íΥMI,í ����,�,�,�, É��,�,�,�, �V�
íWX

V
IWX %

= ∆° + pq R R��{,�,õ,I,í + ��,�,õ,I,í�rs �γI,ícI,íΥMI,í �V�
íWX

V
IWX

= pq R R��{,�,õ,I,í + ��,�,õ,I,í�rs �γI,ícI,íγ�I,íc�I,í�V�
íWX

V
IWX

= pq R R��{,�,õ,I,í + ��,�,õ,I,í�rs�&I,í�V�
íWX

V
IWX

=  pqrs ô!!&I,í���,�,�,�, É��,�,�,�, �V�
íWX

V
IWX %, 

(G25)  where 
&I,í = γI,ícI,íγ�I,íc�I,í 

(G26) is the equilibrium-normalised activity of species e of component k. For irreversible thermodynamics to be applicable, all points of the system must be near equilibrium at all times. Thus, at any time and place in the system, &I,í = 1 + '&I,í , (G27) 
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where �'&I,í� is not much greater than zero. Furthermore, it is assumed that �'&I,í� is always near enough to zero that, to a good approximation, 
∆ =  pqrs ô!!&I,í���,�,�,�, É��,�,�,�, �V�

íWX
V

IWX % ≈ pq ô!!&I,í���,�,�,�, É��,�,�,�, �V�
íWX

V
IWX − 1%. 

(G28) Thus, 
!!&I,í���,�,�,�, É��,�,�,�, �V�

íWX
V

IWX ≈  1 + rs ô!!&I,í���,�,�,�, É��,�,�,�, �V�
íWX

V
IWX % = 1 + ∆pq. 

(G29) More importantly for what follows, ΔG is divided into two parts, ∆ = ∆® + ∆� , (G30) where 
∆® =  pqrs ô!!&I,í��,�,�,�, 

V�
íWX

V
IWX % =  pqrs ô!!&I,í���,�,�,�, �

V�
íWX

V
IWX % 

(G31) and 
∆� =  pqrs ô!!&I,í��,�,�,�, 

V�
íWX

V
IWX % = pqrs ô!!&I,íÊ���,�,�,�, �

V�
íWX

V
IWX %

= −pqrs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX %, 
(G32) so that 

!!&I,í���,�,�,�, �
V�

íWX
V

IWX ≈  1 + rs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX % = 1 + ∆®pq  
(G33) and 
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!!&I,í���,�,�,�, �
V�

íWX
V

IWX ≈  1 + rs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX % = 1 − ∆�pq . 
(G34)  Given the definition of &I,í, the molar reaction flow of reaction g/a can be rewritten as G�,õ�

= ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,í&I,íMI,í ����,�,�,�, �V�
íWX

V
IWX

− ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !!�γ�I,íc�I,í&I,íMI,í ����,�,�,�, �V�
íWX

V
IWX

= ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, �!!&I,í���,�,�,�, �
V�

íWX
V

IWX
V�

íWX
V

IWX
− ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !!�γ�I,íc�I,íMI,í ����,�,�,�, �!!&I,í���,�,�,�, �

V�
íWX

V
IWX

V�
íWX

V
IWX  . 

 (G35)  Given the expected characteristics of &I,í, the molar reaction flow of reaction g/a can be rewritten as 
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G�,õ�

= ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, �!!&I,í���,�,�,�, �
V�

íWX
V

IWX
V�

íWX
V

IWX
− ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !!�γ�I,íc�I,íMI,í ����,�,�,�, �!!&I,í���,�,�,�, �

V�
íWX

V
IWX

V�
íWX

V
IWX

≈ ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, � °1 + rs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX %±V�
íWX

V
IWX

− ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !!�γ�I,íc�I,íMI,í ����,�,�,�, � °1 + rs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX %±V�
íWX

V
IWX

= ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, � ª1 − ∆�pq «V�
íWX

V
IWX

− ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !!�γ�I,íc�I,íMI,í ����,�,�,�, � ª1 + ∆®pq «V�
íWX

V
IWX  . 

 (G36) Multiplying this equation by �~�~ yields 
G�,õ� = 1pq ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, � ¾pq − ∆�ÁV�

íWX
V

IWX
− 1pq ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, � [pq + ∆®]V�

íWX
V

IWX= S{,��,õ U��,õ + S�,{�,õ U{�,õ , (G37)  where G{�,õ = S{,��,õ U��,õ (G38) is the molar reaction flow of the products (P) of reaction g/a, 
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S{,��,õ = 1pq ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í���,�,õ,I,í�V�íWXVIWX Ë��,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, �V�
íWX

V
IWX  

(G39) is the coupled-flow-phenomenological coefficient linking G{�,õ to U��,õ , 
U��,õ = pq!!&I,í���,�,�,�, �

V�
íWX

V
IWX ≈ pq °1 + rs ô!!&I,í���,�,�,�, �

V�
íWX

V
IWX %± = pq − ∆� 

(G40) is the conjugate molar affinity of the reactants (R) of reaction g/a,  G��,õ = S�,{�,õ U{�,õ (G41) is the molar reaction flow of the reactants (R) of reaction g/a, 
S�,{�,õ = − 1pq ù � � MI,í���,�,�,�, �V�íWXVIWX¥ ¥ MI,í��{,�,õ,I,í�V�íWXVIWX Ë�®,�,õ !! �γ�I,íc�I,íMI,í ����,�,�,�, �V�

íWX
V

IWX  
(G42) is the coupled-flow-phenomenological coefficient linking G��,õ to U{�,õ, and 

U{�,õ = pq!!&I,í���,�,�,�, �
V�

íWX
V

IWX ≈ pq °1 + rs ô!!&I,í���,�,�,�, �
V�

íWX
V

IWX %± = pq + ∆® 
(G43) is the conjugate molar affinity of the products (P) of reaction g/a.  Taking Equations G21 to G23 into consideration together with Equations G37 to G43, it can be seen that S{,��,õ = S�,{�,õ  (G44) is a reciprocal relationship. Thus, the phenomenological coefficients (S{,��,õ  of Equation G39 and S�,{�,õ  of Equation G42) of the reaction flows (G{�,õ of Equation G38 and G��,õ  of Equation G41) included within G�,õ�  (Equation 37) yield identical results upon evaluation. In part, splitting G�,õ�  into two reactions flows,  
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G�,õ� = G{�,õ + G��,õ, (G45) was justified on the basis of S{,��,õ  and S�,{�,õ  being reciprocal. The split was also motivated by the search for the two molar reaction flows that, in the dissipation function (Equations G2 and G3), are needed to complement the conjugate molar affinities, U��,õ and U{�,õ, that Equation G37 was contrived to yield. Having split Equation G37 as shown, it is now possible to write the dissipation function for reaction g/a as Φ�,õ = G{�,õU{�,õ + G��,õU��,õ. (G46)  Equation G46 is a dissipation function for two directionally distinct reactions, which are the forward reaction that produces species a of component g, and the corresponding reverse reaction. The dissipation function that includes all such pairs of reactions for all species of component g can thus be written as 
Φ� = R Φ�,õ

V�

õWX . 
(G47) Likewise, the dissipation function that includes all such pairs of reactions for all species of all components can be written as 

Φ� = R Φ�
V�WV
�WX . 

(G48) Thus, the right-hand sides of Equations G48 and G3 can be equated to obtain 
Φ� = R G����

V�WV
�WX = R Φ�

V�WV
�WX . 

 (G49) Using first Equation 47 and then Equation 46, the right-most summation of this result can be expanded to yield 
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Φ� = R G����
V�WV
�WX = R Φ�

V�WV
�WX = R R Φ�,õ

V�

õWX
V�WV
�WX = R R�G{�,õU{�,õ + G��,õU��,õ�V�

õWX
V�WV
�WX . 

(G50) Assuming that, by definition, 
�� = R�U{�,õ + U��,õ�V�

õWX = pq R Æ!!&I,í���,�,�,�, �
V�

íWX
V

IWX + !!&I,í���,�,�,�, �
V�

íWX
V

IWX ÇV�

õWX , 
(G51) then 

G�� = ¥ �G{�,õU{�,õ + G��,õU��,õ�V�õWX¥ �U{�,õ + U��,õ�V�õWX , 
(G52) which would make G�� the conjugate-molar-affinity-average of the species-level molar reaction flows of component g.   Dimensionality and tensorial orderDimensionality and tensorial orderDimensionality and tensorial orderDimensionality and tensorial order     The dimensions of Ag are those of chemical potential, and Ag (Equation G51), the conjugate molar affinity of component g, can be considered a measure of the chemical potential of component g. (To be liberally flippant, one could say that the conjugate molar affinity quantifies how reactionary a component is at any given place and time.) As would be expected of a chemical potential, Ag is a scalar, as are the species-level conjugate molar affinities denoted as U��,õ (Equation G40) or U{�,õ (Equation G43). Hence, although Onsager referred to Ag as a force, he tended to put quotation marks about the word when doing so [Onsager, 1931a]. In contrast, as noted in the discussion of Equation G1, UHT, the conjugate molar force (Equations A2, A14 and I16) of solute component q, is a vector equal to -∇Uq, where Uq is the total molar potential of solute component q. Thus, Ag and Uq are dimensionally and tensorially equivalent, as are -∇Ag and UHT.  Similarly, despite their being referred to as flows, reaction flows, such as G�� at the 
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component level or G{�,õ (Equation G38) and G��,õ (Equation G41) at the species level, are scalars, and are dimensionally distinct from the molar flows of components, such as GHI (Equation G2), which are vectors. The reaction flows have the dimensions that would be obtained from a divergence of a molar flow. Thus, ∇ ∙ GHI and G�� are dimensionally and tensorially equivalent, as are GHI and (∇ ∙)ÊXG��, where (∇ ∙)ÊX is the inverse divergence operator (Sahoo, 2008).  In the dissipation function (Equation G2), products of pairs of vectors, GHI and UHI, are added to products of pairs of scalars, G�� and Ag, to obtain a scalar, Φ. Dimensionally, the product of any GHI and any UHI is the same as the product of any G�� and any Ag. However, while the product of two scalars yields a scalar, the product of two vectors can yield a scalar (tensorial order 0), a vector (tensorial order 1) or a dyad (tensorial order 2), depending on how the two vectors are multiplied (Kolecki, 2005). Thus, to ensure that each product in the dissipation function yields a scalar, each such product that involves two vectors must be an inner product. (As it happens, the inner product between two vectors will not yield a result of the standard form unless one of the vectors is represented covariantly and the other vector is represented contravariantly (Kolecki, 2005).)  Given the above, it can be stated that the following products between scalars, G��Ag, G��Uq, �∇ ∙ GHI�Ag, and �∇ ∙ GHI�Uq, are dimensionally and tensorially equivalent, both to each other, and to the following inner products between vectors, ¾(∇ ∙)ÊXG��Á ∙ (-∇Ag), ¾(∇ ∙)ÊXG��Á ∙ UHT, GHI ∙ (-∇Ag), and GHI ∙ UHT. It would seem, then, that the divergence of a molar flow might be a molar reaction flow, and the inverse divergence of a molar reaction flow might be a molar flow. It seems clear, though, that ∇ ∙ GHI does not equal G�� , and GHI does not equal (∇ ∙)ÊXG�� . Likewise, in general, Ag cannot be equated to Uq, and -∇Ag cannot be equated to UHT. It may, however, be alright to say that, in general, Ag is part of Uq and thus -∇Ag is part of UHT.  (See Moody and Shepard, 2004, for a previous version of the material in this section.)  
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= -1.  Calculating the contribution of the Earth’s gravitational field to AUC is similar to calculating the contribution of angular acceleration to AUC. The same standard thermodynamic relation, 
vw^Iw} x�,y,~,| = OIP�I , 

(H1, from A7, which see) applies to the chemical potential gradient both cases. In both cases, Bernoulli’s equation also applies, but for the case of the contribution of the Earth’s gravitational field, the form used, neglecting vector notation, is  
} = }Q + bc � ��ö+�

+,  , 
(H2) where, at a given value of ξ, P is the pressure at z = za, P0 is the pressure at z = z0, and the rest of the parameters have been defined previously.  As the density of the solvent, ρ0, tends to be constant with, or only weakly dependent on, z, (∂ρ0/∂z)ξ,t is almost certain to be negligible. As ρ is likely to be dominated by ρ0, (∂ρ/∂z)ξ,t is likely to be negligible. Finally, (∂gE/∂z)ξ,t = 0 throughout the system by virtue of scale. Thus, the sought after derivative of the preceding expression for P can be approximated as  

vw}wöx�,y ≅ �bc  , 
(H3) 
so that 

vw^Iw} x�,y,~,| vw}wöx�,y ≅ OIP�I�bc  . 
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(H4) As shown in Equation A2, the gradient of the molar gravitational potential of component k due to the Earth’s gravitational acceleration is equal to Mk∇gEh, which, given dz/dh = -1, makes –Mk∇gEz = Mk∇gEh. Thus, -Mk∇gEz = -MkgE, and for component k, the sum of the gravitational and chemical potential gradient terms involving gE is –Mk∇gEz + (∂μ/∂P)ξ,t,T,c(∂P/∂z)ξ,t = -Mk(1 - P�Iρ)gE.  For MkP�Iρ ≤ 107 g/mol (approximately), (∂μ/∂P)ξ,t,T,c(∂P/∂z)ξ,t ≤ 1010 g∙cm/mol∙s2. While the upper range of this value may seem significant, it is still less than 0.2% of MkP�Iρωmin2rmin, which is the radially directed molar gravitational force at the lowest possible radial position (approximately 5.7 cm), rmin, and the lowest practical angular velocity (2π[3,000 RPM]/[60 s/min]), ωmin, in the XL-A/I. Thus, the gravitational force term, MkP�IρgE, is usually negligible (MkP�IρgE < 0.002∙MkP�Iρωmin2rmin). In general, with a vertically mounted rotor, the height of an AUC system would have to be much greater than the typical maximum of 1.2 cm, or |Mk(1 - P�Iρ)| would have to exceed approximately 3∙107 g/mol, before Mk(1 - P�Iρ)gE would make a substantial contribution to a vertically oriented concentration gradient.  For |Mk(1 - P�Iρ)| >> 3∙107 g/mol, reducing Δh (by using a 0.3 cm or shorter optical pathlength centrepiece, for example) could reduce the ultimate extent of the difference in ck across Δh. The main problem with significant vertical concentration gradients is the extent to which the correspondingly significant vertical mass flows would couple with radial mass flows. For any system in which |Mk(1 - P�Iρ)| >> 3∙107 g/mol, coupled vertical and radial flows would likely render the data highly challenging to analyse properly. Furthermore, the (∂c/∂z)ξ,t portion of the data that would be needed to analyse such systems cannot yet be collected in the XL-A/I.  ReferencesReferencesReferencesReferences     [H1] Svedberg, T. (1966) The Ultracentrifuge, Nobel Lecture, May 19, 1927. In “Nobel Lectures, Chemistry 1922-1941.” PP. 67-83. Elsevier Publishing Company, Amsterdam. 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

136 

 

  Section I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multi----species componentspecies componentspecies componentspecies component     The molar mass of species e of component k is represented by Mk,e, the chemical potential of species e of component k is represented by μk,e, and the number of molecules of species e of component k is represented by Nk,e. The number of moles of species e of component k is equal to Nk,e/NA, where NA is Avogadro’s number. Defining V as the volume within which the Nk,e molecules are found, and representing the molar concentration of species e of component k by mk,e, the relationship, 
/I,í = �I,í��0 , 

(I1) is obtained. The mass concentration of species e of component k is thus given by NI,í = OI,í/I,í  . (I2)  Letting nk represent the number of species that constitute solute component k, and indexing the species by e, the number of molecules of all species of component k is given by  
�I = R �I,í

V�
íWX  , 

(I3) the total molar concentration of all species of component k is given by  
(/I)yYyõû = R/I,í

V�
íWX  , 

(I4)  and the mass concentration of all species of component k is given by  
NI = R NI,í

V�
íWX . 
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(I5)  The total molar flow of all species of solute component k is given by 
�GHI�yYyõû = R GHI,í

V�
íWX = R/I,íPHI,í

V�
íWX = (/I)yYyõû ¥ /I,íPHI,íV�íWX¥ /I,íV�íWX = (/I)yYyõû ¥ �I,í��0 PHI,íV�íWX¥ �I,í��0V�íWX

= (/I)yYyõû ¥ �I,íPHI,íV�íWX¥ �I,íV�íWX = (/I)yYyõû(PHI)Ã , 
(I6) where PHI,í  is the velocity of species e of component k in the system frame of reference, (PHI)Ã is the number-average velocity for all species of component k in the system frame of reference, and use has been made of the definition of a component’s molar flow as the product of its molar concentration and its velocity in the system frame of reference, which for component k is denoted as PHI.   The total molar concentration of all species of component k can be expressed as  

(/I)yYyõû = R/I,í
V�

íWX = R NI,íOI,í
V�

íWX = NI ¥ NI,íOI,íV�íWX¥ NI,íV�íWX = NI(OI)Ã , 
(I7)  where (Mk)N is the number-average molar mass for all species of component k, so that 

�GHI�yYyõû = (/I)yYyõû(PHI)Ã = NI(PHI)Ã(OI)Ã  . 
(I8)  Similarly, the mass flow of solute component k can be related to the mass and molar flows of all species of component k by 

[HI = R [HI,í
V�

íWX = R OI,íGHI,í
V�

íWX = R NI,íPHI,í
V�

íWX = NI ¥ NI,íPHI,íV�íWX¥ NI,íV�íWX = NI(PHI)� , 
(I9) where (vk)w is the weight-average velocity for all species of component k, and use has been 
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made of the definition of a component’s mass flow as the product of its mass concentration and its velocity in the system frame of reference. �GHI�yYyõû is now defined as GHI , the molar 
flow of component k, and from the previous two equations, the relationship between [HI and GHI is given by 

[HI = NI(PHI)� = NI(PHI)Ã (PHI)�(PHI)Ã = (OI)Ã (PHI)�(PHI)Ã GHI = (OI)1GHI , 
(I10) where (Mk)X is the coefficient needed to convert from the molar flow of component k to the mass flow of component k. Solving Equation I10 for (Mk)X in terms of the mass and molar flows of component k yields  

(OI)1 = [HIGHI  . 
(I11) Using Equation I9 to express [HI as the sum of all OI,íGHI,í of component k results in 

(OI)1 = [HIGHI = ¥ OI,íGHI,íV�íWX GHI = ¥ OI,íGHI,íV�íWX¥ GHI,íV�íWX = (OI)2 , 
(I12) where (Mk)J is the molar-flow-average molar mass of solute component k. This equation is undefined for the case of GHI = 0, but the limit as GHI approaches zero, the limit as all GHI,í approach zero, or the limit as all PHI,í  approach zero, can be used to evaluate (Mk)J in these zero-flow-in-component-k cases.  As 

(OI)2 = ¥ OI,íGHI,íV�íWX¥ GHI,íV�íWX = ¥ OI,í/I,íPHI,íV�íWX¥ /I,íPHI,íV�íWX  , 
(I13) the limit as the velocity of each species of solute component k approaches zero is 

limõûû 3LH�, →Q(OI)2 = limõûû 3LH�, →Q ¥ OI,í/I,íPHI,íV�íWX¥ /I,íPHI,íV�íWX = ¥ OI,í/I,íV�íWX¥ /I,íV�íWX = (OI)Ã , 
(I14) 
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which is the number-average molar mass of solute component k. As (Mk)J is simpler to describe than its equivalent, (Mk)X, (Mk)J is used in the definitions of Dk, sk and Ik in Section A.   Equations A1, A2, I10 and I12 can be combined to yield 
[HI = (OI)2 ôR SI,TUHT

V
TWX + NIOI PHQ% = (OI)2 ôR SI,T�OT[_`mH − ∇bcℎ]  − ∇^T�V

TWX + NIOI PHQ% . 
(I15)  Using Equation A2, the gradient of Uq, the total molar potential of solute component q, can be written as ∇\T = −UHT = −�OT[_`mH − ∇bcℎ]  − ∇^T� , (I16) in which UHT is the conjugate molar force (Equations A2 and A14) of component q. (As noted in Section ASection ASection ASection A (An application of irreversible thermodynamics to analytical An application of irreversible thermodynamics to analytical An application of irreversible thermodynamics to analytical An application of irreversible thermodynamics to analytical ultracentrifugationultracentrifugationultracentrifugationultracentrifugation), and again in Section HSection HSection HSection H (The contribution of the Earth’s gravitational The contribution of the Earth’s gravitational The contribution of the Earth’s gravitational The contribution of the Earth’s gravitational fieldfieldfieldfield    to transport in AUCto transport in AUCto transport in AUCto transport in AUC), the gravitational potential due to angular acceleration is -ω2ξ, and the gravitational field due to angular acceleration is _`∇a = _`mH, where mH is the radial vector.)  As Uq is a molar quantity, it can be calculated from the number average of its species-specific parts. Thus, 

\T = ¥ /T,õ\T,õV�õWX¥ /T,õV�õWX = ¥ �T,õ\T,õV�õWX¥ �T,õV�õWX = ¥ �T,õ^T,õV�õWX¥ �T,õV�õWX − [_`a − bcℎ] ¥ �T,õOT,õV�õWX¥ �T,õV�õWX= �^T�Ã − [_`a − bcℎ]�OT�Ã , (I17) where the nq species of component q are indexed by a, so that so that, for species a of component q, Uq,a, μq,a and Mq,a are, respectively, the total molar potential, the chemical potential, and the molar mass; while for component q, Uq, (μq)N and (Mq)N are, respectively, the number average of the total molar potential, the number average of the chemical 
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potential, and the number average of the molar mass, with each number average being for all species of component q. (Equation M15 shows (Mq)N.)  In what follows, (∇Mq)N is the number-average gradient of the molar mass for all species of component q (Equation M19), and (∇μq)N is the number-average gradient of the chemical potential for all species of component q.  If each Nq,a were invariant with space, each ∇Nq,a would equal zero everywhere, in which case, throughout the system, ∇(Mq)N (Equation M18) would equal (∇Mq)N = 0, and ∇(μq)N would equal (∇μq)N. This result holds for any value of nq. For the special case of nq = 1, at each point in space, there is only one ∇Nq,a, and regardless of whether it equals zero, ∇(Mq)N = (∇Mq)N = 0, and ∇(μq)N = (∇μq)N.  Without assuming that each ∇Nq,a is equal to zero, the gradient of the total molar potential of solute component  q must be expressed in a more general form, such as 
∇\T = R ∇\T,õ

V�
õWX = − R UHT,õ

V�
õWX = ∇�^T�Ã − �OT�Ã∇[_`ξ − bcℎ] − [_`ξ − bcℎ]∇�OT�Ã

= ∇�^T�Ã − [_`mH − ∇bcℎ]�OT�Ã − [_`ξ − bcℎ]∇�OT�Ã , (I18) where UHT,õdenotes the conjugate molar force of species a of component q. Defining a gradient-modified-average molar mass for all species of component q as 
�OT�� = �OT�Ã∇[_`ξ − bcℎ] + [_`ξ − bcℎ]∇�OT�Ã∇[_`ξ − bcℎ]  , 

(I19) the gradient of the total molar potential of solute component  q becomes ∇\T = ∇�^T�Ã − [_`mH − ∇bcℎ]�OT�� . 
(I20) A comparison of Equations A2 and I20 shows that ∇μq = ∇(μq)N and Mq = (Mq)g. Equation I19 (of which Equation M17 is an alternative form) shows that 
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lim∇�4��é⟶Q�OT�� = �OT�Ã . 
(I21)  This result is a consequence of 

lim677 ∇Ã�,�⟶Q ∇�OT�Ã = lim677 ∇Ã�,�⟶Q ∇ ù¥ �T,õOT,õV�õWX¥ �T,õV�õWX Ë = lim677 ∇Ã�,�⟶Q ¥ �T,õ∇OT,õV�õWX¥ �T,õV�õWX = 0 , 
(I22) which, as described previously, is applicable for any value of nq. For the case of nq = 1, ∇(Mq)N is always equal to zero. (A more detailed examination of (Mq)N, (∇Mq)N, ∇(Mq)N and (Mq)g is presented in Section M: Section M: Section M: Section M: Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant Effects of solvent density on (apparent) reduced buoyant massmassmassmass.)  In contrast,  

lim677 ∇Ã�,�⟶Q ∇�^T�Ã = lim677 ∇Ã�,�⟶Q ∇ ù¥ �T,õ^T,õV�õWX¥ �T,õV�õWX Ë = lim677 ∇Ã�,�⟶Q ¥ �T,õ∇^T,õV�õWX¥ �T,õV�õWX = �∇^T�Ã , 
(I23) which reflects the fact that, even when each ∇Nq,a equals zero, under some conditions, some or all ∇μq,a may differ from zero, as a result of which, (∇μq)N may also differ from zero. (For example, concentration gradients in components other than q may result in (∇μq)N being nonzero despite all ∇Nq,a being equal to zero.) Equation I23 is applicable for any value of nq. For the case of nq = 1, ∇(μq)N is always equal to (∇μq)N.  In addition to its utility in Equation A2, the description of ∇μq as ∇(μq)N is directly applicable to Equations A5 to A14, and thence, to every subsequent description of the continuity equation. The derivation of Equation A5 from ∇μq begins with 
∇�^T�Ã = ∇^T = �w^Twa �y vwawmxy

= ô�w^Twq �y,{,| vwqwaxy + �w^Tw} �y,~,| vw}waxy + R �w^TwN��y,~,{,|���
vwN�wa xy

V
�WX % vwawmxy , 

(I24) 
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where gradients in dimensions other than ξ are assumed equal to zero. As ¶¸~¸�·y is assumed 
to equal zero, the product, ¶¸��¸~ ·y,{,| ¶¸~¸�·y = 0. Furthermore, as each ¶¸��¸|�·y,~,{,|��� ¶¸|�¸� ·y is 
adequately treated in terms of component concentrations and activity coefficients (Equation A12), it is not necessary to expand these parts of Equation I24 in terms of all the Nq,a and μq,a parameters that comprise (μq)N. Thus, the only part of Equation I24 that must be dealt with in fully expanded form is 

�w^Tw} �y,~,| vw}waxy = ùw�^T�Ãw} Ëy,~,| vw}waxy =
Î
ÏÐw �¥ �T,õ^T,õV�õWX¥ �T,õV�õWX �

w} Ò
ÓÔ

y,~,|
vw}waxy

=
89:
9;¥ �T,õ vw^T,õw} xy,~,|V�õWX ¥ �T,õV�õWX + ¥ ^T,õ vw�T,õw} xy,~,|V�õWX ¥ �T,õV�õWX

− �^T�Ã îïï
ïð¥ vw�T,õw} xy,~,|V�õWX¥ �T,õV�õWX ñòò

òó
<=
> vw}waxy

= ��OTP�T�Ã + ?�^T�{ − �^T�Ã@�wrs�Tw} �y,~,|� vw}waxy, 
(I25)  where: 

�OTP�T�Ã = z�w^Tw} �y,~,|�Ã = ¥ �T,õ vw^T,õw} xy,~,|V�õWX ¥ �T,õV�õWX = ¥ �T,õOT,õP�T,õV�õWX¥ �T,õV�õWX   
(I26)  is the number average of the product, OT,õP�T,õ, for all species of component q, with P�T,õ being the partial specific volume of the system with respect to species a of solute component q; 
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�^T�{ = ¥ ^T,õ vw�T,õw} xy,~,|V�õWX
¥ vw�T,õw} xy,~,|V�õWX

  
(I27)  is defined as the pressure-gradient average of μq; 

�wrs�Tw} �y,~,| = vw�Tw} xy,~,|�T = ¥ vw�T,õw} xy,~,|V�õWX¥ �T,õV�õWX  ; 
(I28) and (μq)N is previously defined. Using (Mq)g to define 

�P�T�{� = �OTP�T�Ã + ?�^T�{ − �^T�Ã@ vwrs�Tw} xy,~,|�OT��  , 
(I29)  which is a pressure-and-gradient-modified-average partial specific volume of the system with respect to component q, permits ¶¸��¸{ ·y,~,| ¶¸{¸�·y to be described as 
�w^Tw} �y,~,| vw}waxy = ��OTP�T�Ã + ?�^T�{ − �^T�Ã@�wrs�Tw} �y,~,|� vw}waxy = �OT���P�T�{� vw}waxy. 
(I30)   Section J: Form of the general solution from Section J: Form of the general solution from Section J: Form of the general solution from Section J: Form of the general solution from Equation C32Equation C32Equation C32Equation C32     The solution to the continuity equation for AUC can be written as 
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R R R R NI,í,ÂÉ Æ� }Â}Ì�a�½
��

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX

− R �§I,í,ÅÉ¤I,í,ÅÉ � }Å}Â �}Ì�a a�a�½
�� − ¤I,í,ÅÉ � }Å �}Â�a �}Ì�a a�a�½

�� �Ã
ÅWX ∆Ë

= R R R R NI,í,ÂÊ Æ� }Â}Ì�a�½
��

Ã
ÌWX

Ã
ÂWX

V�
íWX

V
IWX

+ R �§I,í,ÅÊ¤I,í,ÅÊ � }Å}Â �}Ì�a a�a�½
�� − ¤I,í,ÅÊ � }Å �}Â�a �}Ì�a a�a�½

�� �Ã
ÅWX ∆Ë . 

(J1, from Equation C32) General virial expansions of the transport coefficients can be defined as 
§I,í,ÅÊ = §°I,í,ÅÊ

Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
ÓÔ  

(J2) 
and 
 

¤I,í,ÅÊ = ¤°I,í,ÅÊ
Î
ÏÐ¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÊ¿�NT,õ,ÅÊV�õWXVTWX³¿WX Ò
ÓÔ , 

(J3) 
for time t, while for time [t + Δt], they can be defined as 
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§I,í,ÅÉ = §°I,í,ÅÉ
Î
ÏÐ¥ ¥ ¥ Õ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
ÓÔ  

(J4) and 
¤I,í,ÅÉ = ¤°I,í,ÅÉ

Î
ÏÐ¥ ¥ ¥ Ñ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX

¥ ¥ ¥ ℎ¿,I,í,T,õ �NT,õ,ÅÉ¿�NT,õ,ÅÉV�õWXVTWX³¿WX Ò
ÓÔ , 

(J5) where n is the number of solute components, nq is the number of species that constitute solute component q, D°k,e,j- at all ξ equals Dk,e at ξj at time t in the limit as c approaches 0, D°k,e,j+ at all ξ equals Dk,e at ξj at time [t + Δt] in the limit as c approaches 0, σ°k,e,j- at all ξ equals σk,e at ξj at time t in the limit as c approaches 0, σ°k,e,j+ at all ξ equals σk,e at ξj at time [t + Δt] in the limit as c approaches 0, cq,a,j- is the ξ-independent concentration coefficient of species a of solute component q at time t, cq,a,j+ is the ξ-independent concentration coefficient of species a of solute component q at time [t + Δt], and where pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a are the bth of up to an infinite number of species-e-of-component-k affecting density increment, thermodynamic nonideality, and viscosity coefficients, respectively. By definition, ¥ ¥ ÕX,I,í,T,õV�õWXVTWX , ¥ ¥ ÑX,I,í,T,õV�õWXVTWX  and ¥ ¥ ℎX,I,í,T,õV�õWXVTWX  are each equal to 1. (See Section D for the component-based equivalents of these virial expansions.)   Henceforth, cq,a is used to denote the concentration of species a of solute component q at either time t or time [t + Δt], and some unspecified position, ξj.  Individually, the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality pb,k,e,q,a yields the bth term for the contribution of cq,a to the density increment of the system as it affects the transport of species e of component k, the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality yb,k,e,q,a yields the bth term for the contribution of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e 
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of component k, and the product of b(cq,a)b - 1 with the corresponding coefficient of proportionality hb,k,e,q,a yields the bth term for the contribution of cq,a to the viscosity of the system as it affects the transport of species e of component k, where b(cq,a)b - 1 = d(cq,a)b/dcq,a.  Collectively, the sum of products given by ¥ ¥ Õ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the density increment effect of the system as it affects the transport of species e of component k, the sum of products given by ¥ ¥ Ñ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the thermodynamic nonideality of the system as it affects the transport of species e of component k, and the sum of products given by ¥ ¥ ℎ¿,I,í,T,õØNT,õ¿ÊXV�õWX³¿W`  is a measure of the total contribution of cq,a to the viscosity of the system as it affects the transport of species e of component k.   In writing Equations J2 to J5, it was assumed that Δpb,k,e,q,a/Δj = 0, Δyb,k,e,q,a/Δj = 0 and Δhb,k,e,q,a/Δj = 0 for any given pair of species e and a of their respective components k and q, even in the case of solvent compressibility. If required to deal adequately with the case of solvent compressibility, pb,k,e,q,a, yb,k,e,q,a and hb,k,e,q,a can be replaced with their respective j- and t-dependent coefficients, which would be pb,k,e,q,a,j-, yb,k,e,q,a,j- and hb,k,e,q,a,j- at time t, and would be pb,k,e,q,a,j+, yb,k,e,q,a,j+ and hb,k,e,q,a,j+ at time [t + Δt], where, denoting a coefficient at either time by dropping the – or + suffix, Δpb,k,e,q,a,j/Δj ≠ 0, Δyb,k,e,q,a,j/Δj ≠ 0 and Δhb,k,e,q,a,j/Δj ≠ 0 for any given pair of species e and a of their respective components k and q.  In the general solution, Equation J1 is solved iteratively as follows: 1. Using ck,e,h- for cq,a,j+ (where k = q, e = a and h = j) in Equations J4 and J5, the second approximate solution (Section C) is used to calculate all (ck,e,h+)0, which are the initial approximations of the true ck,e,h+ values; 2. Using (ck,e,h+)0 for cq,a,j+ (where k = q, e = a and h = j) in Equations J4 and J5, the second approximate solution (Section C) is used to calculate all (ck,e,h+)1, which are the first approximations of the true ck,e,j+ values that can be tested against an 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

147 

 

acceptance criterion of convergence (see Equation J6, below); 3. Step 2 is iterated until the acceptance criterion of convergence (Equation J6) is met, so that, at iteration m, using (ck,e,h+)m-1 for cq,a,j+ (where k = q, e = a and h = j) in Equations J4 and J5, the second approximate solution (Section C) is used to calculate all (ck,e,h+)m, which are the mth approximations of the true ck,e,h+ values that can be tested against an acceptance criterion of convergence (Equation J6).  An example of an acceptance criterion of convergence would be a chosen value of Ξmin, which is repeatedly compared against 
ΞÀ = ¥ ¥ ¥ B?�NI,í,ÂÉ�À − �NI,í,ÂÉ�ÀÊX@ 0Â0 C`ÃÂWXV�íWXVIWX ¶¥ ¥ ¥ 0Â0 NI,í,ÂÊÃÂWXV�íWXVIWX ·` = (N�KK)À(NÊ)`  , 

 (J6) where (cRSS)m is the residual sum of squares for the final total solute concentration at iteration m relative to iteration (m - 1), Vh is the volume of spatial element h, V is the total solution volume, and (c-)2 is the square of the initial (time t) total solute concentration. (With the height of the spatial element given by Δz and the length of the spatial element given by Δξh = (Δξh- + Δξh+)/2 (see Equations B54 to B57, and let Δξ1- = ΔξN+ = 0), Vh = φ(Δz)Δξh, where φ is the angular coordinate (the segment of arc) of the system, which has the geometry of a cylindrical sector.) The squared raw sum of all initial solute mass values is identical to V(c-)2. Convergence is considered to be adequate if Ξm ≤ Ξmin. Once this convergence criterion is met, (ck,e,h+)m is considered to be equal to ck,e,h+.  Section K: Reaction flow algorithmsSection K: Reaction flow algorithmsSection K: Reaction flow algorithmsSection K: Reaction flow algorithms     Notation and other common featuresNotation and other common featuresNotation and other common featuresNotation and other common features     An iterative process is used to calculate the concentrations of solutes that participate in each chemical reaction, a/g. As noted in the discussion preceding Equation G12, reaction a/g is defined as the sole explicit reaction that produces species a of component g. In 
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addition to the restriction of just one product species per reaction, the algorithms presented here are restricted to just 1 or 2 reactants per reaction.  The constraint of just one reaction per product could be cheated by giving identical characteristics to multiple species of a component, and summing the concentrations of the identical species, each of which is the product of a unique reaction. In principle, it should also be possible to model more complicated reactions by linking multiple reactions. (For example, if two reactions share one product, the shared product could be considered an intermediate, and the reactants of the second reaction could be viewed as the ultimate products of the first reaction.) The algorithms presented here are not well optimised for linked reactions, however.  Throughout this section, the concentration, activity coefficient and molar mass of species e of solute component k are denoted as ck,e, γk,e and Mk,e, respectively. As with the definition of reaction a/g, much of the reaction-specific notation here follows that of Section G. Thus, kf,g,a is the forward rate constant (hence the subscript f) and kr,g,a is the reverse rate constant (hence the subscript r) of reaction a/g. Additionally, νX,g,a,k,e is the stoichiometry of species e of component k in reaction a/g, where X = R if species e of component k is a reactant, and X = P if species e of component k is a product. As in Section G, the reactant stoichiometries are negatively signed, and the product stoichiometries are positively signed. (See Equations G13 and G16.)  As there is only one product per reaction, it must consist solely of species a of component g. Thus, the stoichiometry of the product species is νP,g,a,g,a, and νP,g,a,g,a is the only nonzero product stoichiometry of reaction a/g. By the convention adopted in Section G, the species index is greater than 1 for any higher-order species, and as the product is a higher-order species by definition, a > 1. (See the discussion preceding Equation G12, where the simplest species of each component is assigned the lowest number, 1, of the species index.) The concentration, activity coefficient and molar mass of the product are denoted as cg,a, γg,a and Mg,a, respectively.  
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A minimum of one reactant must be something other than species a of component g. Thus, one reactant species is denoted as species r1 of component g, where r1 may equal 1, but r1 cannot equal a. The stoichiometry of reactant species r1 of component g in reaction a/g is νR,g,a,g,r1. The concentration, activity coefficient and molar mass of species r1 of component g are denoted as cg,r1, γg,r1 and Mg,r1, respectively.  There may be a second reactant species, which could be any species other than species a or species r1 of component g. If present, then, the second reactant species is denoted as species r2 of component q. If q ≠ g, r2 may be any species of component q. If q = g, however, r2 cannot equal r1 or a. The stoichiometry of reactant species r2 of component q in reaction a/g is νR,g,a,q,r2. The concentration, activity coefficient and molar mass of species r2 of component q are denoted as cq,r2, γq,r2 and Mq,r2, respectively.   In typical usage, each stoichiometry is integral, but integral values are not required for the algorithms. As currently implemented [Moody, 2012a; Moody, 2012b], γk,e is always equal to 1 in all reaction flow calculations. To show how to work with values of γk,e other than 1, however, γk,e is retained in many of the expressions presented here. Similarly, to present the most general case possible, some of the expressions shown are applicable to reactions in which more than 2 reactants form more than 1 product.  The minimum number of iterations is equal to the total number of reactant stoichiometries, νtotal, for which νR,g,a,k,e ≠ 0. (See Equation G12.) Thus, at each spatial element, ξh (Equation B36), for each time increment, Δtε (Equation B35), the flow of each reaction, a/g, is calculated at least νtotal times. In each of the νtotal iterations, the reaction flow throughout the system is calculated for all reactions. Additionally, in each of the νtotal iterations, the flow of reaction a/g at each ξh is calculated Ra/g times, where Ra/g is the total number of all reactant species for reaction a/g. (With the algorithms restricted to a two-reactant maximum, Ra/g is either 1 or 2.)  In general, Ra/g ≤ νtotal. If there is more than one reaction, Ra/g < νtotal. Where multiple reactions are present, the order in which their reaction flows are calculated may affect the 
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outcome. The multiple iterations of the full sequence of reaction flow calculations within Δtε are meant to minimise such order-specific effects. Toward that end, where possible, species indices are chosen to ensure that the Ra/g iterations of a given reaction are not consecutive. (The Ra/g iterations will be consecutive if the species indices of the corresponding reactants do not encompass the species index of a reactant from another reaction. Conventions adopted for the species index, e, are described in the discussion preceding Equation G12.)  Mass conservationMass conservationMass conservationMass conservation     The total concentration of all species of reaction a/g at a given ξh within Δtε is denoted as ca/g. At a given ξh, within Δtε, ca/g remains constant, but the concentration of each species of reaction a/g may change over Δtε. Henceforth, a minus subscript is used to denote a concentration at the start of Δtε, and a plus subscript is used to denote a concentration at the end of Δtε. Thus, in terms of the total concentration, in the case of a two-reactant, one-product reaction, the mass conservation of all species of reaction a/g at a given ξh within Δtε can be expressed as Nõ/� = c�,õÊ + c�,®XÊ + cT,®`Ê = c�,õÉ + c�,®XÉ + cT,®`É . (K1) Additionally, in the case of a two-reactant, one-product reaction, the total mass of each reactant, expressed as the mass of that species that would be present if the product completely dissociated, is conserved at a given ξh within Δtε. Thus, the concentration of species r1 of component g that would be present if the product completely dissociated to reactants can be expressed as 
N�X = ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ c�,õÊ + c�,®XÊ = ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ c�,õÉ + c�,®XÉ , 

(K2) and the concentration of species r2 of component q that would be present if the product completely dissociated to reactants can be expressed as 
NT` = ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ c�,õÊ + cT,®`Ê = ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ c�,õÉ + cT,®`É . 

(K3) 
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(See Equation K13.) Respectively, Equations K2 and K3 reflect the fact that cg1and cq2 are conserved at a given ξh within Δtε. The sum of Equations K2 and K3 yields ca/g = cg1+ cq2.  Finally, in the case of a two-reactant, one-product reaction, at a given ξh, the concentration changes per Δtε are ∆c�,õ = c�,õÉ − c�,õÊ , (K4) ∆c�,®X = c�,®XÉ − c�,®XÊ  (K5) and ∆cT,®` = cT,®`É − cT,®`Ê , (K6) where, by conservation of mass, ∆c�,õ + ∆c�,®X + ∆cT,®` = 0 . (K7) Once cg,a+, cg,r1+, cq,r2+ and all other species concentrations pertaining to the end of Δtε have been determined, they become, respectively, cg,a-, cg,r1-, cq,r2- and all other species concentrations pertaining to the start of Δtε+1, during which they are likely to change again due, as in prior time increments, to mass flows and reaction flows. In the following discussions of reaction flows, products are described as being formed from the association of reactants, and reactants are described as being formed from the dissociation of products. Such descriptions apply well to mass-action interactions, but are not well suited for some other types of reactions, such as conformational changes. Once the subject of two-reactant, one-product reactions has been thoroughly covered, however, the application of the algorithms will be generalised to include one-reactant, one-product reactions.  Algorithm for reaction flows that are slow, relative to ΔtAlgorithm for reaction flows that are slow, relative to ΔtAlgorithm for reaction flows that are slow, relative to ΔtAlgorithm for reaction flows that are slow, relative to Δtεεεε     When a reaction does not fully equilibrate within a given period of time, its net reaction 
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flow is nonzero for that time. Thus, if a reaction, a/g, is judged too slow to equilibrate within some time increment of interest, its reactant and product concentrations can be calculated on the basis of the product of the net reaction flow and Δtε, 
ô��,�,õ !!�γI,ícI,í����,�,�,�, �V�

íWX
V

IWX − �®,�,õ !!�γI,ícI,í����,�,�,�, �V�
íWX

V
IWX %∆D , 

(K8) which is just Expression G17 multiplied by the reduced time increment, Δtτ = Δtε/τtotal, where τtotal = νtotalRa/g, and τ is an index for which 1 ≤ τ ≤ τtotal. Expression K8 describes the flow of reaction a/g during Δtτ, and is applied τtotal times per Δtε, thereby yielding the flow of reaction a/g during Δtε. Here, the concentration, ck,e, is that which applies to species e of component k at the start of Δtτ. (At the start of Δtε, ck,e = ck,e-.)  For reaction a/g, the portion of the products that dissociates to form reactants during Δtτ, expressed as a concentration, is 
F®,�,õ = ô�®,�,õ !!�γI,ícI,í����,�,�,�, �V�

íWX
V

IWX %∆D , 
(K9)  and the portion of the reactants that associates to form products during Δtτ, expressed as a concentration, is 

F�,�,õ = ô��,�,õ !!�γI,ícI,í����,�,�,�, �V�
íWX

V
IWX %∆D , 

(K10) where the subscript r refers to the reverse reaction, and the subscript f refers to the forward reaction.  The current algorithm is restricted to reactions in which 1 or 2 reactants form just 1 product. As there is only one product per reaction, it must consist solely of species a of component g. Thus, the stoichiometry of the product species is νP,g,a,g,a, and with νP,g,a,g,a being the only nonzero product stoichiometry of reaction a/g, Equation K9 simplifies to 
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F®,�,õ = ª�®,�,õ�γ�,õc�,õ����,�,�,�,��« ∆D , 
(K11) where Cr,g,a is the portion of the concentration of the product, species a of component g, that dissociates to form the reactants, species r1 of component g and species r2 of component q. Here, the concentration, cg,a, is that which applies to species a of component g at the start of Δtτ. (At the start of Δtε, cg,a = cg,a-.)  Of the reactant species, νR,g,a,g,r1 and νR,g,a,q,r2 are the only nonzero stoichiometries of reaction a/g, as a result of which, Equation K10 simplifies to 

F�,�,õ = ª��,�,õ�γ�,®Xc�,®X����,�,�,�,Gå��γT,®`cT,®`����,�,�,�,Gµ�« ∆D , 
(K12) where Cf,g,a is the portion of the concentration of the reactants, species r1 of component g and species r2 of component q, that associates to form the product, species a of component g. Here, the concentrations, cg,r1 and cq,r2, are those which apply, respectively, to species r1 of component g and species r2 of component q at the start of Δtτ. (At the start of Δtε, cg,r1 = cg,r1- and cq,r2 = cq,r2-.)  Given that ��{,�,õ,�,õ�O�,õ = ���,�,õ,�,®X�O�,®X + ���,�,õ,T,®`�OT,®` , (K13) the portion of Cf,g,a that consists of species r1 of component g is given by 

F�,�,®X = ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ F�,�,õ , 
(K14) and the portion of Cf,g,a that consists of species r2 of component q is given by 

F�,T,®` = ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ F�,�,õ = F�,�,õ − F�,�,®X . 
(K15)  
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The change in cg,a per Δtτ is �∆c�,õ�D = F�,�,õ − F®,�,õ , (K16) the change in cg,r1 per Δtτ is 
�∆c�,®X�D = ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ �F®,�,õ − F�,�,õ�  

(K17) and the change in cq,r2 per Δtτ is 
�∆cT,®`�D = −�∆c�,õ�D  − �∆c�,®X�D = �1 − ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ � �F®,�,õ − F�,�,õ�

= ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ �F®,�,õ − F�,�,õ� . 
(K18)  Equations K16 to K18 form the basis of a test to determine whether reaction a/g is slow relative to Δtτ. The test employs Cr,g,a- and Cf,g,a-, which, respectively, are the values of Cr,g,a and Cf,g,a at the start of Δtε. If γ�,õc�,õÊ > F®,�,õ Ê , (K19) 

γ�,®Xc�,®XÊ > ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ F�,�,õÊ  
(K20) and 

γT,®`cT,®`Ê > ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ F�,�,õÊ , 
(K21) from which it follows that �γ�,õc�,õÊ + γ�,®Xc�,®XÊ + γT,®`cT,®`Ê� − �F®,�,õÊ + F�,�,õÊ� > 0 , (K22) then reaction a/g is judged to equilibrate slowly enough, relative to Δtτ, that Equations K11 
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and K12, or more generally, Equations K9 and K10, can be used to calculate the changes in the reactant and product concentrations. If, relative to Δtτ, reaction a/g is slow enough that Equations K19 to K21 hold, then, relative to Δtε = τtotalΔtτ, reaction a/g is considered slow enough that its product and reactant concentrations after Δtε can be calculated as 
c�,õÉ = c�,õÊ + R �∆c�,õ�D

DHIHJK
DWX = c�,õÊ + ∆c�,õ , 

(K23) 
cT,®XÉ = cT,®XÊ + R �∆c�,®X�D

DHIHJK
DWX = cT,®XÊ + ∆c�,®X  

(K24) and 
cT,®`É = cT,®`Ê + R �∆cT,®`�DDHIHJK

DWX = cT,®`Ê + ∆cT,®` . 
(K25) The test (Equations K19 to K21) ensures that Equations K23 to K25 will not be applied if their use would violate mass conservation. Essentially, Equations K19 to K21 test the applicability of the slow equilibration method by testing whether the method conserves mass.  Algorithm for Algorithm for Algorithm for Algorithm for reaction flows that are fast, relative to Δtreaction flows that are fast, relative to Δtreaction flows that are fast, relative to Δtreaction flows that are fast, relative to Δtεεεε  When a reaction fully equilibrates within a given period of time, its net reaction flow is zero for that time. If one or more of Equations K19 to K21 do not hold, then reaction a/g is judged rapid enough to fully equilibrate within Δtε, in which case, the product and reactant concentrations of reaction a/g are iteratively recalculated until their values yield the association constant of the reaction, within a chosen level of tolerance. Compared to the method for a slowly equilibrating reaction, the method for a rapidly equilibrating reaction is more computationally intensive, as it involves up to Nequil more iterations, where Nequil, an empirically determined parameter, may be a number in the low thousands. (At present, the routinely used values of Nequil are 5,000 for the initial equilibration at t = 0, and 2,500 for all 
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equilibrations after t = 0.)  During Δtε, up to Nequil iterations take place within each of the previously discussed Ra/g iterations, and those Ra/g iterations, in turn, take place within each of the previously discussed νtotal iterations. Thus, for reaction a/g, within Δtε, the maximum number of iterations is equal to νtotalRa/gNequil. (The main purpose of imposing a maximum of Nequil iterations is to prevent the occurrence of infinite loops, but it is usually best to set Nequil higher than necessary to ensure equilibration. Spurious spikes and dips in the concentration data are evidence that Nequil is too low to consistently achieve equilibration, but such low values of Nequil might sometimes be useful for quickly testing a complicated model system.)  The innermost iterations are indexed by w, where 1 ≤ w ≤ wfinal, and wfinal ≤ Nequil. The last iteration, wfinal, occurs when the equilibration criterion (Inequality K29) has been met, or when w reaches Nequil, whichever comes first. Thus, for reaction a/g, within Δtε, the total number of iterations is equal to νtotalRa/gwfinal. At each of the wfinal iterations, a concentration-change factor, 
�� = �Q�Q + (L − LQ) , 

(K26) is calculated, where k0 is a real number greater than zero, and w0 is a real number equal to or greater than 1. Both k0 and w0 are empirically determined parameters. For w0 = 1, at w = 1, kw = 1, which is its maximum possible value. As w increases, kw decreases. The smaller k0 is, the faster kw decreases as w increases. The larger k0 is, the closer kw is to zero at w = 1. (At present, the routinely used value of k0 is 3, while the routinely used values of w0 are 1 for the initial equilibration at t = 0, and 4 for all equilibrations after t = 0.)  As in the discussion of slowly equilibrating reactions (Algorithm for reaction flows that are Algorithm for reaction flows that are Algorithm for reaction flows that are Algorithm for reaction flows that are slow, relative to Δtslow, relative to Δtslow, relative to Δtslow, relative to Δtεεεε), a minus subscript is used to indicate a concentration before equilibration, and a plus subscript indicates a concentration after equilibration. Also, henceforth, concentrations that are in use during iteration w are subscripted by w, and 
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further subscripted with a minus sign to indicate a concentration at the start of iteration w, or a plus sign to indicate a concentration at the end of iteration w. Thus, cg,a,w-, cg,r1,w- and cq,r2,w- are, respectively, the values of cg,a, cg,r1 and cq,r2 at the start of iteration w, and for w = 1, are equal to cg,a-, cg,r1- and cq,r2-, respectively. Likewise, cg,a,w+, cg,r1,w+ and cq,r2,w+ are, respectively, the values of cg,a, cg,r1 and cq,r2 at the end of iteration w, and for w = wfinal, are equal to cg,a+, cg,r1+ and cq,r2+, respectively.  At each iteration, two test parameters,  
M{,� = �γ�,õc�,õ,�Ê����,�,�,�,��  (K27) and 

M�,� = ��,�,õ�γ�,®Xc�,®X,�Ê����,�,�,�,Gå��γT,®`cT,®`,�Ê����,�,�,�,Gµ� , (K28) are calculated, where QP,w derives from the product concentration (hence the subscript P), and QR,w derives from the reactant concentrations (hence the subscript R). At chemical equilibrium, QP,w = QR,w. To test whether QP,w is acceptably close to QR,w, a tolerance level, ζ, is chosen, where 0 < ζ < 1 in principle, though values as close to 1 as practical are preferred. (At present, the routinely used values of ζ are 0.999 for the initial equilibration at t = 0, and 0.995 for all equilibrations after t = 0.)  If ζQP,w ≤ QR,w and ζQR,w ≤ QP,w, the reaction is considered equilibrated, and the new concentrations are equated to the old concentrations: cg,a+ = cg,a-, cg,r1+ = cg,r1-, and cq,r2+ = cq,r2-. Thus, the criterion for adequate equilibration of reaction a/g is 
P��,�,õ ≤ �γ�,õc�,õÉ����,�,�,�,��

�γ�,®Xc�,®XÉ����,�,�,�,Gå��γT,®`cT,®`É����,�,�,�,Gµ� ≤ 1P ��,�,õ , 
(K29) where the central value of Inequality K29 has the form of the simplified association constant of reaction a/g (Equation G13) that pertains to the case of 1 product species and 2 reactant species per reaction. 
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 If ζQP,w > QR,w or ζQR,w > QP,w, the reaction is not considered equilibrated, and to meet the criterion for adequate equilibration (Inequality K29), the new concentrations must be altered from their old concentrations, with the constraint that mass must be conserved. (If ζQP,w > QR,w, cg,a,w+ must be made smaller than cg,a,w-, cg,r1,w+ must be made larger than cg,r1,w-, and cq,r2,w+ must be made larger than cq,r2,w-. If ζQR,w > QP,w, cg,a,w+ must be made larger than cg,a,w-, cg,r1,w+ must be made smaller than cg,r1,w-, and cq,r2,w+ must be made smaller than cq,r2,w-.)  The concentration changes per iteration w are defined as (Δcg,a)w = cg,a,w+ - cg,a,w-, (Δcg,r1)w = cg,r1,w+ - cg,r1,w-, and (Δcq,r2)w = cq,r2,w+ - cq,r2,w-, which, in this algorithm, are also subject to mass conservation. Thus, (Δcg,a)w + (Δcg,r1)w + (Δcq,r2)w = 0. The algorithm also enforces mass conservation for cg1 and cq2 at each w. Thus, Equations K1 to K3, and Equation K7, must hold when cg,a+, cg,r1+ and cq,r2+ in those equations are replaced with cg,a,w+, cg,r1,w+ and cq,r2,w+, respectively.  For each iteration, w, the calculation of the concentration changes is divided into three parts, the first of which yields the preliminary differences, (Δcg,a)w**, (Δcg,r1)w** and (Δcq,r2)w**; the second of which yields the intermediate differences, (Δcg,a)w*, (Δcg,r1)w* and (Δcq,r2)w*; and the third of which yields the final differences, (Δcg,a)w, (Δcg,r1)w and (Δcq,r2)w.  The functions used to calculate the preliminary differences of iteration w depend on whether ζQR,w > QP,w or ζQP,w > QR,w. At iteration w, if ζQR,w > QP,w, the preliminary concentration changes per iteration w are given by �∆c�,®X�Q∗∗ = �∆c�,®X�R,Q = −��c�,®XÊ , 
(K30) �∆cT,®`�Q∗∗ = �∆cT,®`�R,Q = −��cT,®`Ê  (K31) and �∆c�,õ�Q∗∗ = �∆c�,õ�R,Q = − ?�∆c�,®X�R,Q + �∆cT,®`�R,Q@ = ���c�,®XÊ + cT,®`Ê� . 
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(K32)  At iteration w, if ζQP,w > QR,w, the preliminary concentration changes per iteration w are given by 
�∆c�,®X�Q∗∗ = �∆c�,®X��,Q = �� ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ c�,õÊ , 

(K33) 
�∆cT,®`�Q∗∗ = �∆cT,®`��,Q = �� ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ c�,õÊ  

(K34) and �∆c�,õ�Q∗∗ = �∆c�,õ��,Q = − ?�∆c�,®X��,Q + �∆cT,®`��,Q@ = −��c�,õÊ . 
(K35)  The functions used to calculate the intermediate differences of iteration w are 

�∆c�,®X�Q∗ = 12 ��∆c�,®X�Q∗∗ + O�,®XOT,®`  �∆cT,®`�Q∗∗�, 
(K36) 

�∆cT,®`�Q∗ = 12 ��∆cT,®`�Q∗∗ + OT,®`O�,®X �∆c�,®X�Q∗∗�  
(K37) and �∆c�,õ�Q∗ = − ?�∆c�,®X�Q∗ + �∆cT,®`�Q∗@ . (K38)  The final differences of iteration w are determined when mass conservation is enforced. If 

�∆c�,®X�Q∗ < �∆c�,®X�ä6S = ���,�,õ,�,®X�O�,®X��{,�,õ,�,õ�O�,õ  c�,õÊ , 
(K39)  then (Δcg,r1)w is set equal to (Δcg,r1)w*, but if the condition described by Equation K39 is not met, (Δcg,r1)w is set equal to (Δcg,r1)max. Likewise, if 
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�∆cT,®`�Q∗ < �∆cT,®`�ä6S = ���,�,õ,T,®`�OT,®`��{,�,õ,�,õ�O�,õ c�,õÊ , 
(K40) then (Δcq,r2)w is set equal to (Δcq,r2)w*, but if the condition described by Equation K40 is not met, (Δcq,r2)w is set equal to (Δcq,r2)max. Finally,  �∆c�,õ�Q = − ?�∆c�,®X�Q + �∆cT,®`�Q@ . (K41) At this point, it can be seen that Equations K32, K35 or K38, which are included for completeness, are not needed to obtain the results given by Equations K39 to K41.  If w is less than Nequil, and if the criterion for adequate equilibration (Inequality K29) has not been met, then the end of iteration w is the start of iteration [w + 1], in which case, cg,a,[w+1]- = cg,a,w+ = cg,a,w- + (Δcg,a)w, cg,r1,[w+1]- = cg,r1,w+ = cg,r1,w- + (Δcg,r1)w, and cq,r2,[w+1]- = cq,r2,w+ = cq,r2,w- + (Δcq,r2)w. If the criterion for adequate equilibration is met, or if w reaches Nequil, then the end of iteration w is the end of the chemical equilibration process for reaction, a/g within Δtε, in which case, cg,a+ = cg,a,w- + (Δcg,a)w, cg,r1+ = cg,r1,w- + (Δcg,r1)w, and cq,r2+ = cq,r2,w- + (Δcq,r2)w.  The iterative application of the second approximate solutionThe iterative application of the second approximate solutionThe iterative application of the second approximate solutionThe iterative application of the second approximate solution     As noted in Section C (Transport and reaction flowsTransport and reaction flowsTransport and reaction flowsTransport and reaction flows), the reaction flow and the mass flow are calculated in separate, consecutive steps within a given time increment. Thus, the values of cg,a+, cg,r1+ and cq,r2+ obtained from the reaction flow calculations are used to re-initialise cg,a-, cg,r1- and cq,r2-, respectively, after which, cg,a-, cg,r1- and cq,r2- are subjected to the mass flow calculations described in Section C. Following those mass flow calculations, mass conservation is enforced, as described in Section L. Finally, if the convergence criterion (Equation J6) has been met, or a set limit on the maximum number of iterations has been reached, the time is incremented by Δtε, and the flow calculations for the next Δtε are begun. (Otherwise, without incrementing Δtε, the values of ck,e,h+ obtained, which pertain to iteration m and are thus denoted as (ck,e,h+)m, are used to calculate (ck,e,h+)m+1, which 
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denotes the next iteration of ck,e,h+ at the end of Δtε.)  LimitsLimitsLimitsLimits     For a given chemical reaction, as the concentration of any of its reactants approaches zero, the computational intensity of the reaction flow calculation rises, while the significance of the information gained from the calculation falls. Avoiding such calculations, therefore, reduces the time required to model a system, without adversely affecting the accuracy of the results to a significant extent. To this end, two methods are used to place appropriate limits on the application of the reaction flow algorithms. These methods employ two dimensionless parameters, α and β, that, when properly set, identify conditions in which there is little or no need to calculate a reaction flow.  As with the flow calculations themselves, the methods to limit reaction flow calculations are described in terms of a two-reactant, one-product reaction. In the inequalities used to limit reaction flow calculations, Υ represents the unit solute concentration (with dimensions such as 1 g/cm3), just as it does in Equations G6, G7, G14, G15 and G20.   The first parameter, α, is used to test whether the concentration of one or both reactants is approaching zero. If 
¶γ�,®Xc�,®X,�ÊΥ ·���,�,�,�,Gå� > V �¶γ�,õc�,õ,�ÊΥ ·���,�,�,�,�� + ¶γT,®`cT,®`,�ÊΥ ·���,�,�,�,Gµ��  

(K42) or 
¶γT,®`cT,®`,�ÊΥ ·���,�,�,�,Gµ� > V �¶γ�,õc�,õ,�ÊΥ ·���,�,�,�,�� + ¶γ�,®Xc�,®X,�ÊΥ ·���,�,�,�,Gå�� , 

(K43) then the algorithm for a fast (relative to Δtε) reaction flow is not used, even if one or more of Equations K19 to K21 do not hold. If Equations K19 to K21 do hold, however, the algorithm for a slow (relative to Δtε) reaction flow is used, regardless of the test results from Equations K42 and K43. At present, the routinely used value of α is (10-13 erg∙s)/h, 
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where h is the cgs Planck constant.  The second parameter, β, tests whether the concentrations of all reactant and product species are approaching zero. If 
W > ¶γ�,õc�,õ,�ÊΥ ·���,�,�,�,�� ,  

(K44) 
W > ¶γ�,®Xc�,®X,�ÊΥ ·���,�,�,�,Gå�  

(K45) and 
W > ¶γT,®`cT,®`,�ÊΥ ·���,�,�,�,Gµ� , 

(K46) neither the algorithm for a fast (relative to Δtε) reaction flow, nor the algorithm for a slow (relative to Δtε) reaction flow, are used, regardless of the test results from Equations K19 to K21. Instead, whenever Equations K44 to K46 prove true, any remaining product is converted to reactants. At present, the routinely used value of β is h(1010/erg∙s).  OneOneOneOne----reareareareactant, onectant, onectant, onectant, one----product reactionsproduct reactionsproduct reactionsproduct reactions     Expressions for one-reactant, one-product reactions are obtained by letting νR,g,a,q,r2 = 0, Mq,r2 = 0, cq,r2- = 0, cq,r2+ = 0 and Δcq,r2 = 0, wherever they appear in Equations/Inequalities K1 to K35. For one-reactant, one-product reactions, Equations/Inequalities K36 to K46 are either superfluous or inapplicable, and are not used.  A special case of one-reactant, one-product reactions is that for which νR,g,a,g,r1 = 1 and νP,g,a,g,a = 1, wherein one species simply changes into another. Such reactions would include conformational changes.  For all other one-reactant, one-product reactions, νR,g,a,g,r1 > 1 and νP,g,a,g,a = 1. Such 
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reactions would include any oligomerisation that can be described as an event in which νR,g,a,g,r1 monomers form 1 oligomer. A polymerisation, or complex formation, that must be described by the successive addition of monomeric or oligomeric subunits, in which each addition may have unique rate and association constants, would have to be modelled as multiple reactions on a one-addition-one-reaction basis.  ReferencesReferencesReferencesReferences      [K1] Moody, T. P. (2012a) Johnston-Ogston effects in AUC simulations of two model systems based on polystyrene beads that are polydisperse with respect to specific gravity. http://moodybiophysicalconsulting.blogspot.com/.  [K2] Moody, T. P. (2012b) The apparent sedimentation coefficient, s*, and its distribution function, g(s*), within -∞ < s* < ∞. http://moodybiophysicalconsulting.blogspot.com/.  Section L: Algorithms to conserve mass and adSection L: Algorithms to conserve mass and adSection L: Algorithms to conserve mass and adSection L: Algorithms to conserve mass and adjust the time incrementjust the time incrementjust the time incrementjust the time increment     Neither the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981], nor similar numerical solutions to the t- and r-dependent or the t- and ξ-dependent forms of the continuity equation (Sections B, C, F and J), conserve mass. Computational instabilities appear to worsen the failure of such approaches to conserve mass. Thus, the severity of the mass-conservation failure can be exploited to measure computational stability. When instabilities develop, as evidenced by severe deviations from mass conservation, parameters, such as the time increment, can be adjusted to restore stability. Algorithms to enforce mass conservation, and to decrease the time increment when computational instability is judged to be excessive, are described here. The description of these algorithms uses parameters and notation found in Sections C, J and K. As in Sections C and J, the subscript h corresponds to a spatial element, ξh. (See Equation C17.)  The total mass, throughout the system, of species e of component k after the calculation of all reaction flows (Section K), but prior to the calculation of the mass flows (Section C), is  
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mI,íÊ = R 0ÂNI,í,ÂÊ
Ã

ÂWX  , 
(L1) where Vh is the volume of spatial element h, and the minus subscript indicates a concentration at the start of the time increment, Δtε, already used in the reaction flow calculations, and yet to be used in the impending mass flow calculations. Thus, ck,e,h- is the concentration of species e of component k at the start of Δtε, after application of the reaction flow algorithms described in Section K, but before application of the mass flow algorithms described in Section C. Any mass of species e of component k that is associated with any boundary of the system is included in ck,e,h-.  The total mass, throughout the system, of species e of component k after the calculation of all reaction flows (Section K), and after the calculation of all mass flows (Section C), is  

mI,íÉ = R 0ÂNI,í,ÂÉ
Ã

ÂWX  , 
(L2) where the plus subscript indicates a concentration at the end of Δtε. Thus, ck,e,h+ is the concentration of species e of component k at the end of Δtε, after application of the reaction flow algorithms described in Section K, and after application of the mass flow algorithms described in Section C. Any mass of species e of component k that is associated with any boundary of the system is included in ck,e,h+. If there is a flow of species e of component k through the system during Δtε, the set of all ck,e,h+ accounts for any resulting change in the mass of that species. Prior to calculating mk,e+, and prior to using the set of all ck,e,h+ in any of the equations that follow in this section, any negative values of ck,e,h+ are set equal to zero.  As described in Section K (The iterative appThe iterative appThe iterative appThe iterative application of the second approximate solutionlication of the second approximate solutionlication of the second approximate solutionlication of the second approximate solution), within each iteration of the general solution of the continuity equation (Section J), the reaction flow, mass flow, and mass-conservation algorithms are applied consecutively. When the iterative solution of Section J is applied, Δtε is not incremented until the 
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convergence criterion (Equation J6) is met, or a set limit on the maximum number of iterations is reached. Within Δtε, at the end of each iteration, m, the values of ck,e,h+ obtained, which are denoted as (ck,e,h+)m, are used to calculate (ck,e,h+)m+1, which denotes the next iteration of ck,e,h+ at the end of Δtε. In this section, for simplicity, the subscript associated with the iterative solution of Section J is not appended to ck,e,h+ unless needed to distinguish values pertaining to different iterations.  At the end of Δtε, ck,e,h+ multiplied by a mass-conservation-correction factor, Kk,e,h+, to obtain NI,í,Â∗ = NI,í,ÂÉKI,í,ÂÉ , (L3) where ck,e,h* is equal to ck,e,h+ corrected for mass-conservation errors, and where Kk,e,h+ is given by KI,í,ÂÉ = 1 − δI,í,ÂÉ . (L4)  To define the fractional-change parameter, δk,e,h+, the concentration-gradient parameter, Λk,e,h+, and the normalisation factor, Nk,e+, must first be defined.  For all h, the default value of Λk,e,h+ is zero. Nonzero values of Λk,e,h+ are obtained if ck,e,h+ > 0 and |Δck,e,h+| > 0, where 
∆NI,í,ÂÉ = NI,í,[ÂÉX]É − NI,í,[ÂÊX]É2   

(L5)  for 1 < h < N, ∆NI,í,XÉ = NI,í,`É − NI,í,XÉ  (L6) for h = 1, and ∆NI,í,ÃÉ = NI,í,ÃÉ − NI,í,[ÃÊX]É  (L7) for h = N. With Δck,e,h+ thus defined for all h, Λk,e,h+ can be defined as 
ΛI,í,ÂÉ = �∆NI,í,ÂÉ�Z , (L8) 
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where Λ, the exponential term of Λk,e,h+, is an empirically chosen parameter. As Equation L8 is only applied if |Δck,e,h+| > 0, Λ can be any real number. (If |Δck,e,h+| = 0, Λk,e,h+ maintains its default value of zero.)  The normalisation parameter, 
NI,íÉ = R 0ÂNI,í,ÂÉΛI,í,ÂÉ

Ã
ÂWX  , 

(L9) must be greater than zero, as it is the denominator in the equation that defines δk,e,h+. Where Equation L9 yields a value of zero for Nk,e+, as it will if all ck,e,h+ equal zero or all Λk,e,h+ equal zero, Nk,e+ is set equal to 1. (As each Vh must be greater than zero, there is no set of Vh values that could cause Equation L9 to bring Nk,e+ to nought.)  Given the definitions and exceptions above, δk,e,h+ can be defined as 
δI,í,ÂÉ = �mI,íÉ − mI,íÊ�ΛI,í,ÂÉNI,í,ÂÉ  . 

(L10) When Λk,e,h+ = 0, δk,e,h+ = 0. Thus, for |Δck,e,h+| = 0 or ck,e,h+ = 0, δk,e,h+ = 0. For |Δck,e,h+| > 0 and ck,e,h+ > 0, δk,e,h+ > 0 if (mk,e+ - mk,e-) > 0, and δk,e,h+ < 0 if (mk,e+ - mk,e-) < 0.  For Λ ≥ 1, as Λ increases, the difference between the highest and lowest nonzero values of |δk,e,h+| increases, while fewer ck,e,h+ values bear more of the concentration changes required to enforce mass conservation, as more of the correction affects the nonzero ck,e,h+ values that correspond to the largest nonzero |Δck,e,h+| values.  As Λ approaches zero from above(Λ ≥ 0) or below (Λ ≤ 0), the difference between the highest and lowest nonzero values of |δk,e,h+| decreases toward zero, and at Λ = 0, the concentration required to enforce mass conservation is the same for each nonzero ck,e,h+ value that corresponds to a nonzero |Δck,e,h+| value.  
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For Λ ≤ -1, as Λ decreases, the difference between the highest and lowest nonzero values of |δk,e,h+| increases, while fewer ck,e,h+ values bear more of the concentration changes required to enforce mass conservation, as more of the correction affects the nonzero ck,e,h+ values that correspond to the smallest nonzero |Δck,e,h+| values.  At present, Λ is typically set equal to 1.  Adjustments of the time incrementAdjustments of the time incrementAdjustments of the time incrementAdjustments of the time increment     If, at the end of Δtε, each ck,e,h* ≥ 0 after the application of Equation L3, the system is considered computationally stable, in which case, each ck,e,h+ is equated to its corresponding ck,e,h* value. If the convergence criterion (Equation J6) has been met, or a set limit on the maximum number of iterations has been reached, the time is incremented by Δtε, and the flow calculations for the next Δtε are begun. (Otherwise, without incrementing Δtε, the values of ck,e,h+ obtained, which pertain to iteration m and are thus denoted as (ck,e,h+)m, are used to calculate (ck,e,h+)m+1, which denotes the next iteration of ck,e,h+ at the end of Δtε.)  If, however, at the end of Δtε, one or more ck,e,h* < 0 after the application of Equation L3, the system is considered computationally unstable, in which case, each ck,e,h+ is equated to its corresponding ck,e,h- value that pertains to the start of Δtε. In that case, the time is not incremented by Δtε, Δtε is halved, and the flows are recalculated using the shorter time increment.  Evidence of instability practically requires that Δtε be decreased. Evidence of stability does not require that Δtε be increased, but may justify testing whether Δtε can be increased without jeopardising stability. To that end, an algorithm has been implemented that can raise Δtε under conditions where it may be appropriate to do so. The evidence to raise Δtε is less definitive than the evidence to lower it, however. Thus, limiting parameters, such as a maximum Δtε value, are used to regulate the Δtε-raising algorithm.  If permitted by the relevant limits, Δtε may be increased if the system is considered 
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computationally stable, provided that a computationally unstable condition has not occurred within a specified time span. A judicious selection of various parameters, such as Δtε, Λ, the set of spatial elements, and the limits that govern reaction-flow calculations, can minimise the occurrence of computationally unstable conditions while nearly maximising computational speed.  ReferencesReferencesReferencesReferences     [L1] Claverie, J.-M., Dreux, H., and Cohen, R. (1975) Sedimentation of generalized systems of interacting particles. I. Solution of systems of complete Lamm equations. Biopolymers. 14141414 1685-1700.   Section M: Section M: Section M: Section M: Effects of solvent density on (apparent) reduced buoyant massEffects of solvent density on (apparent) reduced buoyant massEffects of solvent density on (apparent) reduced buoyant massEffects of solvent density on (apparent) reduced buoyant mass     The (apparent) reduced molar mass coefficient of solute component k is 
§I = _`¦I¤I = _` 1NI ¥ NTOT �I,TVTWX1vwNIwm xy

¥ �I,TOTVTWX vwNTwm xy

= vwrsNIwm xy _` ¥  SI,TOT�1 − P�T��VTWX
pq ¥ vwrsNTwm xy SI,TVTWX �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX � , 
(M1 = A23) and the reduced buoyant molar mass of solute component k is defined as 

OI∗ = pq_` §I = pq ¦I¤I = pq 1NI ¥ NTOT �I,TVTWX1vwNIwm xy
¥ �I,TOTVTWX vwNTwm xy

= vwrsNIwm xy ¥  SI,TOT�1 − P�T��VTWX
¥ vwrsNTwm xy SI,TVTWX �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX � , 
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(M2) where R is the cgs ideal gas constant, ρ is the density of the solution, ξ = r 2/2 (r being the radial position in the centrifuge), ξm = rm2/2 (rm being the innermost radial position of the system), T is the absolute temperature, t is time, P is the pressure of the system, ω is the angular velocity of the centrifuge rotor, n is the total number of solute components, sk is the (apparent) sedimentation coefficient of solute component k, Dk is the (apparent) diffusion coefficient of solute component k, ck is the mass concentration of solute component k, Mk is the molar mass of solute component k, P�T is the partial specific volume of solute component q, cq is the mass concentration of solute component q, Mq is the molar mass of solute component q, γq is the activity coefficient of solute component q, cw is the mass concentration of solute component w, ssssk,q is the coupled-flow-sedimentation coefficient of solute component k as affected by solute component q, DDDDk,q is the coupled-flow-diffusion coefficient of solute component k as affected by solute component q, Lk,q is the coupled-flow-phenomenological coefficient linking the molar flow of solute component k to the conjugate molar force (Equations A2, A14 and I16) of solute component q, and where the components are variously indexed by k, q or w, for which1 ≤ k ≤ n, 1 ≤ q ≤ n and 1 ≤ w ≤ n, respectively.  For further information about the parameters in Equations M1 and M2, see Section A: An Section A: An Section A: An Section A: An application of irreversible thermodynamics to analytical application of irreversible thermodynamics to analytical application of irreversible thermodynamics to analytical application of irreversible thermodynamics to analytical ultracentrifugationultracentrifugationultracentrifugationultracentrifugation. Most of the details regarding Mq, one of the parameters of Equations M1 and M2, are presented in Section I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multiSection I: Calculating molar mass, chemical potential and partial specific volume for a multi----species componentspecies componentspecies componentspecies component. (Equation I19 describes (Mq)g, the gradient-modified-average molar mass of component q, which is found (Equations A2 and I20) to be identical to Mq.) Additional details (Equations M15 to M19) regarding Mq are presented in the last part of this section (An examination of whether (MAn examination of whether (MAn examination of whether (MAn examination of whether (Mqqqq))))NNNN    and Mand Mand Mand Mqqqq    can be regarded as molecular can be regarded as molecular can be regarded as molecular can be regarded as molecular parametersparametersparametersparameters).  There are a number of obstacles to calculating OI∗, among which is the fact that each Lk,q of Equation M2 is generally unknown. Onsager showed that the cross terms Lk,q and Lq,k are symmetric in the absence of magnetic fields or Coriolis forces in the system, in which case, 
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the reciprocal relations provide Lk,q = Lq,k for all k and q [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962]. (In the presence of magnetic fields or Coriolis forces, resort must be made of the more general form of the reciprocal relations mentioned in Section G: Section G: Section G: Section G: The dissipation function and the CurieThe dissipation function and the CurieThe dissipation function and the CurieThe dissipation function and the Curie----PriPriPriPrigogine principlegogine principlegogine principlegogine principle.)  Beyond the reciprocal relationships, the most that can be said in general is that each Lk,q is a function of system properties (e.g. T, P, and component concentrations), and that each Lk,q is independent of the magnitudes of any forces present, provided that those forces are sufficiently small [Tanford, 1961]. For q not equal to k, however, there is no equation that describes Lk,q in terms of independently determinable parameters. Even for q = k, Lk,k is only calculable in the case given by 
lim|���→Q SI,I = NI��OI�I  , 

(M3 = A19) where NA is Avogadro's number and fk is the frictional coefficient of solute component k, but this equation only applies in the limit as all solute concentrations other than that of solute component k approach zero. Nevertheless, if there are no solute components other than k, and if fk, ck and Mk are known, Lk,k is the one phenomenological coefficient that can be calculated.  Of all the parameters needed to calculate Lk,k, fk is the most challenging to determine. In the absence of solute components other than k, fk can be calculated from the Stokes equation, �I = 6 ¡pI∗ , (M4 = A20) if pI∗ , the Stokes radius of an equivalent sphere of solute component k, and η, the solution viscosity, are known. The applicability of the Stokes equation, however, is questionable except as ck approaches zero, at which point, η becomes identical to the solvent viscosity.  Reduced buoyant molar mass as a function of solution densityReduced buoyant molar mass as a function of solution densityReduced buoyant molar mass as a function of solution densityReduced buoyant molar mass as a function of solution density     In special cases, OI∗  can be calculated, and one such case is used here to examine the trends 
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exhibited by OI∗  as the density of the solution approaches its extrema. In the absence of all components other than the solvent and solute component k, and in the limit as ck approaches zero, Equation M2 reduces to 
OIQ = lim|→Q v lim|���→Q OI∗x = OI v1 − �Q�Ix, 

(M5) where c is the total solute concentration, ρ0 is the density of the solvent, and ρk is the density of solute component k.  This simplified form of Equation M2 stems first from the absence of any solute components other than k, which reduces Equation M2 to 
lim|���→Q OI∗ = SI,IOI(1 − P�I�)

vwlnNIwlnNIxy SI,I �1 + vwlntIwlnNIxy,~,{� = OI(1 − P�I�)
�1 + vwlntIwlnNIxy,~,{�. 

 (M6) Further simplification stems from the application of the subsequent limit, 
lim|→Q v lim|���→Q OI∗x = lim|→Q89:

9; OI(1 − P�I�)
�1 + vwlntIwlnNIxy,~,{�<9=

9> = OI v1 − �Q�Ix, 
(M7) to which the individual limits, lim|→Q � = �Q, 
(M8) 

lim|→Q P�I = 1�I 
(M9) and 

lim|→Q vwlntIwlnNIxy,~,{ = 0 
(M10) have been applied to obtain OIQ as shown in Equation M5. If the solvent is incompressible, it also follows that  
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lim|→Q vw�waxy = lim|→Q vw�Qwa xy = 0. 
(M11)  At a given Mk and a given ρk, lim[,→³ OIQ = −∞ 
(M12)  describes the buoyant molar mass of an infinitesimally dilute solute component k in a singularly dense black hole of a solvent.  At a given Mk and a given ρk, lim[,→[� OIQ = 0 
(M13)  describes the buoyant molar mass of an infinitesimally dilute solute component k in a solvent with a density that is equal to the density of solute component k.  At a given Mk and a given ρk, lim[,→Q OIQ = OI 
(M14)  describes the buoyant molar mass of an infinitesimally dilute solute component k in an otherwise perfect vacuum.  While it is not possible to achieve the extreme conditions applied in Equations M12 and M14, as hypothetical conditions, they nonetheless help to illustrate the trends sought regarding OI∗ over the range of possible solvent densities. Those trends show a dependence of OI∗ on ρ0, and that dependence renders OI∗ a system parameter, rather than a molecular parameter.  An examination of whether (MAn examination of whether (MAn examination of whether (MAn examination of whether (Mqqqq))))NNNN    and Mand Mand Mand Mqqqq    can be regarded as molecular parameterscan be regarded as molecular parameterscan be regarded as molecular parameterscan be regarded as molecular parameters     
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The number average of the molar mass, (Mq)N, is given, as in Equation I17, by 
�OT�Ã = ¥ �T,õOT,õV�õWX¥ �T,õV�õWX , 

(M15) where the nq species of component q are indexed by a, so that, for species a of component q, Mq,a is the molar mass and Nq,a is the number of molecules (Equation I1). Each Mq,a can be considered independent of system properties by definition, as Mq,a is a defining molecular parameter. (For a given species, molar mass cannot change. Within a component, a change in molar mass requires an association of more than one species, or a dissociation into more than one species.) In the absence of a gravitational field, each Nq,a may change with such system properties as T, P and solute concentrations at any given point in the system. Thus, in the absence of an gravitational field, (Mq)N is a system parameter.  In the presence of a gravitational field, the gradient of the total molar potential of solute component q includes a gravitational contribution given, as in Equations I15 to I19, by �OT��∇[_`a − bcℎ] = �OT�Ã∇[_`a − bcℎ] + [_`a − bcℎ]∇�OT�Ã, 
(M16) where (Mq)g is the gradient-modified-average molar mass for all species of component q, gE is the magnitude of the gravitational field at the Earth’s surface, h is the height above the Earth’s surface, -ω2ξ is the gravitational potential due to angular acceleration, and ω2∇ξ is the gravitational field due to angular acceleration (Equation A3; Section H).  Dividing both sides of Equation M16 by ∇[ω2ξ - gEh] yields 

�OT�� = �OT�Ã + ∇�OT�Ã∇ln[_`a − bcℎ], 
(M17)  where 

∇�OT�Ã = ∇ ù¥ �T,õOT,õV�õWX¥ �T,õV�õWX Ë = ¥ OT,õ∇�T,õV�õWX¥ �T,õV�õWX − �OT�Ã ¥ ∇�T,õV�õWX¥ �T,õV�õWX . 
(M18) 
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Equation M17 is an alternative form of Equation I19. As a comparison of Equations A2 and I20 shows, (Mq)g is identical to Mq. As such, Equation M17 shows that Mq = (Mq)N where ∇(Mq)N = 0.  In what follows, 
�∇OT�Ã = ¥ �T,õ∇OT,õV�õWX¥ �T,õV�õWX = ¥ �T,õ(0)V�õWX¥ �T,õV�õWX = 0, 

(M19) is the number-average gradient of the molar mass for all species of component q, and (∇Mq)N = 0 because each ∇Mq,a = 0.  For a system at equilibrium, in the absence of a gravitational field, each Nq,a would be invariant with space. If each Nq,a were invariant with space, each ∇Nq,a of Equation M18 would equal zero everywhere, in which case, throughout the system, ∇(Mq)N would equal (∇Mq)N = 0. This result holds for any value of nq. For the special case of nq = 1, at each point in space, there is only one ∇Nq,a, and regardless of whether ∇Nq,a equals zero, ∇(Mq)N = (∇Mq)N = 0.  Regardless of whether a system is at equilibrium, in the presence of a gravitational field, some Nq,a might not be invariant with space. Wherever Nq,a varies with spatial position, the corresponding ∇Nq,a of Equation M18 will be nonzero, and wherever ∇Nq,a is nonzero, ∇(Mq)N will be nonzero. According to Equation M17, Mq will differ from (Mq)N where ∇(Mq)N differs from zero. Compared to (Mq)N, then, Mq is especially dependent on gravitational field.  The discussion surrounding Equations M15 to M19 constitutes the argument that, regardless of whether a gravitational field is present, (Mq)N and Mq = (Mq)g are system parameters, in that they depend on system properties, such as T, P and component concentrations.  ReferencesReferencesReferencesReferences    
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 [M1] Onsager, L. (1931a) Reciprocal relations in irreversible processes, I. Phys. Rev. USA 37373737 405-426.  [M2] Onsager, L. (1931b) Reciprocal relations in irreversible processes, II. Phys. Rev. USA 38383838 2265-2279.   [M3] de Groot, S. R., and Mazur, P. (1962) "Nonequilibrium Thermodynamics." North Holland Publishing Company, Amsterdam.  [M4] Tanford, C. (1961) Transport Experiments Processes. In "Physical Biochemistry of Macromolecules." pp. 317-445. John Wiley and Sons, New York.  Section N: Section N: Section N: Section N: A simple coupledA simple coupledA simple coupledA simple coupled----flow flow flow flow equation for AUCequation for AUCequation for AUCequation for AUC     Equation A24 can be expressed as 
[I = NI �¦IQ �1 + ¥ ÕI,õNõVõWX1 + ¥ ℎI,õNõVõWX � _`m − ¤IQ �1 + ¥ ÑI,õNõVõWX1 + ¥ ℎI,õNõVõWX � vwrsNIwm xy� 

or 
[I = NI¤IQ �1 + ¥ ÑI,õNõVõWX1 + ¥ ℎI,õNõVõWX � �§IQ �1 + ¥ ÕI,õNõVõWX1 + ¥ ÑI,õNõVõWX � − vwrsNIwa xy� ¬2a, 

(N1) where the expressions for σk, Dk and sk, 
§I = §IQ �1 + ¥ ÕI,õNõVõWX1 + ¥ ÑI,õNõVõWX �, 

 (N2) 
¤I = ¤IQ �1 + ¥ ÑI,õNõVõWX1 + ¥ ℎI,õNõVõWX � 

(N3) and 
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¦I = §I¤I_` = §IQ¤IQ_` �1 + ¥ ÕI,õNõVõWX1 + ¥ ℎI,õNõVõWX � = ¦IQ �1 + ¥ ÕI,õNõVõWX1 + ¥ ℎI,õNõVõWX �, 
(N4) respectively, were obtained by applying the truncated linear equations (3, 10 and 12) of Section D to Equations D5, D6 and D7, respectively.  Equation N1 does not account for coupled flows, but can be used as the basis for an equation that does. Multiplying Equation A18 by Mk, which is equated to (Mk)J in Section I (Calculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multiCalculating molar mass, chemical potential and partial specific volume for a multi----species species species species componentcomponentcomponentcomponent), yields 

GIOI = [I = OI R NTOT ��I,T_`m − �I,T �wrsNTwm �y�V
TWX . 

(N5) For q = k, the right-hand-side of Equation N3 can be used to approximate DDDDk,q and the right-hand-side of Equation N4 can be used to approximate ssssk,q. More generally, DDDDk,q can be approximated as 
�I,T = UI,T\ ¤TQ �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX � 

(N6) and ssssk,q can be approximated as 
�I,T = UI,Tý ¦TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX �, 

(N7) where UI,T\  and UI,Tý  are constants. Thus, Equations N6 and N7 become equivalent to the truncated forms of UI,T\  times Equation D6 and UI,Tý  times Equation D7, respectively, when q = k. Applying Equations N6 and N7 to Equation N5 yields 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

177 

 

[I = OI R NTOT �UI,Tý ¦TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX � _`m − UI,T\ ¤TQ �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX � �wrsNTwm �y�V
TWX

= OI ]_`m ôR NTOT
V

TWX UI,Tý ¦TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX �%
− ôR �wNTwm �y

UI,T\ ¤TQOT �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX �V
TWX %^.  

(N8) For n = 2, Equation N8 yields 
[X = OX ÷_`m � NXOX UX,Xý ¦XQ �1 + ÕX,XNX + ÕX,`N`1 + ℎX,XNX + ℎX,`N`� + NÒ` UX,`ý ¦Q̀ �1 + Õ`,XNX + Õ`,`N`1 + ℎ`,XNX + ℎ`,`N`��

− � 1OX vwNXwm xy UX,X\ ¤XQ �1 + ÑX,XNX + ÑX,`N`1 + ℎX,XNX + ℎX,`N`�
+ 1O` vwN`wm xy UX,`\ ¤Q̀ �1 + Ñ`,XNX + Ñ`,`N`1 + ℎ`,XNX + ℎ`,`N`��ø  

and 
[̀ = O` ÷_`m � NXOX U`,Xý ¦XQ �1 + ÕX,XNX + ÕX,`N`1 + ℎX,XNX + ℎX,`N`� + NÒ` U`,`ý ¦Q̀ �1 + Õ`,XNX + Õ`,`N`1 + ℎ`,XNX + ℎ`,`N`��

− � 1OX vwNXwm xy U`,X\ ¤XQ �1 + ÑX,XNX + ÑX,`N`1 + ℎX,XNX + ℎX,`N`�
+ 1O` vwN`wm xy U`,`\ ¤Q̀ �1 + Ñ`,XNX + Ñ`,`N`1 + ℎ`,XNX + ℎ`,`N`��ø. 

(N9)  The coupled-flow analogue of the (apparent) reduced molar mass coefficient (Equation A23) is defined as  
¨I,T = _`�I,T�I,T = _` OT�1 − P�T��

 pq �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���
V�WX �, 

(N10) where DDDDk,q and ssssk,q are defined by Equations A17 and A16, respectively, and are 
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approximated by Equations N6 and N7, respectively. This result is noteworthy for the lack of a viscosity term in §I,T, presumably because SI,T from ssssk,q cancels SI,T  from DDDDk,q. (See the discussion following Equation A20.) Using Equations N6 and N7 to express DDDDk,q and ssssk,q, respectively, and introducing a set of constants denoted by UI,T_ , σσσσk,q can be approximated as 
¨I,T = _`�I,T�I,T = _`UI,Tý ¦TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x

UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX x = UI,T_ §TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ÑT,õNõVõWX �, 
(N11) where, by virtue of UI,T_ , UI,T\ , UI,Tý , §TQ, ¤TQ and ¦TQ being constants, 

UI,T_ §TQ = _`UI,Tý ¦TQUI,T\ ¤TQ  
(N12) is a constant to the extent that ω is constant. Thus, Equation N11 becomes equivalent to UI,T_  times the truncated form of Equation D5 when q = k. Using Equation N10, Equation N5 can be rewritten as 

[I = OI R NTOT �I,T �¨I,Tm − �wrsNTwm �y�V
TWX = OI R NTOT �I,T �¨I,T − �wrsNTwa �y� ¬2aV

TWX , 
(N13) where, as defined in Section A, ξ = r 2/2. For q = k, the right-hand-side of Equation N2 can be used to approximate σσσσk,q and the right-hand-side of Equation N3 can be used to approximate DDDDk,q. More generally, DDDDk,q can be approximated by Equation N6, and σσσσk,q can be approximated by Equation N11. Applying Equations N6 and N11 to Equation N13 yields 

[I = OI¬2a R NTOT UI,T\ ¤TQ �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX � �UI,T_ §TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ÑT,õNõVõWX � − �wrsNTwa �y�V
TWX .  

(N14)  For n = 2, Equation N14 yields 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

179 

 

[X = OX¬2a ÷� NXOX UX,X\ UX,X_ ¤XQ§XQ �1 + ÕX,XNX + ÕX,`N`1 + ℎX,XNX + ℎX,`N`��
− � 1OX vwNXwa xy UX,X\ ¤XQ �1 + ÑX,XNX + ÑX,`N`1 + ℎX,XNX + ℎX,`N`��
+ � NÒ` UX,`\ UX,`_ ¤Q̀§Q̀ �1 + Õ`,XNX + Õ`,`N`1 + ℎ`,XNX + ℎ`,`N`��
− � 1O` vwN`wa xy UX,`\ ¤Q̀ �1 + Ñ`,XNX + Ñ`,`N`1 + ℎ`,XNX + ℎ`,`N`��ø 

and 
[̀ = O`¬2a ÷� NXOX U`,X\ U`,X_ ¤XQ§XQ �1 + ÕX,XNX + ÕX,`N`1 + ℎX,XNX + ℎX,`N`��

− � 1OX vwNXwa xy U`,X\ ¤XQ �1 + ÑX,XNX + ÑX,`N`1 + ℎX,XNX + ℎX,`N`��
+ � NÒ` U`,`\ U`,`_ ¤Q̀§Q̀ �1 + Õ`,XNX + Õ`,`N`1 + ℎ`,XNX + ℎ`,`N`��
− � 1O` vwN`wa xy U`,`\ ¤Q̀ �1 + Ñ`,XNX + Ñ`,`N`1 + ℎ`,XNX + ℎ`,`N`��ø. 

(N15)  ReReReRe----evaluating evaluating evaluating evaluating sssskkkk, , , , DDDDkkkk    and and and and σσσσkkkk  In terms of Dk and sk, or Dk and σk, the mass flow of solute component k can be written as 
[I = GIOI = NI ª¦I_`m − ¤I vwrsNIwm xy« 

(N16) or 
[I = GIOI = NI¤I �§I − vwrsNIwa xy� ¬2a, 

(N17) both forms of which are shown in Equation A24.  Replacing Dk and sk of Equation N16 with 
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¤I = OIvwNIwm xy
R vwNTwm xyOT UI,T\ ¤TQ �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX �V
TWX  

(N18)  and 
¦I = OINI R NTOT

V
TWX UI,Tý ¦TQ �1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX �, 

(N19)  respectively, yields Equation N8. Equations N18 and N19 approximate Equations A21 and A22, respectively.  Replacing Dk and σk of Equation N17 with 
¤I = OIvwNIwa xy

R vwNTwa xyOT UI,T\ ¤TQ �1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX �V
TWX  

(N20)  and 
§I = _`¦I¤I = vwrsNIwa xy

_` ¥ NTOTVTWX UI,Tý ¦TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x
¥ vwNTwa xyOT UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX xVTWX

= vwrsNIwa xy
¥ NTOTVTWX UI,T_ §TQUI,T\ ¤TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x

¥ vwNTwa xyOT UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX xVTWX

= vwrsNIwa xy
¥ NTOTVTWX UI,Tý §TQ¤TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x

¥ vwNTwa xyOT UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX xVTWX
 

(N21) 
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respectively, yields Equation N14. Equations N20 and N21 approximate Equations A21 and A23, respectively. Multiplying both sides of Equation N12 by UI,T\ ¤TQ yields UI,T\ UI,T_ ¤TQ§TQ =_`UI,Tý ¦TQ, the left-hand side of which is used to replace _`UI,Tý ¦TQ in the numerator of Equation N21. As ¤TQ§TQ = _`¦TQ (Equations A21, B23∓, C34∓), UI,Tý = UI,T\ UI,T_ , in which the derived parameter is actually 
UI,T_ = UI,TýUI,T\ . 

(N22) Provided that UI,T\  is not equal to zero, UI,T_ can be calculated using Equation 26. Where UI,T\  = 0, UI,T_  is undefined, except that the product, UI,T_ UI,T\ , is nevertheless treated as being equal to UI,Tý .  When all UI,T�I\  values are equal to zero, Equation N20 reduces to Equation N1. Similarly, when all UI,T�I\  and UI,T�Iý  values are equal to zero, Equation N21 reduces to Equation N2. As shown by the inability to eliminate the (1 + ¥ ℎT,õNõVõWX ) terms from Equations N21 when not all UI,T�I\  and UI,T�Iý  values are equal to zero, however, ℎT,õ values can wield some influence on §I values, even at equilibrium, unless all UI,T�I\  and UI,T�Iý  values are equal to zero. This residual influence of ℎT,õ is a flaw of the approximation of σk by Equation N21, as the equation (A23) that defines σk is devoid of any viscosity-related terms such as ℎT,õ, which represents the species-q-applicable transport coefficient that links Nõ to the viscosity of the system (Equations D6, D9 D12 and D13).  ReReReRe----evaluating the evaluating the evaluating the evaluating the ξξξξ----independent coefficients of the basis functions indexed by independent coefficients of the basis functions indexed by independent coefficients of the basis functions indexed by independent coefficients of the basis functions indexed by jjjj  Equations 33–, 33+, 34– and 34+ of Section C (A solution to the A solution to the A solution to the A solution to the tttt----    and and and and ξξξξ----dependent dependent dependent dependent continuity equation continuity equation continuity equation continuity equation for AUC in terms of speciesfor AUC in terms of speciesfor AUC in terms of speciesfor AUC in terms of species) show the functions used to approximate the concentration-dependent transport coefficients of each species, e, of each solute component, k. To render those functions ξ-independent, the solute concentrations at each explicitly included spatial element, ξj, were replaced by the corresponding ξ-independent concentration coefficients of each species of each solute component at each of two times, t 
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or [t + Δt], of which, all of the time-dependent parameters at time t are known, while all of the time-dependent parameters at time [t + Δt] are in the process of being determined.  To include the effects of coupled flows when solving the t- and ξ-dependent continuity equation in terms of species (Section C), Equations C33– and C33+ can be replaced by ξ-independent diffusion coefficients in the form of 
¤I,í,ÅÊ = OI,í∆NI,í,ÅÊ∆a R R ∆NT,õ,ÅÊ∆aOT,õ U[I,í],[T,õ]\ ¤T,õ,ÅÊQV�

õWX Î
ÏÐ¥ ¥ ¥ Ñ¿,T,õ,�,ü �N�,ü,ÅÊ¿�N�,ü,ÅÊV�üWXV�WX³¿WX

¥ ¥ ¥ ℎ¿,T,õ,�,ü �N�,ü,ÅÊ¿�N�,ü,ÅÊV�üWXV�WX³¿WX Ò
ÓÔV

TWX  
 (N23–) and 

¤I,í,ÅÉ = OI,í∆NI,í,ÅÉ∆a R R ∆NT,õ,ÅÉ∆aOT,õ U[I,í],[T,õ]\ ¤T,õ,ÅÉQV�
õWX Î

ÏÐ¥ ¥ ¥ Ñ¿,T,õ,�,ü �N�,ü,ÅÉ¿�N�,ü,ÅÉV�üWXV�WX³¿WX
¥ ¥ ¥ ℎ¿,T,õ,�,ü �N�,ü,ÅÉ¿�N�,ü,ÅÉV�üWXV�WX³¿WX Ò

ÓÔV
TWX , 

(N23+) which are based on the ξ-dependent function given by Equation N20, while Equations C33– and C33+ can be replaced by ξ-independent reduced molar mass coefficients in the form of 
§I,í,ÅÊ = _`¦I,í,ÅÊ¤I,í,ÅÊ

=
OI,íNI,í,ÅÊ ¥ ¥ NT,õ,ÅÊOT,õ U[I,í],[T,õ]ý §T,õ,ÅÊQ ¤T,õ,ÅÊQV�õWX

Î
ÏÐ¥ ¥ ¥ Õ¿,T,õ,�,ü �N�,ü,ÅÊ¿�N�,ü,ÅÊV�üWXV�WX³¿WX

¥ ¥ ¥ ℎ¿,T,õ,�,ü �N�,ü,ÅÊ¿�N�,ü,ÅÊV�üWXV�WX³¿WX Ò
ÓÔVTWX

¤I,í,ÅÊ   
(N24–)  and 
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§I,í,ÅÉ = _`¦I,í,ÅÉ¤I,í,ÅÉ

=
OI,íNI,í,ÅÉ ¥ ¥ NT,õ,ÅÉOT,õ U[I,í],[T,õ]ý §T,õ,ÅÉQ ¤T,õ,ÅÉQV�õWX

Î
ÏÐ¥ ¥ ¥ Õ¿,T,õ,�,ü �N�,ü,ÅÉ¿�N�,ü,ÅÉV�üWXV�WX³¿WX

¥ ¥ ¥ ℎ¿,T,õ,�,ü �N�,ü,ÅÉ¿�N�,ü,ÅÉV�üWXV�WX³¿WX Ò
ÓÔVTWX

¤I,í,ÅÉ , 
(N24+) which are based on the ξ-dependent function given by Equation N21.  To define the parameters of Equations N23–, N23+, N24– and N24+, it is convenient to let α represent component k, q or w, let β represent species e, a or u, and let j∓ represent j– or j+, where j refers to spatial element ξj, the minus sign refers to time t, and the plus sign refers to time [t + Δt]. As such, in Equations N23–, N23+, N24– and N24+, n is the number of solute components, nα is the number of species that constitute solute component α, Nâ,` is the concentration of species β of component α, ¤â,` is the diffusion coefficient of species β of component α, §â,` is the reduced molar mass coefficient of species β of component α, ¤â,`Q  equals ¤â,` in the limit as c approaches 0, §°â,` equals §â,` in the limit as c approaches 0, Nâ,`,ÅÊ at all ξ equals the concentration of species β of solute component α at ξj at time t, Nâ,`,ÅÉ at all ξ equals the concentration of species β of solute component α at ξj at time [t + Δt], ¤â,`,ÅÊ at all ξ equals ¤â,` at ξj at time t, ¤â,`,ÅÉ at all ξ equals ¤â,` at ξj at time [t + Δt], §â,`,ÅÊ at all ξ equals §â,` at ξj at time t, §â,`,ÅÉ at all ξ equals §â,` at ξj at time [t + Δt], ¤â,`,Å∓Q  equals ¤â,`,Å∓ in the limit as c approaches 0, §°â,`,Å∓ equals §â,`,Å∓ in the limit as c approaches 0, U[I,í],[T,õ]\  is the coefficient that couples ¤°T,õ,Å∓ to ¤I,í,Å∓, U[I,í],[T,õ]ý  is the coefficient that couples §°T,õ,Å∓¤°T,õ,Å∓ to §I,í,Å∓, Mk,e is the molar mass of species e of solute component k, ¦I,í is the sedimentation coefficient of species e of solute component k, _`¦I,í,ÅÊ at all ξ equals _`¦I,í  at ξj at time t, and _`¦I,í,ÅÉ at all ξ equals _`¦I,í  at ξj at time [t + Δt]. (See the various forms of Equation N25 for the definitions of ∆NI,í,ÅÊ ∆aa , ∆NI,í,ÅÉ ∆aa , ∆NT,õ,ÅÊ ∆aa  and ∆NT,õ,ÅÉ ∆aa .) The bth of up to an infinite number of coefficients of proportionality for the density increment, thermodynamic nonideality, and viscosity 
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effects are Õ¿,T,õ,�,ü, Ñ¿,T,õ,�,ü, and ℎ¿,T,õ,�,ü, respectively.  By definition, ¥ ¥ ÕX,T,õ,�,üV�üWXV�WX , ¥ ¥ ÑX,T,õ,�,üV�üWXV�WX  and ¥ ¥ ℎX,T,õ,�,üV�üWXV�WX  are each equal to 1. Each of the Õ¿,T,õ,�,ü, Ñ¿,T,õ,�,üand ℎ¿,T,õ,�,ü coefficients is a constant that couples the concentration of species u of component w to an effect on the transport of species a of component q. (See Section D for the component-based equivalents of these virial expansions.)  Provided that �w¤°T,õ waa �y = 0 and �w¤°T,õ wa ��  = 0 at all ξ at all times, ¤°T,õ,ÅÊ =  ¤°T,õ 
and ¤°T,õ,ÅÉ =  ¤°T,õ at all ξ at all times. Provided that �w§°T,õ waa �y = 0 and �w§°T,õ wa ��  = 
0 at all ξ at all times after a change in the gravitational field is complete, §°T,õ,ÅÊ =  §°T,õ and §°T,õ,ÅÉ =  §°T,õ at all ξ at all times after a change in the gravitational field is complete.  With α representing component k or q, β representing species e or a, and j∓ representing j– or j+, the approximated derivatives, ∆NI,í,ÅÊ ∆aa , ∆NI,í,ÅÉ ∆aa , ∆NT,õ,ÅÊ ∆aa  and ∆NT,õ,ÅÉ ∆aa , in Equations N23– and N23+, are calculated as ∆Nâ,`,Å∓∆a = Nâ,`,[`]∓ − Nâ,`,[X]∓a[`] − a[X]  
(N25a)  for j = 1, ∆Nâ,`,Å∓∆a = 12 �Nâ,`,[ÅÉX]∓ − Nâ,`,[Å]∓a[ÅÉX] − a[Å] + Nâ,`,[Å]∓ − Nâ,`,[ÅÊX]∓a[Å] − a[ÅÊX] � 
(N25b) for 1 < j < N, and ∆Nâ,`,Å∓∆a = Nâ,`,[Ã]∓ − Nâ,`,[ÃÊX]∓a[Ã] − a[ÃÊX]  
(N25c) for j = N. Provided that ∆a ∆ba  = 0, Equations N25a, N25b and N25c, respectively, are equivalent to 
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∆Nâ,`,Å∓∆a = Nâ,`,[`]∓ − Nâ,`,[X]∓∆a  
(N25d)  for j = 1, ∆Nâ,`,Å∓∆a = Nâ,`,[ÅÉX]∓ − Nâ,`,[ÅÊX]∓2∆a  
(N25e) for 1 < j < N, and ∆Nâ,`,Å∓∆a = Nâ,`,[Ã]∓ − Nâ,`,[ÃÊX]∓∆a  
(N25f) for j = N. Thus, for ∆a ∆ba  = 0 (as in Equation B37 and B38), it can be argued, given the ξ-independence of ck,e,j-, ck,e,j+, cq,a,j-, cq,a,j+ and Δξ, that each form of Equation N25 yield a ξ-independent result.   Equations N23∓ and N24∓ can be used in place of Equations C33∓ and C34∓, respectively, where the minus/plus sign refers the equation at either time t or time [t + Δt]. Eliminating the indices e and a, which apply to species, and the summations with respect to species, yields the component-equivalents of Equations N23∓, N24∓ and N25. The component-equivalents of Equations N23∓ and N24∓ can be used in place of Equations B22∓ and B23∓, respectively.  Evaluating Evaluating Evaluating Evaluating UI,Tü     and and and and UI,T\   Solving Equations A16 and A17 of Section A (An application of irreversible thermodynamics An application of irreversible thermodynamics An application of irreversible thermodynamics An application of irreversible thermodynamics to AUCto AUCto AUCto AUC) for Lk,q yields 

SI,T = NT�I,TOTOT�1 − P�T�� = NT�I,TOTpq �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���
V�WX �. 

(N26) Using Equations N6 and N7 to approximate DDDDk,q and ssssk,q, respectively, results in 
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SI,T = NTUI,Tý ¦TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX xOTOT�1 − P�T�� = NTUI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX x
OTpq �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX �, 
(N27) and division by NT �OT¾1 + ¥ ℎT,õNõVõWX Á�a  yields UI,Tý ¦TQ�1 + ¥ ÕT,õNõVõWX �OT�1 − P�T�� = UI,T\ ¤TQ�1 + ¥ ÑT,õNõVõWX �

pq �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���
V�WX �. 

(N28) Thus, as the total solute concentration, c, approaches zero,  
lim|→Q UI,Tý ¦TQ�1 + ¥ ÕT,õNõVõWX �OT�1 − P�T�� = lim|→Q UI,T\ ¤TQ�1 + ¥ ÑT,õNõVõWX �

pq �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���
V�WX �, 

(N29) the result of which is UI,Tý ¦TQOT v1 − �Q�Tx = UI,T\ ¤TQpq , 
(N30) where ρ0 is the density of the solvent, and ρk is the density of solute component k (Equations M5 to M7). Solving for UI,T\  yields 

UI,T\ = UI,Tý ¦TQpq¤TQOT v1 − �Q�Tx. 
(N31) Applying the limit as c approaches zero to Equation M2, and comparing the result to the Equation M7, shows that ¦TQpq¤TQ = OT �1 − �Q�T�. 
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(N32) Thus,  UI,T\ = UI,Tý . 
(N33) Applying this result to Equations N12 and N22 shows that UI,T_  should be equal to 1. Although this result shows that UI,T\  should always have the same value as UI,Tý , it may be convenient to treat them as independent variables in a simulation program, so that the coupled-flow effects on sq can be evaluated separately from the coupled-flow effects on Dq.  In the limit asIn the limit asIn the limit asIn the limit as    t t t t approachesapproachesapproachesapproaches    ∞∞∞∞     Equation N21 can be rewritten as 

§I = vwrsNIwa xy
¥ NTOTVTWX UI,Tý §TQ¤TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x

¥ vwNTwa xyOT UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX xVTWX
. 

(N34) Equation A36 applies to the system at equilibrium, and dividing both sides of that equation by ck yields 
§I = vwrsNIwa xy. 

(N35) As such, it must be that 
limy→³ §IvwrsNIwa xy

= limy→³
¥ NTOTVTWX UI,Tý §TQ¤TQ v1 + ¥ ÕT,õNõVõWX1 + ¥ ℎT,õNõVõWX x

¥ vwNTwa xyOT UI,T\ ¤TQ v1 + ¥ ÑT,õNõVõWX1 + ¥ ℎT,õNõVõWX xVTWX
= 1 

(N36) at each spatial position, ξ, in the system at equilibrium.  
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The more general equation, A23, can be rewritten as 
§I = vwrsNIwa xy

_` ¥ 1OT NT�I,TVTWX
¥ 1OT vwNTwa xyVTWX �I,T , 

(N37) 
§I = vwrsNIwa xy

¥ 1OT NT¨I,TVTWX �I,T
¥ 1OT vwNTwa xy �I,TVTWX

 
(N38) or 

§I = vwrsNIwa xy
_` ¥  SI,TOT�1 − P�T��VTWXpq ¥ vwrsNTwa xy SI,TVTWX �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX �, 
(N39) which, in the limit as t approaches ∞, yield 

limy→³ §IvwrsNIwa xy
= limy→³

_` ¥ 1OT NT�I,TVTWX
¥ 1OT vwNTwa xyVTWX �I,T = 1, 

(N40) 
limy→³ §IvwrsNIwa xy

= limy→³
¥ 1OT NT¨I,TVTWX �I,T
¥ 1OT vwNTwa xy �I,TVTWX

= 1 
(N41) and 

limy→³ §IvwrsNIwa xy
= limy→³ _` ¥  SI,TOT�1 − P�T��VTWXpq ¥ vwrsNTwa xy SI,TVTWX �1 + NT ¥ vwN�wNT xy vwrstTwN� xy,~,{,|���

V�WX � = 1, 
(N42) 
respectively, at each spatial position, ξ. Assuming that v¸|�¸|� xy ¶¸ûVc�¸|� ·y,~,{,|���  is zero for all w 
≠ q, Equation N42 further simplifies to 
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limy→³ _` ¥  SI,TOT�1 − P�T��VTWX
pq ¥ SI,TVTWX vwrsNTwa xy z1 + vwrstTwrsNTxy,~,{,|���� = 1. 

(N43) 
Thus, at equilibrium, with ¶¸ûV|�¸� ·y being equal to úûV|�ú�  , and with v¸ûVc�¸ûV|�xy,~,{,|���  being equal 
to úûVc�úûV|�, 

R  SI,T �_`OT�1 − P�T�� − pq �rsNT�a �1 + �rstT�rsNT��V
TWX = 0 

(N44) at each spatial position, ξ, in the system.  Neglecting vector notation (see the discussion following Equation A3), in an AUC system, ∇Uq can be reduced to ¶¸d�¸® ·y (Equations A2, A14, and I16 to I20), and at equilibrium, ¶¸d�¸® ·y 
can be expressed as úd�ú® . In Equation N44, Lk,q is the coefficient of úd�ú� = X® úd�ú® . Thus, Equation 
N44 can be written more compactly as 

R SI,T �\T�a
V

TÊX = 0, 
(N45) where Uq is the total molar potential of solute component  q (Equation I17). As each úd�ú� = 0 
at equilibrium, Equation N45 cannot be used to determine Lk,q values. In the case of membrane-confined electrophoresis (MCE) [Moody, 2011], however, reservoirs of solvent are separated from the top and bottom of the system by semi-permeable membranes through which the solvent and membrane-permeant components can flow at a steady rate, while membrane-confined components that must remain between the membranes form concentration gradients in response to an applied electrical potential difference and the flow of mass through the system. MCE systems approach steady state rather than equilibrium, and in such a system at steady state, each úd�ú�  can be nonzero. Under conditions 
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in which the úd�ú�  values are nonzero, the MCE-equivalent to Equation N45 can be used to 
determine Lk,q values. Such determinations are explored in Section N of the MCE document [Moody, 2011] that mirrors this AUC document.   ReferencesReferencesReferencesReferences      [M1] Moody, T. P. (2011) An irreversible thermodynamic description of membrane-confined electrophoresis (MCE) applied to a solution of the time- and electrical-potential-space-dependent continuity equation for MCE. http://moodybiophysicalconsulting.blogspot.com/.  List of selected parameters, their indices, and their cgs dimensionsList of selected parameters, their indices, and their cgs dimensionsList of selected parameters, their indices, and their cgs dimensionsList of selected parameters, their indices, and their cgs dimensions    symbolindices parameter   index 1 index 2  dimensions rH  radial vector         cm  M1 molar mass    component    g/mol c1 mass concentration   component    g/cm3  c1,2 mass concentration   component spatial element g/cm3  D1,2 diffusion coefficient   component component  cm2/s  s1,2 sedimentation coefficient  component component  s  D1 diffusion coefficient   component    cm2/s  s1 sedimentation coefficient  component    s  σ1 reduced molar mass coefficient component    cm-2  D1,2 diffusion coefficient   component spatial element cm2/s  s1,2 sedimentation coefficient  component spatial element s σ1,2 reduced molar mass coefficient component spatial element cm-2  r radial position        cm ξ half the radial position squared      cm2  ξ1 half the radial position squared  spatial element   cm2  ω angular velocity        s-1 t time          s 
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P�X partial specific volume  component    cm3/g ρ solution density        g/cm3  ρ1 density    component    g/cm3 γ1 activity coefficient   component   dimensionless NA Avogadro's number        mol-1 f1 frictional coefficient    component    g/s η solution viscosity        g/s∙cm  pX∗ Stokes radius (equivalent sphere) component    cm P1 basis function    spatial element  dimensionless P pressure         dyne/cm2 R  ideal gas constant        erg/mol∙K T absolute temperature       K  /X∗  reduced buoyant mass  component    g p1,2 density increment coefficient  component component  cm3/g y1,2 nonideality coefficient  component component  cm3/g h1,2 viscosity coefficient   component component  cm3/g  U1 total molar potential   component    erg/mol μ1 chemical potential   component    erg/mol UHX conjugate molar force  component    dyne/mol [HX mass flow vector   component    g/s∙cm2 I1 mass flow    component    g/s∙cm2 L1,2 phenomenological coefficient component component  mol2∙s/g∙cm3  S{,��,õ  phenomenological coefficient  products reactants  mol2∙s/g∙cm5  S�,{�,õ  phenomenological coefficient  reactants products  mol2∙s/g∙cm5  GHX molar flow vector   component    mol/s∙cm2 J1 molar flow    component    mol/s∙cm2 GX� molar reaction flow   reaction    mol/s∙cm3 A1 conjugate molar affinity  reaction    erg/mol  
H  magnetic field        tesla, or 
H  Coriolis force         dyne/g 



Irreversible thermodynamics of AUC, copyright December 12, 2011 (CIPO 1091880), Thomas P. Moody, moodybiophysicalconsulting.blogspot.com 

192 

 

Φ  free energy dissipation function      erg/cm3⋅s z longitudinal coordinate       cm  φ angular coordinate       dimensionless PHX velocity vector    component    cm/s  v1 velocity magnitude     component    cm/s êr unit vector    direction (+r-axis)  dimensionless gE gravitational acceleration (See note.) Earth    cm/s2  Note  The cgs standard acceleration due to gravity, gE, is approximately 981 cm/s2 (for the Earth at sea level).  Contact InformationContact InformationContact InformationContact Information     Thomas P. Moody Moody Biophysical Consulting Vancouver, British Columbia Canada E-mail: moodybiophysicalconsulting@gmail.com Web site: http://moodybiophysicalconsulting.blogspot.com/. 


