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Background regarding simulations 
 
The data presented here were generated by simulations (Moody, 2012). The method of 
simulation is an implementation of an integral, finite-element solution to the relevant continuity 
equation (Moody, 2011a, 2011b). The method is built on that which Claverie, Dreux and Cohen 
(1975) described in their solution to the Lamm equation, but differs in several respects. To 
correctly implement their concentration dependence, the transport coefficients are defined as 
spatially-independent parameters. To correctly evaluate the concentration-dependent transport 
coefficients at the time to be evaluated, the concentrations are calculated iteratively. By such an 
evaluation of the concentration-dependent transport coefficients at both the time already 
evaluated and the time being evaluated, the accuracy of each new set of concentrations is 
maximised. Computational artefacts are reduced by first calculating all concentrations in one 
order, then recalculating all concentrations in the opposite order, and averaging the results. For 
the cylindrical coordinate system of analytical ultracentrifugation, simpler results of integration 
are obtained by using one-half the square of the radial position, rather than the radial position, as 
the spatial parameter of the continuity equation (Moody, 2011a). For the rectangular coordinate 
system of membrane-confined electrophoresis, the time-and-distance-dependent continuity 
equation yields results of integration that are simpler than those obtained from the Lamm 
equation, which is the time-and-radial-position-dependent continuity equation that pertains to 
analytical ultracentrifugation (Moody, 2011b). Additionally, a simple coupled-flow equation has 
been implemented. 
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g(s*) analysis of data obtained by analytical ultracentrifugation 
 
The data collected during analytical ultracentrifugation (AUC) include the values of a dependent 
variable related to the total mass concentration, c, of all solutes, and the corresponding 
independent variables of time, t, and radial position, r. Data regarding rotor speed, temperature 
and other parameters that are likely to affect 567689: and 5676:98 are also recorded. The 
proportionality between an experimentally measured signal and a specific solute concentration 
may vary from one solute to another. For example, it is often the case that some solutes, such as 
buffer salts, are completely undetectable, or nearly so. 
 
Regardless of how the signal relates to c, the analysis of AUC data can be viewed as an attempt to 
describe a system without reference to most of the experimental parameters. Such a description 
is nearly achieved by g(s*) analysis, which is to say, the analysis of AUC data in terms of the 
apparent sedimentation coefficient, s*, and its distribution function, g(s*). In essence, g(s*) 
analysis is a transformation of AUC data that minimises all effects that depend on r, t or rotor 
speed. As in practically all methods of analysis of AUC data, reference to temperature and solvent 
remains unavoidable. Reference to concentration is not really avoidable, either, but the results of 
g(s*) analysis can be normalised with respect to total signal. Such normalisation can be useful 
when comparing the results of g(s*) analysis obtained from systems that vary with respect to c. 
 
Before delving into the details of g(s*) analysis, it is worth noting a time-dependent effect that 
results from the system having the geometry of a cylindrical sector. Due to this geometry, over 
time, the concentration of a negatively-buoyant solute decreases in the region between its zone of 
depletion and the pellet that accumulates toward the base of the system, while the concentration 
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of a positively-buoyant solute increases in the region between its zone of depletion and the 
supernatant that accumulates toward the meniscus of the system. Collectively, these 
geometrically rooted phenomena are referred to as the radial dilution/concentration effect. 
 
Each value of s* is a combined transformation of a value of r, a value of t, the rotor speed, and a 
reference position. By definition, s* is equal to the sedimentation coefficient of a 
thermodynamically ideal solute that, in the limit of zero diffusion, would exhibit a hyper-sharp 
boundary in its concentration at a specific radial position and a specific time. There are two 
possible orientations of that hyper-sharp boundary, one of which would arise from a positively-
buoyant solute for which s* is less than zero, the other of which would arise from a negatively-
buoyant solute for which s* is greater than zero. Thus, each value of s* describes the behaviour of 
a step function that can represent a hypothetical solute concentration in an all-or-none fashion. 
 
Henceforth, a hypothetical solute is defined as an imaginary, thermodynamically ideal, non-
diffusing solute characterised by an s* value and a constant of concentration. Of the two 
oppositely signed s* values that correspond to a transition in a hypothetical solute concentration 
at radial position r and time t, the one having s* < 0 corresponds to the transition for which the 
hypothetical solute concentration at time t is zero at all radial positions greater than r, and the 
one having s* > 0 corresponds to the transition for which the hypothetical solute concentration 
at time t is zero at all radial positions less than r. 
 
A hypothetical solute can be said to exhibit a zone of depletion where its concentration is zero, 
and a plateau region within which its concentration is greater than zero and independent of 
radial position. The concentration of a hypothetical solute in its plateau region is, by virtue of 
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being independent of radial position, called its plateau concentration. The plateau concentration 
of a hypothetical solute is equal to a value that, due to the radial dilution/concentration effect, 
depends on time. One time-independent exception is a hypothetical solute for which s* = 0. A 
seemingly trivial time-independent exception is a hypothetical solute for which the concentration 
is zero above and below what would otherwise be its transition. 
 
The data transformation obtained by g(s*) analysis takes the radial dilution/concentration effect 
into account, albeit imperfectly. To within some approximation, however, g(s*) analysis reveals 
the relationship between s* values and the initial concentrations of the corresponding, 
hypothetical solutes. With the possible exceptions of the extreme time points, the number of s* 
values is infinite at any given time. Thus, within a g(s*) distribution, for any given hypothetical 
solute characterised by a randomly chosen s* value, the apparent initial concentration is most 
likely zero, or of a magnitude attributable to noise. 
 
Given a function to convert between r and s* at any given time (Equation 27), the independent 
variables of AUC data can be transformed from t and r to t and s*. It is then possible to plot c 
versus s* at time t, but in doing so, the value of c at any single radial position at that time will map 
to the two values of s* that are calculated for that radial position and time. Likewise, following 
such a transformation, it is straightforward to obtain the derivative, 5 676E∗9:, which is single-valued 
when viewed as a function of s*, but is double-valued when viewed as a function of r. 
 
At any given time, where G567689:G is greater than zero at some value of r, G5 676E∗9:G will be greater 
than zero at the two values of s* calculated from that value of r, but the sign of 5 676E∗9: will match 
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the sign of just one of those s* values. The s* value where the signs of 5 676E∗9: and s* match will be 
the s* value that matches the orientation of 567689: at the corresponding r value. Each 5 676E∗9:  that 
matches the sign of s* is deemed essential with respect to calculating g(s*). Each 5 676E∗9: that is 
opposite in sign to s* is deemed redundant, and a value of zero is used in its place when 
calculating g(s*). At any given time, half of the nonzero 5 676E∗9: values will be deemed essential, 
and half will be deemed redundant. 
 
Nullifying the redundant nonzero values of 5 676E∗9: , and modifying the remaining values in an 
effort to reverse the effects of radial dilution/concentration, yields g(s*). The integral of |g(s*)| 
with respect to s* yields the cumulative distribution function, G(s*), which equates to a 
substantially time-normalised, but not entirely time-independent, measure of the concentration 
of all solutes for which the apparent sedimentation coefficient is less than or equal to s*, but 
greater than or equal to the minimum possible value (Equation 35) of s* at some specific time. 
 
Previous derivations (Bridgeman, 1942; Stafford, 1992, 1994, 2000) of g(s*) encompassed values 
of s* ≥ 0. In the derivation described here, g(s*) is extended to include values of s* < 0. As will be 
shown, when applied to data spanning a short time frame, and in the absence of fitting for time-
independent noise, the ls-g(s*) function (Schuck & Rossmanith, 2000) obtained by least squares 
boundary modeling is nearly identical to |g(s*)|. 
 
An overview of the remaining contents 
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Following a general description and derivation of g(s*) and related functions (Equations 1 to 38; 
Figure 1), nearly noise-free data from simulations are subjected to g(s*) analysis. In the first set 
of examples, a concentration-independent system is used to show each step of g(s*) analysis 
(Equations 39 to 45; Figures 2 to 22), and to illustrate some complications that can occur with 
relatively simple systems (Figures 23 to 31). To show the effects of concentration dependence on 
g(s*) results, a more complicated system is used in a subsequent set of examples of g(s*) analysis 
(Figures 32 to 39). A set of equations describing c as a collection of step functions is then 
presented, and g(s*) is described in terms of derivatives of those step functions (Equations 46 to 
87). Next, the effects of radially-independent (RI) and time-independent (TI) noise on 5 676E∗9:, 
determined from finite-difference forms of spatial (Equation 3) or temporal (Equation 6) 
derivatives, are explored in some detail (Equations 88 to 99; Table 1; Figures 40 to 50). Lastly, 
the analogue of g(s*) that pertains to membrane-confined electrophoresis is described 
mathematically (Equations 100 to 170). 
 
Basic derivations of g(s*) 
 
Bridgeman’s (1942) derivation of g(s*) starts with the total differential of c with respect to r and 
t, 

 RS = TUSUVW: RV + TUSUYW8 RY . 
(1) 
At constant t, this equation reduces to 

RS: = TUSUVW: RV. 
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(2) 
Thus, where c is defined as a function of r and t, the partial derivative of c with respect to s* at 
constant t, obtained through division by an infinitesimally small change in s* at constant t, is 

T USUZ∗W: = TUSUVW: T UVUZ∗W:. 
(3)  
 
The functional form of s* can be derived from the equations of continuity and mass flow that 
apply to AUC. Detailed descriptions of these equations can be found in many places, including the 
reference relied upon here (Moody, 2011a). As will also be shown (Equation 27), s* can be 
described entirely in terms of r, t and the angular velocity, ω. (The relationship between rotor 
speed and ω is given by Equation 11.) From s* described in those terms, 5 686E∗9: is derived. 
 
Equation 3 shows that 5 676E∗9:  can only be nonzero where 567689: is nonzero. The orientation of 
567689: is given by its sign. Where 567689: > 0, its orientation is that of a negatively-buoyant solute. 
Where 567689: < 0, its orientation is that of a positively-buoyant solute. 
 
As previously noted, for a given radial position r at time t, there are two oppositely signed values 
of s* that, if respectively equal to the sedimentation coefficients of two oppositely directed, 
thermodynamically ideal solutes with vanishingly small diffusion coefficients, would lead to the 
expectation of two oppositely oriented, hyper-sharp transitions in concentration at that position 
at that time. The thermodynamically ideal solute for which the signs of s* and 567689: are the same, 
if given a diffusion coefficient of the appropriate value greater than zero, would exhibit a spatial 
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derivative of its concentration that is equal to 567689: at position r and time t, so that the s* value of 
this solute reflects both the location and orientation of 567689:. In contrast, the thermodynamically 
ideal solute for which the signs of s* and 567689: are opposite, if given any diffusion coefficient 
greater than zero, would exhibit a spatial derivative of its concentration that is opposite in sign to 
that of 567689: at position r and time t, so that the s* value of this solute reflects the location but not 
the orientation of 567689:. 
 
As has been stated, and as will be shown in some detail, all nonzero values of g(s*) are calculated 
from nonzero values of 5 676E∗9:, but not all nonzero values of 5 676E∗9: are included in the calculation 
of g(s*). Those nonzero values of 5 676E∗9: that do contribute to g(s*) are deemed essential, while 
those that do not are deemed redundant. Essential nonzero values of 5 676E∗9: will be found where 
s* reflects both the location and the sign of 567689:. Redundant nonzero values of 5 676E∗9: will be 
found where s* reflects the location but not the sign of 567689:. 
 
As will be shown (Equation 28), the signs of 567689: and 5 676E∗9: must be the same, or 567689: and 
5 676E∗9: must both equal zero. Thus, if the signs of s* and 5 676E∗9: are the same, 5 676E∗9:  is essential. In 
contrast, if the signs of s* and 5 676E∗9: are opposite, 5 676E∗9: is redundant. (Even if the signs of s* and 
5 676E∗9: are the same, 5 676E∗9:  might be deemed redundant if, by its magnitude, its value is 
attributable to noise.) 
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Before moving on to the calculation of g(s*), the time-derivative approach (Stafford, 1992, 1994, 
2000) for determining g(s*) will be described up to the point at which 5 676E∗9:  is obtained. From 
5 676E∗9: on, the calculation of g(s*) is the same, regardless of which approach is used to obtain 
5 676E∗9:. 
 
Stafford’s (1992, 1994, 2000) derivation of g(s*) starts with the total differential of c with 
respect to s* and t, 

 RS = T USUZ∗W: RZ∗ + TUSUYWE∗ RY , 
(4) 
from which, through division by an infinitesimally small change in t at constant r, the partial 
derivative of c with respect to t at constant r,  

TUSUYW8 = T USUZ∗W: TUZ∗UY W8 + TUSUYWE∗ , 
(5) 
is obtained. Solving Equation 5 for 5 676E∗9:  yields 

T USUZ∗W: = \TUSUYW8 − TUSUYWE∗^ T UYUZ∗W8 . 
(6) 
Equation 6 can be applied using finite differences in c, t and s*. In the limit as the finite time-
difference approaches zero, Equation 6 and Equation 3 yield identical results. 
 
In yet another approach to obtain 5 676E∗9: , the variables on which c depends can first be 
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transformed from t and r to t and s*, following which, c can be differentiated with respect to s* at 
constant t. The result of this latter approach is identical to that obtained by Equation 3. 
Regardless of how it is obtained, 5 676E∗9: is used identically for the remainder of this section, in 
which the time dependence of 5 676E∗9:  is minimised until all that remains is g(s*). 
 
There are four time-dependent effects exhibited by 5 676E∗9:. The first of those addressed here is the 
time dependence of the positions (in terms of s*) and magnitudes of redundant nonzero values of 
5 676E∗9:. This is the one time dependence that can be unambiguously eliminated, which is 
accomplished simply by subtracting the redundant nonzero values from 5 676E∗9: . Doing so leaves 
the nonredundant derivative of c with respect to s* at constant t, 

_(Z∗, Y) = T USUZ∗W: − `(Z∗, Y) , 
(7) 
where e(s*,t) is equal 5 676E∗9:  wherever and whenever 5 676E∗9:is redundant, but is equal to zero at all 
other s* and t. A test to determine which values of 5 676E∗9: are redundant is described later 
(Equation 29). 
 
The radial dilution/concentration effect is another time-dependent effect exhibited by 5 676E∗9: , and 
is the second such effect addressed here. This is one of the three time-dependent effects that 
remain present in q(s*,t). With respect to all hypothetical solutes, the radial 
dilution/concentration effect can be eliminated. Doing so leaves g(s*), which can thus be 
described as the plateau-corrected form of q(s*,t), given that the dilution/concentration effect 
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manifests itself as the time-dependence of plateau concentrations.  
 
The most basic but least practical equation describing g(s*) in terms of q(s*,t) is 

a(Z∗) = _(Z∗, Y) bSc,E∗Sd,E∗e , 
(8) 
where, for a hypothetical solute with a time-independent sedimentation coefficient of s*, c0,s* is 
the initial concentration throughout the system, and cp,s* is the plateau concentration at time t. 
Thus, multiplication of q(s*,t) by 7f,g∗7h,g∗ yields a product, g(s*,t), that is normalised for the effects of 
radial dilution or radial concentration that the plateau of the hypothetical solute would have 
accumulated by time t. As 7f,g∗7h,g∗ is always positive, the signs of g(s*) and q(s*,t) are the same, so 
that g(s*) differs from q(s*,t) solely with respect to magnitude. As will be shown (Equations 31 
and 32), 7f,g∗7h,g∗ can be described entirely in terms of t, s* and ω.  
 
The results of normalisation for the radial dilution/concentration may depend on the time, t, at 
which Equation 8 is applied to real systems, or simulated systems that model concentration-
dependent transport. Real solutes tend to exhibit concentration-dependent, and thus time-
dependent, sedimentation coefficients, and the real radial dilution/concentration effect depends, 
in part, on the sedimentation coefficients of real solutes. Consequently, the contribution of the 
radial dilution/concentration effect to the time-dependence of q(s*,t) is minimised in, but may 
not be entirely eliminated from, g(s*).  
 
In the limit of zero diffusion, the boundary between the solute-depleted and plateau regions of a 
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real solute concentration would become hyper-sharp. Such a hyper-sharp transition would 
produce a sharp spike, upward or downward, in g(s*), and in a concentration-independent 
system, the position (s*) and magnitude (|g(s*)|) of such a spike would be time-independent. 
Where the diffusion coefficient of such a solute is nonzero, each such spike in g(s*) broadens into 
a peak or valley, the central position of which is time-independent in a concentration-
independent system, but the height and breadth of which varies with time, even as the area of the 
peak or valley remains stable. This phenomenon, which is discussed next, is one of the two time-
dependent effects that are not minimised in g(s*). The other is concentration-dependent 
transport, which is discussed shortly. 
 
Nonzero diffusion coefficients cause the third time-dependent effect exhibited by5 676E∗9:, and is 
one of the three time-dependent effects exhibited by q(s*,t). The effect is due to the fact that the 
range of s* (Equation 27; Figure 1) narrows in proportion to i: , while the range of r encompassed 
by a diffusing boundary region broadens in proportion to ij: in the simplest, concentration-
independent case (van Holde, 1985). (In terms of c as a function of r and t, a boundary region can 
be defined as any region within r where G567689:G ≠ 0 at time t.) As a consequence of this effect, in 
an ideal system, g(s*) peaks grow higher with time, g(s*) valleys grow deeper with time, and in 
terms of g(s*) versus s*, the breadth of those peaks and valleys narrows with time, while the area 
of each peak or valley remains constant. In the limit of zero diffusion, g(s*) peaks and valleys are 
infinitesimally narrow at all times, and in the absence of concentration-dependent transport, 
their positions are time-independent. 
 
In q(s*,t), the radial dilution/concentration effect, in combination with nonzero diffusion 
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coefficients, causes the area of each q(s*,t) peak to decrease with time, and causes the area of 
each q(s*,t) valley to increase with time. Although the magnitude of q(s*,t) is more time-
dependent than that of g(s*), the peak and valley positions of the two functions are identical, as 
are the signs of their nonzero values. The essential nonzero values of 5 676E∗9:  are identical to 
q(s*,t) with respect to sign, magnitude and position. The essential and redundant nonzero values 
of 5 676E∗9: differ with respect to position only. Compared to the essential nonzero values, the 
redundant nonzero values of 5 676E∗9:  are dislocated to highly time-dependent s* values of opposite 
sign. 
 
Concentration-dependent transport causes the fourth time-dependent effect exhibited by5 676E∗9:, 
and is the second of the two time-dependent effects that are not minimised in g(s*). In the 
simplest case, compared to a concentration-independent system, concentration-dependent 
transport simply adds a time-dependence to the weight-average positions of the peaks and 
valleys of q(s*,t) and g(s*). Concentration-dependent transport may also skew the shape of a 
peak or valley, and a chemical reaction can render the area of a g(s*) peak or valley time-
dependent. Where concentration-dependent transport results in Johnston-Ogston effects, the 
number, position and magnitude of peaks and valleys in g(s*) can differ from that which would 
be seen otherwise. As with the previous effect, g(s*) and q(s*,t) differ only in magnitude, q(s*,t) 
is identical to the essential nonzero values of 5 676E∗9:, and redundant nonzero values of 5 676E∗9: are 
located at highly time-dependent s* values at which Z∗ 5 676E∗9: < 0 (Equation 29).  
 
Undetectable solutes, which do not contribute to the signal by which c (or some quantity related 
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to c) can be measured, will not directly contribute to 5 676E∗9:  anywhere at any time. No matter 
what its initial concentration, a solute that does not directly contribute to 5 676E∗9:  will not directly 
contribute to g(s*). Due to the concentration-dependence of real systems, however, a solute that 
does not directly contribute to g(s*) is likely to affect the results observed for all the detectable 
solutes. As such, indirect evidence for the presence of undetectable solutes may be observed in 
the form of an otherwise inexplicable time-dependence in g(s*). 
 
The third and fourth time-dependent effects, which stem from nonzero diffusion coefficients and 
concentration-dependent transport, respectively, are fully present in g(s*). Given that, for any 
realistic system, g(s*) is expected to exhibit such time-dependent effects, it might be argued that 
g(s*) should be written as g(s*,t). Such a change in notation would be useful, in fact, when the 
focus is on time-dependent characteristics of that function. For now, however, the customary 
notation is retained. After all the explanatory equations are described, illustrative examples of 
the above time-dependent effects, and a comparison of |g(s*)| with ls-g(s*), will be shown and 
discussed. Later still, the equations describing c as a collection of step functions, to which g(s*) 
truly applies, will be presented. 
 
Equations of continuity and mass flow 
 
The Lamm equation, which is the continuity equation for centrifugation in a system with the 
geometry of a cylindrical sector, can be written as 

TUSUYW8 = − 1V TUVmUV W:, 
(9) 
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where I is the total mass flow of all solutes. 
 
In terms of D and s, the gradient-average diffusion and weight-average sedimentation 
coefficients, respectively, for all solute components, 

m = VZnoS − p TUSUVW: , 
(10)  
where ω is the angular velocity of the centrifuge rotor in the reference frame of the centrifuge. 
The angular velocity is given by 

n = 2q r stu60 Zvwxy , 
(11) 
where RPM is the rotor speed in rotations per minute. As the angular velocity varies while the 
rotor accelerates, it is convenient to define ω as the time-independent angular velocity of the 
rotor after acceleration, and to define the centrifugation time as 

Y = 1n z n{R|{}~�}�
{f   

(12) 
(Stafford, 2000), where τ is the time in the reference frame of the system, τ0 is equal to τ when 
the rotor acceleration starts, τclock is equal to a specific value of τ > τ0, and ωτ is the time-
dependent angular velocity of the rotor. As ωτ = 0 at τ0, t = 0 at τ0. (Henceforth, t0 is used to 
denote t = 0.) Once rotor acceleration has stopped, ωτ is equal to ω, and remains equal to ω for 
an extended time. 
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The continuity equation in the limit as 567689: approaches zero 
 
In regions of the system where 567689: = 0, which condition can only persist if 56E689: = 0 wherever 
567689: = 0, Equations 9 and 10 lead to 

limT6768W�→c TUSUYW8 = RSRY = −2ZnoS. 
(13) 
To describe this condition in detail, let the lowest and highest radial positions of a region where 
Equation 13 holds be denoted as rmin and rmax, respectively, where, in general, rmin and rmax are 
time-dependent. Within a time-dependent region where Equation 13 holds, which is to say, 
within rmin ≤ r ≤ rmax, c = cp, where cp is the time-dependent plateau concentration. The plateau 
concentration is the total concentration of all solutes within rmin ≤ r ≤ rmax, and its time 
dependence stems from the radial dilution/concentration effect. At any given time, 567h68 9:  = 0. 
For the systems considered here, at t0, at all r, c = c0, where c0 is the initial total concentration of 
all solutes. Thus, cp = c0 at t0, at which time, rmin = rm and rmax = rb, where rm is the radial position 
of the meniscus, and rb is the radial position of the base of the system. (All r lie within rm and rb.) 
 
Within any region where Equation 13 holds, the equation can be solved by separation of 
variables and integration. Assuming that any apparent dependence of s on t is really a 
dependence of s on c, such a solution takes the form of 

z RSZS7h
7f = −2no z RY:h

:f  , 
(14) 
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where the right-hand side evaluates to -2ω2tp, and tp is the time at which c = cp within rmin ≤ r ≤ 
rmax. The left-hand side cannot be evaluated without knowing the function that describes the 
dependence of s on c. In what follows, however, a realistic description of s is not needed, as what 
is sought is a function that quantifies the distribution of the solute components with respect to an 
independent variable, s*. 
 
At a given time and radial position, there are as many concentration-dependent sedimentation 
coefficients as there are solute species, and s is equal to their weight average. Instead of 
describing the system in terms of this finite number of concentration-dependent sedimentation 
coefficients that underlie s at a given time and radial position, the system is described in terms of 
an infinite number of apparent sedimentation coefficients, each of which is concentration-
independent. Each apparent sedimentation coefficient, s*, satisfies an equation, 

z RSE∗SE∗
7h,g∗

7f,g∗ = −2Z∗no z RY:h
:f  , 

(15) 
in which cs* is the concentration of a hypothetical solute characterised by s* in the limit as D*, the 
diffusion coefficient of that solute, approaches zero. There is an infinite number of such integrals. 
At t0, within rm ≤ r ≤ rb, cs* would equal c0,s*. More generally, at tp, within rmin ≤ r ≤ rmax, cs* would 
equal cp,s*.  
 
The right-hand side of Equation 15 evaluates to -2s*ω2tp, and the left-hand side evaluates to 
�x T7h,g∗7f,g∗W. Solving for cp,s* yields 

Sd,E∗ = Sc,E∗`�oE∗��:h  . 
(16) 
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The exponential term is equal to the extent of radial dilution (if s* > 0) or radial concentration (if 
s* < 0) that would be observed from t0 to tp in the plateau region of a purely hypothetical solute 
characterised by a concentration-independent sedimentation coefficient of s* and an initial (t = 
t0) concentration of c0,s*. Solving Equation 16 for 7f,g∗7h,g∗ yields an expression of the normalisation 
factor (for the effects of radial dilution or concentration) of Equation 8 in terms of ω, tp and s*. 
 
Solving Equation 16 for s* yields, for tp > t0, 

Z∗ = 12noYd �x bSc,E∗Sd,E∗e . 
(17) 
At time tp > t0 and angular velocity ω, and for a given c0,s*, Equation 17 expresses s* as a function 
of cp,s*, such that s* < 0 for c0,s* < cp,s*, s* = 0 for c0,s* = cp,s*, and s* > 0 for c0,s* > cp,s*. At t0, s* is 
undefined. 
 
Solving Equation 17 for tp and taking the partial derivative with respect to s* at constant 7f,g∗7h,g∗ 
yields 

bUYdUZ∗e7f,g∗7h,g∗
= −12noZ∗o �x bSc,E∗Sd,E∗e = − YdZ∗ , 

(18) 
which, if equal to 5 6:6E∗98 , is one of the terms needed to make use of Equation 6. A more general 
expression for 5 6:6E∗98 will be derived shortly (Equation 30). 
 
The equation of mass flow in the limit as 567689: approaches zero 
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An equation is sought that describes s* in terms of r and t, which are the independent variables of 
Equations 9 and 10. To that end, the same limit that was applied to Equation 9 is now applied to 
Equation 10. 
 
In the limit as 567689: approaches 0, Equation 10 reduces to 

limT6768W�→c m = SZnoV . 
(19) 
 
The mass flow, I, is equal to cv, where, in the system frame of reference, v is the weight-average 
velocity of all solute components at t and r. Expressing v as �8�: , and dividing Equation 19 by c, 
results in 

limT6768W�→c � = RVRY = ZnoV . 
(20) 
Wherever 567689: = 0, 56E689: = 0, in which case, if the functional form of the t-dependence of s were 
known, Equation 20 might be solved by separation of variables and integration. Such a solution 
would take the form of 

z RVV8g
8f = no z ZRY:g

:f  , 
(21) 
where r0 would be the extreme radial position away from which a hypothetical solute with a 
sedimentation coefficient of s would travel, and at time ts, rs would be the radial position of the 
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transition in the concentration of that solute in the zero-diffusion limit. 
 
As the relationship between s and t is complicated, Equation 20 is solved using the same 
approach applied to the similar problem presented by Equation 13. The c-dependent parameter, 
s, in Equation 20 is replaced with an infinite number of c-independent, and therefore t-
independent, s* values, resulting in an infinite number of integrals, each of which applies to a 
hypothetical solute, and each of which is given by 

z RVV8g∗
8f = Z∗no z RY:g∗

:f ,  
(22) 
where r0 is the extreme radial position (rm for s* > 0, and rb for s* < 0) away from which a 
hypothetical solute of sedimentation coefficient s* travels, rs* is the radial position of the 
transition in the concentration of that solute in the zero-diffusion limit, and ts* is the time that 
corresponds to the location of that transition at rs*. 
 
For each such hypothetical solute, r0 = rb if s* < 0, and r0 = rm if s* > 0. At time ts*, at radial 
position rs*, each such solute exhibits a transition in concentration from 0 to cp,s*, where cp,s* is the 
plateau concentration of that solute at ts*. (The parameter tp in Equation 15 is thus readily 
equated to the parameter ts* in Equation 22, and both will shortly be equated to t.) At any given 
time, the concentration of such a solute could be described by a step function equal to 0 from r0 
to rs*, and equal to cp,s* from rs* to the extremity at the opposite end of the system from r0. (The 
extremity at the opposite end of the system from r0 is rm if r0 = rb, or at rb if r0 = rm.) 
 
The right-hand side of Equation 22 evaluates to s*ω2ts*, and the left-hand of Equation 22 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

21 

 

evaluates to �x 58g∗8f 9. Solving for rs* yields 
VE∗ = Vc`E∗��:g∗  , 

(23) 
which describes the boundary position (the transition point of the corresponding step function) 
that would be observed for a purely hypothetical solute characterised by a sedimentation 
coefficient of s*, in the limit as D* (the solute’s diffusion coefficient) approached zero.  
 
If analytic solutions of Equations 14 and 21 existed, they would only apply to a plateau region. In 
contrast, Equations 16 and 23, which are the analytic solutions of Equations 15 and 22, 
respectively, can be applied to the entire system. Thus, a description of the whole system is 
gained at the remarkably low cost of having to cast that description in terms of an infinite set of 
imaginary, nondiffusing, concentration-independent solutes. 
 
Based on Equations 16 and 23, the relationship between the plateau concentration and the 
boundary position of a hypothetical solute of sedimentation coefficient s*, in the limit as D* 
approaches zero, can be described by 

SE∗ =
���
�� 0 �Y �V < VE∗ = V�`E∗��:g∗  ��V Z∗ > 0V > VE∗ = V�`E∗��:g∗  ��V Z∗ < 0�

Sd,E∗  �Y �V ≥ VE∗ = V�`E∗��:g∗  ��V Z∗ ≥ 0V ≤ VE∗ = V�`E∗��:g∗  ��V Z∗ ≤ 0����
�� . 

(24) 
 
Equation 24 describes cs* as a step function with a time-dependent height of cp,s* (Equation 16), 
and a time-dependent transition at Vc`E∗��:g∗  (Equation 23), where r0 = rm for s* > 0, and r0 = rb 
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for s* < 0. Over time, for s* ≠ 0, the region in which cs* = 0 expands from r0 to Vc`E∗��:g∗ . While cs* 
depends on r and t, cp,s* depends on t and c0,s* (Equation 16). Thus, 567h,g∗68 9: = 0. As there is an 
infinite number of s* values, at any given time, there is an infinite number of step functions, each 
given by Equation 24. The sum of all such step functions at a given time yields c as a function of r 
at that time. 
 
A real incarnation of a hypothetical solute would accumulate as either a pellet (from rb to some 
point back), if negatively buoyant, or a supernatant (from rm to some point forward), if positively 
buoyant. Thus, for a real solute, either the pellet or supernatant concentration would exceed the 
plateau concentration. Each hypothetical solute, however, is only permitted one of two possible 
concentrations, which are 0 and cp,s*. 
 
In data obtained from real systems, or realistically simulated systems, including the pellet and 
supernatant in the regions subjected to g(s*) analysis results in nonzero cp,s* values being found 
toward the extrema (Equations 35 and 36) in s* at any given time. Such nonzero cp,s* values 
toward the extrema in s* can be misleading, however, as all that can be said of the solutes in a 
pellet is that their sedimentation coefficients would be greater than or equal to zero if relocated 
to the radial position just below the pellet, and all that can be said of the solutes in a supernatant 
is that their sedimentation coefficients would be less than or equal to zero if relocated to the 
radial position just above the supernatant. 
 
Transforming the independent variables from r and t to s* and t 
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Solving Equation 23 for s* yields 
Z∗ = 1noYE∗ �x TVE∗Vc W . 

(25) 
 
For each time, t, the set of all radial positions, r, is now equated to the set of boundary positions, 
rs*, needed to transform the independent variable r to the independent variable s*. Replacing rs* 
and ts* of Equation 23 with r and t, respectively, results in 

V = Vc`E∗��: , 
(26) 
which, solved for s*, yields 

Z∗ = 1noY �x T VVcW = ��
� 1noY �x T VV�W ≤ 01noY �x T VV�W ≥ 0��

� . 
(27) 
At a constant (and nonzero) ω, s* is a function of t, r and r0, such that s* < 0 for r0 > r, s* = 0 for 
r0 = r, s* > 0 for r0 < r, and for a given value of 88f, |s*| decreases as t increases. As rm and rb are 
the two possible values of r0, at a given ω2t > 0, for each radial position r within rm ≤ r ≤ rb, there 
are two values of s*. For each radial position r within rm < r < rb, at a given ω2t > 0, there is one 
negative and one positive value of s*. For r = rm, one s* equals zero and the other is less than zero 
at any ω2t > 0. For r = rb, one s* equals zero and the other is greater than zero at any ω2t > 0. At a 
given ω2t > 0, the minimum value of s* occurs where r = rm and r0 = rb, while the maximum 
value of s* occurs where r = rb and r0 = rm. At t0, s* is undefined for all r. As can be seen by 
equating − i��: �x 5 88�9 to i��: �x 5 88�9 and solving for r, there is one radial position, r = (rmrb)0.5, for 
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which, at any given time, the positive s* equals the absolute value of the negative s*. Figure 1 
illustrates the relationship between t, r and s* at 60,000 RPM, rm = 6 cm and rb = 7.2 cm.  
 
As previously discussed, the time-dependent effects of nonzero diffusion coefficients and 
concentration-dependent transport are fully present in g(s*). To these can be added the trivial 
time dependence that results from the extrema in s* approaching zero as time approaches 
infinity (Equation 27; Figure 1). 
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 Figure 1. The dependence of s* on radial position at times t1 = 210 s (───), t2 = 2t1 (───), t4 = 
4t1 (───), t8 = 8t1 (───), t16 = 16t1 (───) and t32 = 32t1 (───), for a system in which rm = 6 
cm, rb = 7.2 cm, and ω is that calculated (by Equation 11) for 60,000 RPM. (Figure 10 also 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

25 

 

illustrates the relationship between t, r and s*, but with the r and s* axes exchanged.) As s* is 
inversely proportional to t (Equation 27), the range of s* decreases with time, with the extrema 
approaching s* = 0 symmetrically from above and below as t approaches infinity. Going 
backwards in time, as t approaches zero, all s* approach either -∞ or ∞. As noted with respect to 
Equation 27, at any given time, there is one radial position, r = (rmrb)0.5, for which |s*| is the 
same, whether s* < 0 or s* > 0. (In the example shown here, (rmrb)0.5 = 6.573 cm.) 
 
Determining q(s*,t) from 5 676E∗9:, and expressing g(s*) in terms of q(s*,t), r, t and ω 
 
Differentiating Equation 26 with respect to s* at constant t yields 

T UVUZ∗W: = noYVc`E∗��: = VnoY , 
(28) 
which has the dimensions of a velocity. (Compare Equation 28 with Equation 20.) Where r is 
discontinuous or equal to one of its extrema, however, this derivative is ill defined. (See Figure 
10.) 
 
According to Equation 28, 5 686E∗9: must be greater than zero at all t > t0. Therefore, as Equation 3 
states that 5 676E∗9: =  567689: 5 686E∗9:, the sign of 5 676E∗9:  must be determined by the sign of 567689:. As 
discussed with respect to Equation 3, nonzero values of 5 676E∗9: that contribute to g(s*) are 
deemed essential, while those that do not are deemed redundant. 
 
Essential nonzero values of 5 676E∗9:  are found where s* reflects both the location (r) and the 
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orientation (sign) of 567689:. Redundant nonzero values of 5 676E∗9: are found where s* reflects the 
location but not the sign of 567689:. This distinction provides the basis for a test parameter, 

�E∗,: = Z∗ T USUZ∗W: . 
(29) 
If Qs*,t > 0, 5 676E∗9: is essential and e(s*,t) is equated to zero, but if Qs*,t ≤ 0, e(s*,t) is equated to 
5 676E∗9:. By definition (Equation 7), q(s*,t) is equal to 5 676E∗9: minus the redundant values of 5 676E∗9: 
collected in e(s*,t). Thus, q(s*,t) is equal to 5 676E∗9:  if 5 676E∗9:  is essential, and zero otherwise. 
 
The relationship between q(s*,t) and �5676:98 − 5676:9E∗� of Equation 6 becomes clear once 5 6:6E∗98 
has been expressed in terms of s* and t. Solving Equation 26 for t and differentiating with respect 
to s* at constant r yields 

T UYUZ∗W8 = −1(nZ∗)o �x T VVcW = − YZ∗ , 
(30) 
which, for t = tp, is the same result obtained in Equation 18. As t cannot be less than zero, 
Equations 18 and 30 show that the signs of 5 6:6E∗98 and s* are always opposite. Given this, and 
given the relationship (Equation 29) between s* and essential nonzero values of 5 676E∗9: , it follows 
that the sign of any essential nonzero value of 5 676E∗9:and the sign of 5 6:6E∗98 must be opposite at any 
time after t0. Thus, in Equation 6, which states that 5 676E∗9: = �5676:98 − 5676:9E∗� 5 6:6E∗98 , the difference, 
�5676:98 − 5676:9E∗�, must be less than zero for all essential nonzero values of 5 676E∗9:, and must be 
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greater than zero for all redundant nonzero values of 5 676E∗9:. 
 
Equating the right-hand sides of Equations 17 and 25, at t = tp = ts*, the relationship, 

Sc,E∗Sd,E∗ = TVE∗Vc Wo , 
(31) 
is obtained. In combination with either Equation 16 or Equation 23, Equation 31 permits 
Equation 8 to be rewritten in various forms, such as 

a(Z∗) = _(Z∗, Y) T 1`�oE∗��:W = _(Z∗, Y)�`E∗��: o. 
(32) 
Equation 32 shows that the sign of g(s*) is determined solely by q(s*,t). As noted with respect to 
Equations 7 and 29, q(s*,t) is equal to 5 676E∗9:  minus the redundant values, so that q(s*,t) is equal 
to 5 676E∗9:  wherever the signs of s* and 5 676E∗9:  are the same. Thus, where g(s*) is not equal to zero, 
the signs of s* and g(s*) are the same. 
 
Concentration change across a transition point (rs*), and concentration within an s* range 
 
A real boundary may encompass multiple species’ boundaries, each of which is broadened by 
diffusion and affected by the concentration of each species present. In g(s*) analysis, such a 
boundary is modeled as a set of hyper-sharp transitions in concentration, where each transition 
corresponds to a hypothetical solute characterised by a concentration-independent 
sedimentation coefficient of s*, an initial concentration of c0,s*, and a diffusion coefficient that 
approaches zero. 
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At a given time, t, the difference in the detectable concentration between two adjacent plateau 
regions separated by a boundary is Δct, where the subscript t indicates a time-dependent 
quantity. For a boundary located between VE�¢~�£∗  and VE¤��¥¢∗ , 

∆S: = z T USUZ∗W: RZ∗E¤��¥¢∗
E�¢~�£∗ , 

(33) 
where Z�§¨©ª∗  and Z«�©¬§∗  are calculated from VE�¢~�£∗  and VE¤��¥¢∗ , respectively, using Equation 27. In 
the plateau regions just below Z�§¨©ª∗  and just above Z«�©¬§∗ , 5 676E∗9: = 0. If all s* are less than zero 
within Z�§¨©ª∗  ≤ s* ≤ Z«�©¬§∗ , as would be the case for VE�¢~�£∗  = rmax of the plateau for which c is 
higher, Δct will be less than zero. If all s* are greater than zero within Z�§¨©ª∗  ≤ s* ≤ Z«�©¬§∗ , as 
would be the case for VE¤��¥¢∗  = rmin of the plateau for which c is higher, Δct will be greater than 
zero. (Respectively, rmin and rmax are the lowest and highest radial positions of a region where 
Equation 13 holds.) 
 
The substantially time-normalised, cumulative concentration of detectable solutes that can be 
characterised by s* within Z�§¨©ª∗  ≤ s* ≤ Z«�©¬§∗  is 

∆S = z |a(Z∗)|RZ∗E¤��¥¢∗
E�¢~�£∗ . 

(34) 
The result cannot be less than zero. If Z�§¨©ª∗  ≤ s* ≤ Z«�©¬§∗  encompasses an entire peak or valley 
of g(s*), Δc should, in the absence of overlapping boundaries of oppositely directed and 
detectable solutes (Figures 23 to 27), be time-independent for concentration-independent 
systems, as well as for concentration-dependent systems in which the solute concentrations are 
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not altered by chemical reactions. 
 
The range of integration in Equation 34 can be extended to the extrema of s*. The extrema in s* 
are inversely proportional to ω2t. At time t and angular velocity ω, 

Z�­∗ = 1noY �x TV�V� W 
(35)  
is the minimum value of s*, and 

Z®­∗ = 1noY �x TV�V�W 
(36)  
is the maximum value of s*. As noted with respect to Equation 27, each radial position gives rise 
to two s* values. At r = rm, s* = Z�­∗  for r0 = rb (Equation 35) and s* = 0 for r0 = rm. Likewise, at r 
= rb, s* = Z®­∗  for r0 = rm (Equation 36) and s* = 0 for r0 = rb. With the integration limits of 
Equation 34 set to Z�§¨©ª∗  = Z�­∗  and Z«�©¬§∗  = Z®­∗ , Δc is equal to the apparent value of c0, which is 
to say, the apparent initial concentration of all solutes that contribute to 5 676E∗9:, and thus 
contribute to g(s*). 
 
The range of integration in Equation 33 can also be extended to the extrema of s*, and with the 
addition of an offset, can be used to reconstruct c as a function of s* and t. At any given time, t, the 
concentration at s* = Z¯§°∗  < 0 is given by 

S = S�­ + z T USUZ∗W: RZ∗E±¢²∗
E³´∗ , 

(37a) 
and the concentration at s* = Zd©E∗  > 0 is given by 
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S = S�­ + z T USUZ∗W: RZ∗c
E³´∗ + z T USUZ∗W: RZ∗Eh�g∗

c = Sc® + z T USUZ∗W: RZ∗Eh�g∗
c , 

(37b) 
where, at time t, S�­ is equal to c corresponding to s*in the limit as Z�­∗  is approached from above, 
and Sc® is equal to c corresponding to s*in the limit as 0 is approached from above. The offsets, 
S�­ and Sc®, should be equal. 
 
Experimentally obtained data can be complicated by optical artefacts near rm and rb, as well as by 
inaccuracies wherever the solute concentration is outside the suitable range of the detection 
system, and over time, unsuitably high solute concentrations are likely to develop toward rm or 
rb. Outside of some well behaved simulations, then, when using Equation 37, the practical range 
of s* will not extend to either of the theoretical extrema, Z�­∗  or Z®­∗ . In general, to accommodate 
such limitations, the offset of Equation 37a will equal c corresponding to s*in the limit as its 
lowest practical negative value is approached from above, and the offset of Equation 37b will 
equal c corresponding to s*in the limit as its lowest practical positive value is approached from 
above. 
 
The cumulative distribution function, 

µ(Z∗) = z |a(¶∗)|R¶∗E∗
E³´∗ , 

(38) 
permits Equation 34 to be rewritten as Δc = G(Z«�©¬§∗ ) – G(Z�§¨©ª∗ ). The cumulative distribution 
function is a substantially time-normalised, but not entirely time-independent, measure of the 
concentration of all solutes for which the apparent sedimentation coefficient is less than or equal 
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to s*, but greater than or equal to Z�­∗  at some specific time. 
 
Evaluation of 5 676E∗9:  
 
Although c is a continuous function of either r and t or s* and t, c rarely takes on a convenient 
functional form. Instead, it is usually necessary to deal with a finite set of discontinuous c versus r 
or c versus s* values at a finite set of discontinuous time-points. If the data are not too sparse, 
however, finite differences in c, r, s* and t can yield good approximations of the partial 
derivatives, 567689:, 5 676E∗9:, 5676:98 , 5676:9E∗  and 5 6:6E∗98 , that appear in Equations 3 and 6, but cannot be 
calculated with an applicable function, such as that (Equation 28) which describes 5 686E∗9: . 
(Although Equation 30 is a functional description of 5 6:6E∗98 , that function applies to a specific 
time. Thus, when using finite differences in time to evaluate the derivatives of Equation 6, the 
approximation of 5 6:6E∗98 described by Equations 42 to 44 is used instead of Equation 30.) 
 
At any given time, 567689: and 5 676E∗9:  can be approximated as ∆7∆8 and ∆7∆E∗, respectively, using finite 
differences in c, r and s*. Approximating either derivative from the data at a single time-point 
eliminates any noise that stems from a radially-independent (RI) offset in the signal related to c, 
but the approximated derivative of the time-independent (TI) noise in that signal will propagate 
to either ∆7∆8 or ∆7∆E∗. (Equation 99 describes a TI-noise corrected application of Equation 3.) 
 
Finite differences can also be used to estimate partial derivatives of c with respect to time. 
Subtracting c versus r data at one time from c versus r data at another time is simple to do, 
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provided that, as is the case in the examples shown below, the radial positions are the same at all 
times. Once sets of c versus r data at multiple times have been transformed to c versus s* data at 
those times, subtracting c versus s* data at one time from c versus s* data at another time 
requires the interpolation of at least one set of c values with respect to s*. 
 
Evaluation of 5 676E∗9: , `wYℎ`V RwV`SY�¹ �V �V�v 567689: 
 
Figure 2 shows AUC simulation results, as c versus r, from a hypothetical system at t = 2916 s. 
This data set will be used to determine 5 676E∗9: from 567689: at t = 2916 s. Figure 3 shows the results, 
plotted as c versus s*, from the same hypothetical system at the same time. This data set will be 
used to directly determine 5 676E∗9: at t = 2916 s. The hypothetical system is described in Figure 2. 
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 Figure 2. A plot of c versus r at t = 2916 s, with the supernatant (toward rm = 6 cm) and pellet 
(toward rb = 7.2 cm) regions of c shown on a logarithmic scale above the break. (A few erratic 
points in the supernatant and pellet regions have been smoothed.) The data are from a 
simulation of a concentration-independent, three-component system subjected to AUC at 60,000 
RPM, and described as follows, where component-specific parameters are subscripted by a 
numerical identifier (1, 2 or 3): at t0, at all r, c1 = 3.389E-02 g/ml, c3 = 3.211E-02 g/ml, c2 = 
3.300E-02 g/ml; at all t and all r, s1 = 9.324E-13 s, s3 = -s1, s2 = 0, D1 = 9.126E-08 cm2/s, D3 = D1, 
and D2 = 7.243E-08 cm2/s. (The unrealistic results in the supernatant and pellet regions are due 
to the transport coefficients being independent of concentration.) The model system is a 
simplified version of one described previously (Moody, 2012). The following parameters had no 
effect on the results, but describe some of the relationships between the components: The 
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solvent was a model buffer with a density of ρ0 = 1.08225 g/ml; each component was modelled 
as consisting of spherical solutes for which the anhydrous radius was 0.65 times the hydrated 
radius; the specific gravities of the solute components were ρ1 = 1.11150 g/ml, ρ3 = 1.05300 
g/ml and ρ2 = ρ0; and the molar masses of the model components were M1 = 9,462,869 g/mol, 
M3 = 8,964,823 g/mol, and M2 = M1 + M3. The concentrations and molar masses are such that, at 
t0, c1/M1 = c3/M3 = 2c2/M2 at all r. 
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 Figure 3. A plot of c versus s* at t = 2916 s (───). The data are the same as those shown in 
Figure 2, but with the independent variable r transformed to s*. In further contrast to Figure 2, 
the supernatant (between r = 6.01831 cm and rm = 6 cm in Figure 2) and pellet (between r = 
7.18593 cm and rb = 7.2 cm in Figure 2) regions of c have been removed from the data used in 
this figure, and replaced with the adjacent plateau values of c. The data determined by the 
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application of Equation 37 (········) to 5 676E∗9: (Figure 4), with S�­ = 0.0728 g/ml, are 
superimposed on the results obtained by simply plotting c at each value of r (Figure 2) against 
the two corresponding values of s* calculated (Equation 27) for ω at 60,000 RPM (Equation 11) 
and t = 2916 s. 
 
5 676E∗9: from the direct differentiation of c versus s* at constant t 
 
Of the two values of s* obtained for each radial position at any given time, Qs*,t (Equation 29) will 
be positive at no more than one. Wherever and whenever Qs*,t is negative, 5 676E∗9:  is deemed 
redundant and e(s*,t) is equated to it, so that, upon application of Equation 7, q(s*,t) is either 
equal to zero or to those values of 5 676E∗9: deemed essential for determining g(s*). (In the figures 
that follow, the derivative of c with respect to s* at constant t is denoted as 5 676E∗9:, but estimated 
as ∆7∆E∗.) 
 
Figure 4 shows 5 676E∗9: obtained by direct differentiation of c with respect to s* at constant t, 
where the c versus s* data are those shown in Figure 3. Whenever there is a difference in the 
concentrations at the extrema in r, a plot of c versus s* will exhibit an equal concentration 
difference across s* = 0. Thus, direct differentiation of c with respect to s* at constant t produces 
a sharp upward or downward spike in 5 676E∗9: about s* = 0. Just such a spike is seen in Figure 4. 
Figure 4 also shows q(s*,t) obtained by application of Equations 29 and 7. 
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(In general, the examples presented here proceed from the least complicated to the most 
complicated, but the more complicated cases are presented. Had the concentrations toward the 
extrema in s* not been replaced with the adjacent plateau concentrations, for example, Figures 3 
and 4 would have looked much like the data at t = 2910 s in Figures 24 and 25.) 
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Figure 4. A plot of 5 676E∗9:  (───) versus s* at t = 2916 s. The results were obtained by direct 
differentiation of c with respect to s* at constant t, where the c versus s* data are those shown in 
Figure 3. Application of Equations 29 and 7 yielded q(s*,t) (········). The spike about s* = 0 
consists of just two points: 5 676E∗9: = 3.462E12 [g/ml]/s at s* = -7.389E-16 s, 5 676E∗9: = 3.461E12 
[g/ml]/s at s* = 1.064E-15 s. Except for that spike, this figure is identical to Figure 6, where 
5 676E∗9: at t = 2916 s is obtained using Equation 3, and is practically identical to Figure 20, where 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

37 

 

∆7∆E∗ at t = 2916 s is the finite form of 5 676E∗9:obtained using Equation 6. 
 
5 676E∗9: from 567689: 
 
The product of 567689: and 5 686E∗9: yields 5 676E∗9:  (Equation 3), where 5 686E∗9:  is equal to rω2t (Equation 
28). Figure 5 shows the results of differentiating c with respect to r at constant t, where the c 
versus r data are those shown in Figure 2, excluding the supernatant and pellet regions. (In the 
figures that follow, the derivative of c with respect to r at constant t is denoted as 567689:, but 
estimated as ∆7∆8.) 
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Figure 5. A plot of 567689: versus r at t = 2916 s. The results are from the direct differentiation of c 
with respect to r at constant t, where the c versus r data are those shown in Figure 2, minus the 
data from the supernatant and pellet regions. 
 
Figure 6 shows 5 676E∗9: calculated from 567689:using Equations 3 and 28, along with q(s*,t) 
(Equation 7), which differs from 5 676E∗9: in being equal to zero wherever Qs*,t < 0 (Equation 29). As 
two values of s* are obtained for each value of r at time t, two values of 567689: are obtained for 
each value of r at time t. Because the supernatant and pellet regions were excluded from data 
used to generate Figure 5, Figure 6 does not exhibit spikes in 5 676E∗9: toward s* = Z�­∗ , s* = 0 or s* 
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= Z®­∗ . 
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Figure 6. 5 676E∗9: (───) and q(s*,t) (········) versus s* at t = 2916 s. The 567689: values plotted against 
r in Figure 5 were multiplied by 5 686E∗9: to obtain 5 676E∗9:, the values of which were then plotted 
against s* in this figure. Application of Equations 7 and 29 to 5 676E∗9: yielded q(s*,t). Except at the 
two points about s* = 0, this figure is identical to Figure 4, where c at t = 2916 s is differentiated 
with respect to s*. Additionally, this figure is practically identical to Figure 20, where ∆7∆E∗ at t = 
2916 s is the finite form of 5 676E∗9:obtained using Equation 6. 
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5 676E∗9: from 5676:98 and 5676:9E∗ via finite difference approximations - I 
 
 According to Equation 6, the product of �5676:98 − 5676:9E∗� and 5 6:6E∗98yields 5 676E∗9: . Finite 
differences in c, t and s* can be used to approximate the values of 5676:98 , 5676:9E∗  and 5 6:6E∗98, and if 
the finite differences in the independent variables, s* and t, are small enough, those approximate 
values can be used to evaluate 5 676E∗9:  with acceptable accuracy. Implicit in this approach is the 
fact that data are usually collected experimentally, or generated numerically, at discrete radial 
positions, rh, and discrete times, tε, such that no data exist between one radial positions and the 
next (rh and rh+1) or one time and the next (tε and tε+1). The discontinuous nature of the data with 
respect to r renders the evaluation of the finite form of 5 676E∗9:  somewhat challenging. 
 
Assuming that data are collected at the same radial positions at each time point, the advantage of 
a finite-difference application of Equation 6 is that, for the 5676:98 term at least, TI noise is 
eliminated. Furthermore, the finite approximations of 5676:98 and 5676:9E∗  will include the same 
offset due to the RI noise of the two data sets used to evaluate them. Thus, any RI noise is 
eliminated when the finite form of 5676:9E∗  is subtracted from the finite form of 5676:98 . TI noise, 
however, is not eliminated in the course of evaluating the finite approximations of 5676:9E∗ . The 
elimination of RI and TI noise from 5 676E∗9:, determined from finite-difference forms of Equation 3 
or Equation 6, is explored in a subsequent section (Equations 88 to 99; Table 1; Figures 40 to 50). 
 
In what follows, the finite differences used in the time-derivative approach are defined, and their 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

41 

 

distinguishing characteristics are first illustrated through an example involving an unsuitably 
large time difference. Results obtained with an appropriate time difference are presented 
thereafter. 
 
Figure 7 shows c versus r at four times during the AUC simulation of the hypothetical system 
described in Figure 2. 
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 Figure 7. Plots of c versus r at t = 2010 s (───), t = 2310 s (───), t = 2610 s (───) and t = 
2910 s (───), with the supernatant (toward rm = 6 cm) and pellet (toward rb = 7.2 cm) regions 
of c shown on a logarithmic scale above the break. (A few erratic points in the supernatant and 
pellet regions have been smoothed.) The data are from a simulation of a concentration-
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independent, three-component system subjected to AUC at 60,000 RPM, and described in detail 
in Figure 2. 
 
At a given radial position, r, the difference between c at two time points is denoted as Δcr. Figure 
8 shows Δcr for the r-by-r difference between c at t = t2 = 2910 s and c at t = t1 = 2010 s. As the 
data were generated at the same radial positions at each time point, the calculation of Δcr did not 
require interpolating the data at one time to match the r values of the data at the other time. 
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 Figure 8. A plot of Δcr versus r (───), where, at each point r, Δcr is equal to c at t2 = 2910 s 
(───) minus c at t1 = 2010 s (───), which are two of the four curves shown in Figure 7. The 
supernatant (toward rm = 6 cm) and pellet (toward rb = 7.2 cm) regions of c are shown on a 
logarithmic scale above the break. In the course of calculating Δcr, any TI noise is eliminated at 
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each radial position. 
 
Figure 9 is a transformation of Figure 7 from c versus r to c versus s*. 
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 Figure 9. Plots of c versus s* at t = 2010 s (───), s* at t = 2310 s (───), s* at t = 2610 s (───) 
and s* at t = 2910 s (───), with the supernatant (toward the s* = Z�­∗  and s* = 0) and pellet 
(toward s* = Z®­∗  and s* = 0) regions of c shown on a logarithmic scale above the break. (A few 
erratic points in the supernatant and pellet regions have been smoothed.) The data are from a 
simulation of a concentration-independent, three-component system subjected to AUC at 60,000 
RPM, and described in detail in Figure 2. These same data are plotted as c versus r in Figure 7. 
Here, c at each time has been plotted against its respective t-dependent values of s*, of which two 
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are calculated from each t-independent value of r. (See Figure 3 for a similar transformation.) As 
time increases, c maps to a decreasing range of s*. Thus, the extrema of s* approach zero 
symmetrically from above and below as t approaches infinity. (See Figure 1. Also see Figure 10, 
which plots r versus s* for the times that apply to this figure.) 
 
Figure 9 shows how plots of c versus s* are affected by the time-dependence of the range of s*. A 
comparison of Figures 7 and 9 shows that the values of c at a given position r at two different 
times will not have either of their corresponding s* values in common, except where 88f equals 
one, in which case the corresponding s* value equals zero (Equation 27). That the values of c at 
the same radial position but different times will not generally map to a common value of s* is 
simply due to r values being time-invariant, while, as Equations 27 describes, and as Figure 10 
illustrates, s* is inversely proportional to t. (In contrast to Figure 1, r is treated as a function of s* 
in Figure 10, even though the functional relationship is the other way around. The apparent 
functionality is reversed in Figure 10 to provide a convenient comparison with Figure 9, where c 
is plotted as a function of s*.) 
 
As r0 can equal rm or rb, in Figure 10, r consists of two discontinuous lines at each time, t. 
Differentiating Equation 26 with respect to s* at constant t yields 5 686E∗9: = noYVc`E∗��: =
VnoY (Equation 28), except where r is discontinuous or equal to one of its extrema. In general, 
where r is continuous and not equal to one of its extrema, the kth derivative of r with respect to s* 
at constant t is 5 6�86E∗�9: = (noY)ÀVc`E∗��: = V(noY)À . 
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 Figure 10. A plot of r versus s* at the times, t = 2010 s (───), t = 2310 s (───), t = 2610 s 
(───) and t = 2910 s (───), pertaining to data shown in Figures 7 to 9, for which rm = 6 cm, rb 
= 7.2 cm, and ω is that calculated for 60,000 RPM (Equation 11). Figure 1 also illustrates the 
relationship between t, r and s*, but with the r and s* axes exchanged. 
 
At each apparent sedimentation coefficient, s*, the difference between c at two time points is 
denoted as Δcs*. Figure 11 shows Δcs* for the s*-by-s* difference between c at t2 = 2910 s and c at 
t1 = 2010 s. As the data were generated at the same radial positions but different time points, the 
calculation of Δcs required interpolating the data at one time to match the s* values of the data at 
the other time. Given the time-dependence of s* values (Figures 9 and 10; Equation 27), matched 
s* values at two different times will generally correspond to mismatched r values (Equation 26).  
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For the subtraction shown in Figure 11, s* values at the earlier time were interpolated to match 
s* values at the later time. This pattern, whereby the result of subtraction is expressed in terms of 
s* values of the later time point, is repeated in all such interpolations that follow. 
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 Figure 11. A plot of Δcs* versus s* at t = 2910 s (───), where, at each point s*, Δcs* is equal to c at 
t2 = 2910 s (───) minus an interpolated value of c at t1 = 2010 s (───). The supernatant 
(toward the s* = Z�­∗  and s* = 0) and pellet (toward s* = Z®­∗  and s* = 0) regions of c are shown 
on a logarithmic scale above the break. The concentration data at times t2 and t1 are two of the 
four sets of such data that are plotted against s* in Figure 9, and plotted against c in Figure 7. 
Compare this figure with Figure 8, which shows Δcr versus r, where, at each point r, Δcr is equal to 
c at t2 minus c at t1. TI noise is not eliminated in the course of calculating Δcs*, but in this case, the 
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data, which come from the simulation described in Figure 2, are nearly noise-free. 
 
As noted with respect to Figures 7 and 9, values of c at the same radial position r but different 
times t will not generally map to a common value of s*. The values of s* at t2 are given by 

Zo∗ = 1noYo �x TVÁVcW, 
(39) 
where rh is an actual radial position where a value of c is recorded at each time. The interpolated 
values of s* at t1 are given by 

Zi∗∗ = 1noYi �x TViVcW 
(40) 
where r1 is an interpolated radial position with respect to the original c versus r data at t2. As the 
set of all Zi∗∗  equals the set of all Zo∗, the right-hand sides of Equations 39 and 40 can be equated 
and solved for r1 to obtain 

Vi = �VÁ:ÂVc:��:Â  i:� = �VÁ:ÂVc∆:  i:�  , 
(41) 
where Δt = t2 - t1. 
 
At each value of s* = Zo∗ = Zi∗∗  (Equations 39 and 40), an interpolated value of the TI noise at 
Vi = Vc`EÂ∗∗ ��:Â will be subtracted from the actual TI noise at VÁ = Vc`E�∗��:� . As can be seen from 
Equation 41, in the limit as t1 approaches t2, r1 approaches rh. Thus, the closer Δt is to zero, the 
more nearly it will be that TI noise is eliminated in the course of calculating Δcs*. As will be shown 
(Figure 43), however, in the 60,000 RPM case, even for a Δt of just 6 s, a substantial amount of TI 
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noise can remain in Δcs*. 
 
The time difference that pertains to both Δcr in Figure 8 and Δcs* in Figure 11 is Δt = t2 - t1 = 900 
s, where t2 = 2910 s and t1 = 2010 s. As will be shown, this Δt is too large, relative to the time 
scale of transport in the system examined, to yield acceptable approximations of 5676:98 and 5676:9E∗  
from ∆7Ã∆:  and ∆7g∗∆: , respectively. For the purpose of illustrating the distinguishing features of 5676:98 
and 5676:9E∗ , however, such an excessive Δt is ideal. Therefore, this example with Δt = 900 s will be 
used to obtain an admittedly poor approximation of 5 676E∗9:  before moving on to an example with 
an appropriately smaller Δt. Continuing, for the moment, with the current example, Figure 12 
shows ∆7Ã∆: , ∆7g∗∆:  and 5∆7Ã∆: − ∆7g∗∆: 9 versus s* at 2910 s, and Δt = 900 s. 
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Figure 12. Plots of ∆7Ã∆:  (───), ∆7g∗∆:  (───) and 5∆7Ã∆: − ∆7g∗∆: 9 (───) versus s* at t2 = 2910 s. Where 
∆7g∗∆:  and ∆7Ã∆:  overlap, only ∆7g∗∆:  is seen. The concentration differences, Δcr (Figure 8) and Δcs* 
(Figure 11), were each divided by Δt to obtain ∆7Ã∆:  and ∆7g∗∆: , respectively. The time increment, Δt, is 
equal to t2 – t1, where t1 = 2010 s. Thus, Δt = 900 s. Due to the decrease in the range of s* as t 
increases (Figures 9 and 10), there are no data beyond the extrema in s* at the highest value of t, 
which is t2 = 2910 s in this case. While Δcs* in Figure 11 and ∆7g∗∆:  in this figure are both plotted 
against s* at t2, Δcr is plotted against r in Figure 8. The radial position, r, for each value of Δcr in 
Figure 8 is the radial position used to calculate both corresponding values of s* at t2 against 
which duplicate ∆7Ã∆:  values have been plotted in this figure. (See Figures 3 and 9 for similar 
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transformations.) The ∆7g∗∆:  values (as a function of s* at t2) were subtracted from the ∆7Ã∆:  values (as 
a function of s* at t2), s*-by-s*, to obtain 5∆7Ã∆: − ∆7g∗∆: 9 as a function of s* at t2. 
 
The approximation of 5 676E∗9:  is calculated as 

∆S∆Z∗ = T∆S8∆Y − ∆SE∗∆Y W ∆Y∆Z8∗ , 
(42) 
where ∆:∆EÃ∗ is an approximation of 5 6:6E∗98 and, on the basis of Equation 27, 

∆Z8∗ = 1no \ 1Yo − 1Yi^ �x TVÁVcW = \ −∆YnoYiYo^ �x TVÁVcW 
(43) 
is the change in s* from time t1 to time t2 at radial position r. Each of the two possible values of r0 
is discussed with respect to Equation 27. As noted with respect to Equation 39, rh is an actual 
radial position where a value of c is recorded at each time. 
 
In general, Δt = t2 – t1. In this example, t1 = 2010 s and t2 = 2910 s. Equation 30 states that 5 6:6E∗98 
is equal to − :E∗ , and for t2 = t, 

lim:Â→: ∆Y∆Z8∗ = − Y1noY �x 5 VVc9 = T UYUZ∗W8 . 
(44) 
 
As 5∆7Ã∆: − ∆7g∗∆: 9 is the finite form of �5676:98 − 5676:9E∗�, positive values of 5∆7Ã∆: − ∆7g∗∆: 9 will give rise to 
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redundant values of ∆7∆E∗ (Equation 42), just as positive values of �5676:98 − 5676:9E∗� will give rise to 
redundant values of 5 676E∗9:. (See the discussion following Equation 30.) Redundant values of ∆7∆E∗ 
can be identified by substituting ∆7∆E∗ for 5 676E∗9:in Equation 29, which defines Qs*,t. If Qs*,t > 0, ∆7∆E∗ is 
essential and e(s*,t) is equated to zero, but if Qs*,t ≤ 0, e(s*,t) is equated to ∆7∆E∗. Substituting ∆7∆E∗ for 
5 676E∗9:in Equation 7 results in q(s*,t) being equal to ∆7∆E∗ if ∆7∆E∗ is essential, and zero otherwise. 
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Figure 13. A plot of ∆7∆E∗ (───) versus s* at t = 2910 s. Equation 42 (the finite form of Equation 6) 
was used to obtain ∆7∆E∗ from 5∆7Ã∆: − ∆7g∗∆: 9, where Δt = (2910 - 2010) s = 900 s. Equation 43 was 
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used to calculate ∆Z8∗, and ∆:∆EÃ∗ was used to approximate 5 6:6E∗98 in Equation 42. The essential values 
of ∆7∆E∗ yielded q(s*,t) (········).  
 
Figure 13 shows ∆7∆E∗ versus s* at t2, where ∆7∆E∗ was evaluated by Equation 42 (the finite-difference 
approximation of Equation 6) in the case of Δt = t2 – t1 = 900 s. Figure 14 compares ∆7∆E∗ from 
Figure 13 with the corresponding results, 5 676E∗9:  versus s* at t1 = 2010 s and 5 676E∗9:  versus s* at t2 
= 2910 s, obtained by the finite-difference approximation of Equation 3. 
 
In Figure 14, within s* < 0, the negative, and hence essential values of 5 676E∗9:  at t1 = 2010 s and 
5 676E∗9: at t2 = 2910 s are found in the same range of s* (-11E-13 s to -8E-13 s). Similarly, within s* 
> 0, the positive, and hence essential values of 5 676E∗9:  at t1 and 5 676E∗9: at t2 are also found in the 
same range of s* (8E-13 s to 11E-13 s). Below s* = 0, the negative values of ∆7∆E∗ are skewed 
toward the positive values of 5 676E∗9:  at t2, and the positive values of ∆7∆E∗ are skewed toward the 
positive values of 5 676E∗9: at t1. Above s* = 0, the positive values of ∆7∆E∗ are skewed toward the 
negative values of 5 676E∗9: at t2, and the negative values of ∆7∆E∗ are skewed toward the negative 
values of 5 676E∗9:  at t1. The results shown in this comparison suggest that ∆7∆E∗ will approximate 
5 676E∗9: poorly whenever Δt = t2 – t1 is sufficiently large that the redundant values of 5 676E∗9: at t1 
and 5 676E∗9: at t2 occupy significantly different ranges of s*. 
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Figure 14. Plots of 5 676E∗9:  versus s* at t1 = 2010 s (───),5 676E∗9:  versus s* at t2 = 2910 s (───) 
and ∆7∆E∗ versus s* at t2 (───), which also appears in Figure 13. Equation 3 was used to determine 
5 676E∗9: at t1 and t2 from its respective 567689: at t1 and t2, where each 567689:was obtained by 
differentiating the corresponding data set shown in Figure 7. 
 
As noted with respect to Equation 27, there is one radial position, r = (rmrb)0.5, for which, at any 
given time, the positive s* equals the absolute value of the negative s*. For the example shown 
here, (rmrb)0.5 = 6.573 cm, which, at t = 2910 s, gives rise to s* = -7.935E-13 s and s* = 7.935E-13 
s. Thus, at a given time, for any function such as c, 567689:, 5676:98or ∆S8 that is s*-independent but is 
nevertheless plotted against s*, the same value of the function is guaranteed to be found at both 
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values of s* arising from r = (rmrb)0.5. (Such is the case for c and ∆7Ã∆:  in Figures 9 and 12, 
respectively, for example.) For any function that is s*-dependent, such as 5676:9E∗ , ∆SE∗, 5 676E∗9:  or 
g(s*), different values of the function are as likely as not to be found at any pair of s* values 
arising from a single value of r, no matter what value of t is used to calculate s*. Fairly good 
illustrations of this characteristic can be seen in Figures 11 to 13.  
 
5 676E∗9: from 5676:98 and 5676:9E∗ via finite difference approximations - II 
 
In this section, the approximation of 5 676E∗9: is repeated but Δt is reduced to t3 – t2 = 6 s, with t2 = 
2910 s and t3 = 2916 s. Figure 15 shows c versus r at t2 and t3, while the result of subtracting the 
former from the latter at each point r and dividing by Δt is presented in Figure 16 as ∆7Ã∆:  versus r. 
As the concentration data are arrayed against the same set of radial positions from one time to 
the next, any TI noise is eliminated in the course of calculating ∆7Ã∆: . 
 
In Figure 17, c at t2 and c at t3 are plotted against their respective s* values. The radial positions 
are the same for both data sets, but the s* values, being time-dependent (Equation 27; Figures 1 
and 10), are not. Thus, to obtain ∆SE∗ versus s* at t3, interpolated values of c at t2 were subtracted 
from the actual values of c at t3. (In the process, an interpolated value of the TI noise at 
Z∗ = Zo∗∗ = i��:� �x 58�8f9 was subtracted from the actual TI noise at Z∗ = ZÄ∗ = i��:Å �x 58Æ8f9, where rh 
is an actual radial position at which a value of c is recorded at each time, r2 is an interpolated 
radial position with respect to the original c versus r data at t2, and the set of all Zo∗∗  is equal to the 
set of all ZÄ∗. By the same approach that yielded Equation 41, Vo = �VÁ:�Vc:Å�:�  Â�Å is obtained.) 
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Division of these ∆SE∗ values by Δt then gave ∆7g∗∆:  as a function of s* at t3. In Figure 18, these ∆7g∗∆:  
values are plotted against the s* values calculated for t = t3. 
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 Figure 15. Plots of c versus r at t2 = 2910 s (───) and t3 = 2916 s (───), with the supernatant 
(toward rm = 6 cm) and pellet (toward rb = 7.2 cm) regions of c shown on a logarithmic scale 
above the break. (A few erratic points in the supernatant and pellet regions have been 
smoothed.) The data are from a simulation of a concentration-independent, three-component 
system subjected to AUC at 60,000 RPM, and described in detail in Figure 2. 
 
Figure 15 illustrates how little c has changed from t2 to t3, compared to the change in c seen 
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between t1 and t2 (Figure 8). 
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Figure 16. A plot of ∆7Ã∆:  versus r (───), where, at each point r, ∆S8 is equal to c at t3 = 2916 s 
minus c at t2 = 2910 s. The time increment is ∆Y = t3 – t2 = 6 s. Thus, ∆7Ã∆:  is an approximation of 
5676:98 within ∆Y. In the course of calculating Δcr, any TI noise is eliminated at each radial position. 
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 Figure 17. Plots of c versus s* at t2 = 2910 s (───) and t3 = 2916 s (───). These same data are 
plotted as c versus r in Figure 15. Here, c at each time has been plotted against its respective t-
dependent values of s*, of which two are calculated from each t-independent value of r. (See 
Figures 3 and 9 for similar transformations.) In further contrast to Figure 15, the supernatant 
(between r = 6.01831 cm and rm = 6 cm in Figure 15) and pellet (between r = 7.18593 cm and rb 
= 7.2 cm in Figure 15) regions of c have been removed from the data used in this figure, and 
replaced with the adjacent plateau values of c. Although the range of s* decreases as t increases, 
the difference between t3 and t2 is small enough that the effect is not obvious in this case. (See 
Figure 9 for comparison.) 
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Figure 18. A plot of ∆7g∗∆:  versus s* at t3 = 2916 s (───), where, at each point s*, Δcs* is equal to c at 
t3 minus an interpolated value of c at t2 = 2910 s. The time increment is Δt = t3 – t2 = 6 s. Division 
of Δcs* by Δt yields ∆7g∗∆: . As noted with respect to Figure 11 and Equation 41, TI noise is not 
eliminated in the course of calculating Δcs*. In this case, however, the data, which come from the 
simulation described in Figure 2, are nearly noise-free. 
 
In Figure 19, ∆7Ã∆: , ∆7g∗∆:  and 5∆7Ã∆: − ∆7g∗∆: 9 are all plotted against s* at t3 = 2916 s. (Figure 16 shows ∆7Ã∆:  
versus r at t3, but in Figure 19, it is plotted against the pairs of s* values that, using Equation 27, 
are calculated, for t = t3, from each r value. Figure 18 presents an isolated view of ∆7g∗∆:  versus s* at 
t3 = 2916 s.) Subtracting ∆7g∗∆:  from ∆7Ã∆: , s*-by-s*, yields 5∆7Ã∆: − ∆7g∗∆: 9. 
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Figure 19. Plots of ∆7Ã∆:  (───), ∆7g∗∆:  (───) and 5∆7Ã∆: − ∆7g∗∆: 9 (········) versus s* at t3 = 2916 s. Where 
∆7Ã∆:  and ∆7g∗∆:  overlap, only ∆7Ã∆:  is seen. The time increment, Δt, is equal to t3 – t2, where t2 = 2910 s. 
Thus, Δt = 6 s. The radial position, r, for each value of ∆7Ã∆:  in Figure 16 is the radial position used 
to calculate both corresponding values of s* at t3 against which duplicate ∆7Ã∆:  values have been 
plotted in this figure. (See Figures 3, 9 and 12 for similar transformations.) The ∆7g∗∆:  values (as a 
function of s* at t3) were subtracted from the ∆7Ã∆:  values (as a function of s* at t3), s*-by-s*, to 
obtain 5∆7Ã∆: − ∆7g∗∆: 9 as a function of s* at t3. 
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As 5∆7Ã∆: − ∆7g∗∆: 9 is the finite form of �5676:98 − 5676:9E∗�, positive values of 5∆7Ã∆: − ∆7g∗∆: 9 will give rise to 
redundant values of ∆7∆E∗ (Equation 42), just as positive values of �5676:98 − 5676:9E∗� will give rise to 
redundant values of 5 676E∗9:. (See the discussions following Equations 30 and 44.) The redundant 
values of ∆7∆E∗ are collected in e(s*,t) by substituting ∆7∆E∗ for 5 676E∗9:in Equation 29, equating e(s*,t) to 
∆7∆E∗ wherever Qs*,t ≤ 0, and equating e(s*,t) to zero otherwise. Substituting ∆7∆E∗ for 5 676E∗9:in 
Equation 7 results in q(s*,t), which differs from ∆7∆E∗ in being equal to zero wherever Qs*,t < 0 
(Equation 29). 
 
Figure 20 presents 5 676E∗9: in the form of ∆7∆E∗ versus s* at t3 = 2916 s and Δt = 6 s. Figure 20 also 
shows q(s*,t), as determined by the application of Equations 29 and 7 to the values of ∆7∆E∗ shown 
in the same figure. (Equation 42, which is the finite form of Equation 6, was used to obtain ∆7∆E∗ 
from 5∆7Ã∆: − ∆7g∗∆: 9. Equation 43 was used to calculate ∆Z8∗, and ∆:∆EÃ∗ was used to approximate 5 6:6E∗98 
in Equation 42.) The results shown in Figure 20 are practically identical to those shown in Figure 
6 (where 5 676E∗9: is calculated from 567689:using Equations 3 and 28) and, minus the spike around s* 
= 0, Figure 4 (where c at t = 2916 s is differentiated with respect to s*). 
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Figure 20. A plot of ∆7∆E∗ (───) versus s* at t = 2916 s. Equation 42 (the finite form of Equation 6) 
was used to obtain ∆7∆E∗ from 5∆7Ã∆: − ∆7g∗∆: 9, where Δt = (2916 - 2910) s = 6 s. (Equation 43 was used 
to calculate ∆Z8∗, and ∆:∆EÃ∗ was used to approximate 5 6:6E∗98 in Equation 42.) The essential values of 
∆7∆E∗ yielded q(s*,t) (········). This figure is practically identical to Figure 6 and, minus the spike 
around s* = 0, Figure 4. 
 
A comparison of Figures 19 and 20 shows that 5676:9E∗  (or its finite approximation, ∆7g∗∆: ) 
contributes little to the peaks and valleys of q(s*,t). The small magnitude and weak dependence 
of 5676:9E∗  on time in the vicinity of essential peaks and valleys of 5 676E∗9:is a result of the relatively 
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slow changes of those peaks and valleys with time, except when oppositely directed boundaries 
overlap. (See Figures 24 to 26.) 
 
As Figures 19 and 20 illustrate, the importance of 5676:9E∗lies partly in its contribution to e(s*,t), 
for if 5676:9E∗  were not subtracted from 5676:98(or its finite approximation, ∆7Ã∆: ), all of the peaks and 
valleys of 5676:98 would be deemed essential, but only half of them would truly be essential. The 
subtraction of ∆7g∗∆:  from ∆7Ã∆:  (the approximation of 5676:98 − 5676:9E∗  in the finite time increment, Δt) 
is also needed to correct for any radial dilution/concentration that Δcs* and Δcr accumulate 
during Δt. As noted with respect to Equation 41 and Figure 17, however, TI noise is not 
eliminated in the course of calculating Δcs*. (See Equations 88 to 99; Table 1; Figures 40 to 50.) 
Thus, ∆7∆E∗ will ultimately include − ∆:∆EÃ∗ times whatever TI noise is present in ∆7g∗∆: . (See Equations 42 
to 44.) 
 
Calculating g(s*) from q(s*,t), and G(s*) from g(s*) 
 
Equation 32 was applied to q(s*,t) from Figure 20, in which t = t3 = 2916 s, and the result, g(s*), 
is plotted against s* at t3 in Figure 21. 
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Figure 21. The sedimentation coefficient distribution function, g(s*) = _(Z∗, Y)`oE∗��: (Equation 
32), versus s* at t3 = 2916 s (───). The results shown in this figure are practically 
indistinguishable from those obtained when Equation 32 is applied to q(s*,t) determined either 
(as in Figure 4, minus the spike around s* = 0) from 5 676E∗9:  obtained by direct differentiation of c 
with respect to s at constant t, or (as in Figure 6) from 5 676E∗9: obtained by the application of 
Equations 3 and 28 to 567689:. 
 
Figure 22 shows the cumulative distribution function (Equation 38), G(s*), at t = t3. This function 
integrates |g(s*)| from Z�­∗  to any given value of s*, and thus yields the total concentration of all 
solutes characterised by an apparent sedimentation coefficient less than or equal to s* at any 
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given time. 
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 Figure 22. The cumulative distribution function (Equation 38), G(s*), versus s*, for t = t3 = 2916 
s (───). To obtain G(s*) at all s* within Z�­∗  ≤ s* ≤ Z®­∗ , the absolute value of g(s*) at t3 (Figure 
21) was integrated from Z�­∗  to each value of s*. 
 
Time-dependence of g(s*) and G(s*) in the model, concentration-independent system 
 
The simulation described in Figure 2 involves two oppositely directed solutes, plus one neutrally 
buoyant solute. That simulation is the source of the data shown in Figure 23. Those data 
encompass the time during which the boundaries of the two oppositely directed solutes cross 
paths. At t = 2010 s, well before they cross, and at 2910 s, well after they cross, the two 
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oppositely directed boundaries are completely distinct and separate. Thus, the g(s*) (Figure 26) 
and G(s*) (Figure 27) results for t = 2010 s and t = 2910 s are accurate, in that all the 
information that this analytical method could possibly reveal is present. For a period of time 
between 2010 s and 2910 s, however, the two boundaries pass through each other. At t = 2310 s, 
the plateau that had previously existed between the two boundaries has disappeared. At 2460 s, 
the two boundaries have overlapped to such an extent that there appears to be just one small 
boundary, with the solute having the higher plateau concentration determining the apparent 
direction of transport, which is toward the meniscus in this example. At 2610 s, the two 
boundaries have not yet separated to reveal the concentration of the neutrally buoyant solute. 
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 Figure 23. Plots of c versus r at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t = 2610 
s (───) and t = 2910 s (───), with the supernatant (toward rm = 6 cm) and pellet (toward rb = 
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7.2 cm) regions of c shown on a logarithmic scale above the break. (A few erratic points in the 
supernatant and pellet regions have been smoothed.) All but the data at t = 2460 s are also 
shown in Figure 7. The data are from a simulation of a concentration-independent, three-
component system subjected to AUC at 60,000 RPM, and described in detail in Figure 2. 
 
As noted in Figure 2, at t0, at all r, c1 = 3.389E-02 g/ml, c3 = 3.211E-02 g/ml and c2 = 3.300E-02 
g/ml. In Figure 23, at t = 2910 s, in the region of lowest concentration (between r = 6.55 cm and 
r = 6.61 cm, approximately), c = c2, which, due to s2 being equal to zero throughout the system at 
all times, is unchanged from its value at t0. 
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 Figure 24. Plots of c versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t = 2610 
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s (───) and t = 2910 s (───), with the supernatant (toward the s* = Z�­∗  and s* = 0) and pellet 
(toward s* = Z®­∗  and s* = 0) regions of c shown on a logarithmic scale above the break. (A few 
erratic points in the supernatant and pellet regions have been smoothed.) These same data are 
plotted as c versus r in Figure 23. Figure 24 is identical to Figure 9, except for the addition of the 
data at t = 2460 s, and the inclusion of vertical lines to mark where s1 (∙∙∙∙∙∙∙∙ at 9.324E-13 s) and 
s3 (∙∙∙∙∙∙∙∙ at -9.324E-13 s) lie on the s* scale. Figure 2 describes the system. Figure 10 illustrates 
the decreasing range of s* with time. 
 
A comparison of c versus s data at different times (Figure 24) leads to the expectation that, 
except when oppositely directed boundaries overlap, as they do at t = 2460 s, 5 676E∗9: will be least 
dependent on time where s* approaches the sedimentation coefficient of a positively or 
negatively-buoyant solute. Results consistent with this expectation, and its exception, are shown 
in Figure 25, which presents 5 676E∗9: versus s* at the same times for which data are shown in 
Figures 23 and 24. 
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Figure 25a. Plots of 5 676E∗9:  versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t 
= 2610 s (───) and t = 2910 s (───). Equation 3 was used to determine 5 676E∗9:  from 567689: at 
each time, and 567689:was obtained by differentiating the corresponding data set shown in Figure 
23. To better illustrate the most instructive changes in 5 676E∗9: with time, the narrow regions 
where spikes occur in 5 676E∗9:  (towards the extrema of s* and about s* = 0), and broader regions 
where 5 676E∗9:  = 0, are not shown. The full-scale version is shown in Figure 25b. 
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Figure 25b. Plots of 5 676E∗9: versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t 
= 2610 s (───) and t = 2910 s (───). This figure is the full-scale version of Figure 25a. 
 
The redundant 5 676E∗9:  values are those for which 5 676E∗9: > 0 where s* < 0, or 5 676E∗9:  < 0 where s* > 
0. The essential values are those for which the signs of 5 676E∗9:  and s* are the same. Figure 25 
shows that the location of the redundant values of 5 676E∗9:is highly time-dependent, even in a 
concentration-independent system such as that simulated for this example. In contrast, the 
essential values of 5 676E∗9:  are weakly time-dependent in such a system. 
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As the location of redundant values is highly time-dependent, while the location of essential 
values is relatively constant with time, there is a period when the redundant values overlap the 
essential values to a greater or lesser extent. In this example, that period starts shortly before t = 
2310 s, and ends shortly after t = 2610 s. The data at 2460 s approximately coincide with the 
middle of that period. As a result, at t = 2310 s and t = 2610 s, small regions of overlap are seen 
in what would otherwise be low-magnitude regions of the redundant and essential peaks and 
valleys of 5 676E∗9:. A t = 2460 s, however, the overlap is almost total, and as the concentration-
difference across the boundary of the positively-buoyant solute is greater than that of the 
negatively-buoyant solute (as can be inferred from the plateau concentration being higher 
toward the meniscus than it is toward the base in Figure 23), there are almost no positive values 
of 5 676E∗9: seen anywhere at that time. 
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 Figure 26a. Plots of g(s*) versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t = 
2610 s (───) and t = 2910 s (───). To better illustrate the most instructive changes in g(s*) 
with time, the narrow regions where spikes occur in g(s*) (towards the extrema of s*), and 
broader regions where g(s*) = 0, are not shown. Equation 29 was used to determine q(s*,t) 
(Equation 7) from 5 676E∗9: (Figure 25) at each time, and Equation 32 was used to obtain g(s*) from 
q(s*,t) at each time. The s* values encompassed by a peak or valley in g(s*) at time t can be 
viewed as characterising a boundary region in a plot of c versus r at time t. (The plots of c versus 
r shown in Figure 23 are those from which the g(s*) plots in this figure are derived.) A full-s*-
scale version of |g(s*)| versus s*, with the extreme values of |g(s*)| plotted on a logarithmic scale, 
is shown in Figure 26b. 
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 Figure 26b. Plots of |g(s*)| versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t 
= 2610 s (───) and t = 2910 s (───). This figure is the full-s*-scale version of the data shown 
in Figure 26a. The absolute value of g(s*) is presented to get the most use possible from a single 
|g(s*)|-axis break, above which, data are shown on a logarithmic scale. All g(s*) values are 
negative below s* = 0, and all g(s*) values are positive above s* = 0. The region about s* = 0 is 
devoid of |g(s*)| values greater than zero because all the 5 676E∗9: values in that region (Figure 25b) 
are redundant. 
 
As noted in Figure 2, at all t and all r, s1 = 9.324E-13 s, s3 = -s1, s2 = 0, D1 = 9.126E-08 cm2/s, D3 
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= D1 and D2 = 7.243E-08 cm2/s. Thus, all of the transport coefficients were independent of 
concentration throughout the system at all times in this example. Given this, and given that there 
was no overlap in the oppositely directed boundaries at t = 2010 s and 2910 s (Figure 23), the 
differences in g(s*) at those times (Figure 26) are attributable to the range of s* (Equation 27; 
Figures 1 and 10) decreasing in proportion to i: , while, due to diffusion, the range of r occupied 
by a boundary region increases in proportion to ij: (van Holde, 1985). Thus, as a comparison at 
these two time points shows (Figure 26a), the g(s*) peaks and valleys sharpen with time. That is, 
g(s*) peaks grow higher with time, g(s*) valleys grow deeper with time, and with respect to s*, 
the breadth of those peaks and valleys narrows with time. In the simplest case, which applies to 
the results at t = 2010 s and t = 2910 s, the area of those peaks and valleys, of which G(s*) is a 
cumulative measure (Figure 27), is time-independent. 
 
The overlap of the boundaries of the two oppositely directed solutes (Figures 23 and 24) results 
in the overlap of redundant and essential values of 5 676E∗9: in Figure 25. At t = 2310 s and t = 2610 
s, the overlaps are slight (Figure 23). Due to these slight overlaps, at t = 2310 s, g(s*) is clipped 
toward the extrema in s*, while at t = 2610 s, g(s*) is clipped toward s* = 0 (Figure 26). At t = 
2460 s, the almost total overlap of the boundaries (Figure 23) results in a broadly reduced 
magnitude of g(s*) for the solute of higher plateau concentration, while the overlap of redundant 
and essential values of 5 676E∗9:  (Figure 25) leads to a near absence of |g(s*)| values greater than 
zero for the solute of lower plateau concentration (Figure 26). In Figure 27, the times affected by 
overlaps show variously reduced G(s*) magnitudes, compared to those at 2010 s and 2910 s. 
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 Figure 27. Plots of G(s*) versus s* at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t = 
2610 s (───) and t = 2910 s (───). Equation 38 was used to determine G(s*) from g(s*) 
(Figure 26) at each time. Only the peaks and valleys in g(s*) actually shown in Figure 26a were 
included in the calculation of G(s*) in this figure. (In Equation 38, for each time, the lower limit of 
integration was set sufficiently above Z�­∗ , and the upper limit of integration was kept sufficiently 
below Z®­∗ , to exclude the spikes in g(s*) at the extrema in s*.) 
 
The G(s*) results (Figure 27) at t = 2010 s and t = 2910 s are consistent with the expectation 
that the area of each peak or valley in g(s*) (Figure 26) is independent of time, provided that: 
overlapping boundaries do not affect g(s*); the boundaries that give rise to g(s*) at each time are 
within the extrema of s* at all times; and the solute concentrations do not change with time due 
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to chemical reactions. 
 
The slight overlap of boundaries at t = 2310 s and t = 2610 s (Figure 23) results in clipping of 
g(s*) at those times (Figure 26), which accounts for the slightly lower plateau values of G(s*) at 
those times, as compared with the corresponding values of G(s*) at t = 2010 s and t = 2910 s. 
The near complete overlap of boundaries at t = 2460 s (Figure 23) greatly reduces g(s*) values 
at that time (Figure 26), especially in the s* > 0 range. As a result, at t = 2460 s, the maximum 
value of G(s* < 0) is just 27% of that at t = 2010 s or t = 2910 s. The effect of the near total 
overlap on g(s* > 0) is such that, at t = 2460 s, the maximum value of G(s* > 0) is little greater 
than the maximum value of G(s* < 0). 
 
The G(s*) results from Figure 27 are re-plotted against a truncated range of s* in Figure 29. Thus, 
in the latter figure, it is easier to see, by comparing the results at t = 2910 s with those at t = 
2010 s, that as time passes, changes in G(s*) occur over a smaller range of s*. This effect is due to 
the sharpening of g(s*) peaks and valleys with time (Figure 26).  
 
Weight-average s* 
 
The equation for the weight-average apparent sedimentation coefficient within Z¨©ª∗ ≤ Z∗ ≤ ZÁÉ°Á∗  
can be written as 

Zª∗ �Z¨©ª∗ , ZÁÉ°Á∗   = Ê Z∗EÆË²Æ∗E~�£∗ |a(Z∗)|RZ∗
µ�ZÁÉ°Á∗   − µ(Z¨©ª∗ ) . 

(45) 
 At t = 2910 s, Zª∗ (Z�­∗ , 0) = -9.376E-13 s and Zª∗ (0, Z®­∗ ) = 9.398E-13 s. The corresponding input 
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values, s3 and s1, were -9.324E-13 and 9.324E-13, respectively. 
 
A comparison of |g(s*)| and ls-g(s*): c-independent transport 
 
Using least-squares boundary modeling as implemented in SEDFIT (Schuck & Rossmanith, 2000), 
the apparent sedimentation coefficient distribution functions, in the form of ls-g(s*), were 
obtained for data within 6 s of those shown in Figure 23. The Svedberg, which is equal to 10-13 
seconds, is the dimension of the apparent sedimentation coefficient returned by SEDFIT. Thus, 
the dimensions of ls-g(s*) are those of the signal (optical density, fringe displacement, etc.) per 
Svedberg. For the concentration-independent simulation results shown here, the signal had 
dimensions of g/ml. 
 
To calculate G(s*) from ls-g(s*), g ls-g(s*) was used in place of |g(s*)| in Equation 38, and the 
limits of integration were expressed in Svedberg. A comparison of |g(s*)| and ls-g(s*) analyses is 
presented in Figure 28. Figure 29 shows G(s*) from |g(s*)|, mainly, and Figure 31 shows G(s*) 
from ls-g(s*) exclusively. 
 
Each ls-g(s*) analysis shown in Figure 28 was applied to three data sets, each consisting of c 
versus r data at a central time point (Figure 23), or at a time 6 s before or 6 s after. Thus, the 
ls-g(s*) analyses of Figure 28 are comparable to the g(s*) analyses just discussed (Figure 26). 
(Figure 2 describes the details of the simulation from which the data were obtained.) Within the 
ls-g(s*)-analysis software, the positions of the radial extrema of the system were set to the 
known positions of the meniscus ( rm = 6 cm) and the base (rb = 7.2 cm). The lower and upper 
radial limits of analysis were set at rm + 0.02 cm and rb – 0.02 cm, respectively, and were chosen 
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to include as much of any upwardly or downwardly translating boundaries as possible, while 
excluding regions where back-diffusion or computational artefacts near the meniscus or base 
were evident. A range of -12 Svedberg to 12 Svedberg, with a resolution of 240 points, was used 
in each ls-g(s*) analysis. In all analyses, neither the TI noise nor the meniscus position was fit, 
and as the confidence level was set to 0, no regularisation was applied to the results of the 
analysis. In half the analyses, the RI noise was fit, and in half, it was not. 
 
For |g(s*)|, the maximum range of s* is given by the extrema, Z�­∗  (Equation 35) and Z®­∗  
(Equation 36), and the maximum resolution is equal to twice the number of radial positions at 
which concentration data were recorded. For all the results of simulations shown here, the 
number of such radial positions was 900 (Moody, 2012). 
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Figure 28. Plots of |g(s*)|5 ic³ÂÅ EÌ¬§��§8°9 versus 5i Ì¬§��§8°ic³ÂÅ E 9s* at t = 2010 s (───), t = 2310 s (───), 
t = 2460 s (───), t = 2610 s (───) and t = 2910 s (───), together with plots of ls-g(s*) versus 
5i Ì¬§��§8°ic³ÂÅ E 9s* at t = 2010 s ± 6 s (∙∙∙∙∙∙∙∙), t = 2310 s ± 6 s (∙∙∙∙∙∙∙∙), t = 2460 s ± 6 s (∙∙∙∙∙∙∙∙), t = 
2610 s ± 6 s (∙∙∙∙∙∙∙∙) and t = 2910 s ± 6 s (∙∙∙∙∙∙∙∙). This graph is similar to that of Figure 26, which 
shows the same g(s*) data used to obtain the |g(s*)|5 ic³ÂÅ EÌ¬§��§8°9 data shown here. Each ls-g(s*) 
analysis was applied to three data sets spaced closely in time, with an intervals of 6 s separating 
the central time point from the time before or after. In the analysis used to obtain the ls-g(s*) 
results shown here, the RI noise was fit. 
  
Figure 28 shows that, normalised to the Svedberg scale, |g(s*)| is identical to ls-g(s*) at all but 
one of the times compared. At t = 2460 s, when the boundaries of the two oppositely directed 
solutes almost totally overlap (Figure 23), the ls-g(s*) results are less reduced in magnitude than 
the |g(s*)| results. Thus, as Figure 29 shows, at t = 2460 s, G(s*) from ls-g(s*) attains higher 
values than G(s*) from |g(s*)|, though both fall well short of the most accurate G(s*) results, 
which are those pertaining to t = 2010 s and t = 2910 s. 
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 Figure 29. Plots of G(s*) versus s*, including the results obtained by the application of Equation 
38 to g(s*) (Figures 26 and 28) at t = 2010 s (───), t = 2310 s (───), t = 2460 s (───), t = 
2610 s (───) and t = 2910 s (───), along with the results obtained by the application of 
Equation 38 to ls-g(s*) (Figure 28) at t = 2460 s ± 6 s (∙∙∙∙∙∙∙∙). (The results from g(s*) are also 
shown in Figure 27, but on a different scale.) 
 
Figures 26 to 29 show that misleading results, such as those at or about t = 2460 s, can be 
obtained when g(s*) or ls-g(s*) analysis is applied to data that span a short time range. As a 
comparison of Figures 48 and 50 will show, the likelihood of obtaining misleading results from 
ls-g(s*) analysis is low, except when too few data sets from too short a short time period are 
included in the analysis. As the aim here was to compare ls-g(s*) results with g(s*) results 
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pertaining to discrete times, however, the ls-g(s*) analysis was intentionally applied to unusually 
short periods in this case. 
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Figure 30. Plots of ls-g(s*) versus 5i Ì¬§��§8°ic³ÂÅ E 9s* at t = 2010 s ± 6 s (───), t = 2310 s ± 6 s 
(───), t = 2460 s ± 6 s (───), t = 2610 s ± 6 s (───) and t = 2910 s ± 6 s (───). The only 
difference between these results and the ls-g(s*) results shown in Figure 28 is that, in this case, 
the RI noise was not fit in the ls-g(s*) analysis. The data are shown on a logarithmic scale above 
the break. 
 
Figure 30 shows the ls-g(s*) results obtained when the RI noise is not fit. (If these ls-g(s*) results 
were set to zero between -1 Svedberg and 1 Svedberg, they would not significantly differ from 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

81 

 

the ls-g(s*) results obtained when the RI noise is fit.) With the lower and upper limits of 
integration of Equation 34 equal to -1 Svedberg and 1 Svedberg, respectively, the data of Figure 
30 yield Δc = 0.0328 g/ml = 0.9942c2 at t = 2010 s ± 6 s, Δc = 0.0361 g/ml = 1.0949c2 at t = 
2310 s ± 6 s, Δc = 0.0522 g/ml = 1.5818c2 at t = 2460 s ± 6 s, Δc = 0.0364 g/ml = 1.1033c2 at t 
= 2610 s ± 6 s and Δc = 0.0332 g/ml = 1.0058c2 at t = 2910 s ± 6 s, where c2 = 0.0330 g/ml is 
the concentration of the neutrally buoyant solute (Figure 2). 
 
It appears, then, that ls-g(s*) analysis can yield informative estimates of the amount of neutrally 
buoyant material present in a system, provided that an accurate result can be obtained without 
fitting either the RI or TI noise. (With respect to the data in this example, fitting the TI noise, but 
not the RI noise, results in a severe loss of information regarding the solutes that are not 
neutrally buoyant. Fitting the RI noise, or fitting both types of noise, results in a severe loss of 
information regarding the solutes that are neutrally buoyant.) The Δc results suggest, however, 
that as the overlap of the two oppositely directed solutes becomes significant, the amount of 
neutrally buoyant material present in the system is increasingly overestimated. 
 
Figure 31 shows the G(s*) results obtained from ls-g(s*) when the RI noise was not fit (Figure 
30). At those times when there is an absence of overlaps in the boundaries of the two oppositely 
directed solutes (Figure 23), G(s*) attains a maximum values of approximately 99.8% (at t ≃ 
2010 s) and 100.2% (at t ≃ 2910 s) of the total solute concentration of 0.099 g/ml (Figure 2). At 
those times when there is a slight overlap in the boundaries of the two oppositely directed 
solutes (Figure 23), G(s*) attains maximum values of approximately 97.2% (at t ≃ 2310 s) and 
96.8% (at t ≃ 2610 s) of the total solute concentration of 0.099 g/ml. When (at t ≃ 2460 s) there 
is an almost total overlap of the boundaries of the two oppositely directed solutes (Figure 23), 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

82 

 

G(s*) attains a value maximum value of approximately 80.7% of the total solute concentration of 
0.099 g/ml. 
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Figure 31. Plots of G(s*) versus 5i Ì¬§��§8°ic³ÂÅ E 9s* for the results obtained by the application of 
Equation 38 to ls-g(s*) (Figure 30) at t = 2010 s ± 6 s (───), t = 2310 s ± 6 s (───), t = 2460 s 
± 6 s (───), t = 2610 s ± 6 s (───) and t = 2910 s ± 6 s (───),where the RI noise was not fit 
in the ls-g(s*) analysis. 
 
A comparison of |g(s*)| and ls-g(s*): c-dependent transport 
 
Both g(s*), as determined from the derivative of c with respect to s* at constant t, and ls-g(s*), as 
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determined from SEDFIT (Schuck & Rossmanith, 2000), were obtained using data from a 
previously described (Moody, 2012) simulation of transport in a concentration-dependent 
system subjected to AUC at 60,000 RPM system. (See Moody, 2012: Figures 1 and 2, Ka = 30.325 
ml/g.) 
 
The concentration-dependent system includes 12 positively-buoyant solutes and 12 negatively-
buoyant solutes (Moody, 2012: Table 1), each having a total mass concentration of [0.001 
g/ml]/24, and each having concentration-dependent transport coefficients (Moody, 2012: 
Equations 5 to 18). The arbitrary unit (AU) of the signal of each low-concentration solute is 
numerically equivalent to the mg/ml concentration scale. (The signal-per-mass-concentration 
factor is 1000 AU/[g/ml].) 
 
The concentration-dependent system also includes 3 high-concentration solutes, of which, the 
most neutrally-buoyant is the hetero-dimeric product of a mass-action association of the other 
two high-concentration solutes (forward rate constant of kfor = 30,000 [ml/g]/s, equilibrium 
constant of Ka = 30.325 ml/g). The transport coefficients of each high-concentration solute are 
also concentration-dependent (Moody, 2012: Equations 5 to 18). The partial specific volume, �ÐÀ , 
of the hetero-dimeric solute is equal to iÑf, where ρ0 is the solvent density, which is equal to 
1.08225 g/ml. The high-concentration solutes are measured on the g/ml concentration scale. 
 
The solute concentrations, the basic transport parameters (Moody, 2012: Table 1) and the 
parameters that mediate concentration dependence (Moody, 2012: Equations 14 to 18) are such 
that each of the low-concentration solutes exhibits Johnston-Ogston effects. In the limit as c 
approaches zero, the characteristics of high-concentration solutes 1, 14 and 27 of the 
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concentration-dependent system (Moody, 2012: Table 1) approach the characteristics of solutes 
1, 2 and 3, respectively, of the concentration-independent system (Figure 2). The initial 
concentrations of solutes 1, 27 and 14 were c1 = 3.389E-02 g/ml, c27 = 3.211E-02 g/ml, c14 = 
3.300E-02 g/ml, which, respectively but not coincidentally, are the same as c1, c3 and c2 of the 
system described in Figure 2. 
 
One set of signal versus r data was used in each g(s*) analysis (Figures 36 and 37). The data 
analysed were from three times (Figures 32 and 33): 21 min, 51 min or 81 min. For each of those 
times, two sets of data were examined, with one set consisting of the combined signal from all 24 
low-concentration solutes (Moody, 2012: Figure 1, Ka = 30.325 ml/g), and the other set 
consisting of the combined concentration of all 3 high-concentration solutes (Moody, 2012: 
Figure 2, Ka = 30.325 ml/g). The most direct approach, in which 5 676E∗9:  is obtained from c versus 
s* data, was used to obtain g(s*) in each case. 
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 Figure 32. The sum of the concentration of all high-concentration solutes versus r in the 
concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min (───). 
High concentration data in the pellet and supernatant are shown on a compressed scale above 
the break in the c-axis. 
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 Figure 33. The sum of the signal from all low-concentration solutes versus r in the concentration-
dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min (───). High 
concentration data in the pellet and supernatant are shown on a compressed scale above the 
break in the AU-axis. 
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 Figure 34. The sum of the concentration of all high-concentration solutes versus s* in the 
concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min (───). 
High concentration data in the pellet and supernatant are shown on a compressed scale above 
the break in the c-axis. 
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 Figure 35. The sum of the signal from all low-concentration solutes versus s* in the 
concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min (───). 
High concentration data in the pellet and supernatant are shown on a compressed scale above 
the break in the AU-axis. 
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 Figure 36a. Full s* range: |g(s*)| versus s* for the high-concentration data (Figures 32 and 34) of 
the concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the |g(s*)|-axis. 
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 Figure 36b. Edited s* range: |g(s*)| versus s* for the high-concentration data (Figures 32 and 34) 
of the concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the |g(s*)|-axis. 
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 Figure 37a. Full s* range: |g(s*)| versus s* for the low-concentration data (Figures 33 and 35) of 
the concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the |g(s*)|-axis. 
 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

92 

 

-8.0x10
-13

-6.0x10
-13

6.0x10
-13

8.0x10
-13

0.00E+000

2.00E+012

4.00E+012

6.00E+012

8.00E+012

1E13
1E14
1E15

|g
(s

*)
| 
(A

U
/s

)

s* (s)

 Figure 37b. Edited s* range: |g(s*)| versus s* for the low-concentration data (Figures 33 and 35) 
of the concentration-dependent system at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the |g(s*)|-axis. 
 
Three sets of signal versus r data were used in each ls-g(s*) analysis (Figures 38 and 39). The 
data analysed were from three time periods: 21 min ± 6 s, 51 min ± 6 s or 81 min ± 6 s. The data 
at the central time points of the ls-g(s*) analyses and the data shown in Figures 32 and 33 are the 
same. Within the analysis software, the positions of the radial extrema of the system were set to 
the known positions of the meniscus ( rm = 6 cm) and the base (rb = 7.2 cm). In the truncated-
range case, the lower and upper radial limits of analysis were set at rm + 0.1124 cm and rb – 
0.1165 cm, respectively, and were chosen to include as much of any upwardly or downwardly 
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translating boundaries as possible, while excluding regions where back-diffusion near the 
meniscus or base was evident. In the full-range case, the lower and upper radial limits of analysis 
were set at rm + 0.01 cm and rb – 0.01 cm, respectively, and were chosen to include as much of 
the system as possible. The s* range and resolution used in the ls-g(s*) analyses depended on 
time: at t = 21 min, s* ranged from -42 Svedberg to 42 Svedberg, with a resolution of 840 points; 
at t = 51 min, s* ranged from -18 Svedberg to 18 Svedberg, with a resolution of 360 points; at t = 
81 min, s* ranged from -12 Svedberg to 12 Svedberg, with a resolution of 240 points. In all 
analyses, neither the noise (whether TI or RI) nor the meniscus position was fit, and as the 
confidence level was set to 0, no regularisation was applied to the results of the analysis. To 
render the dimensionality of Figures 38 and 39 equivalent to that of Figures 36 and 37, the s* 
values returned by SEDFIT were multiplied by (10-13 s/Svedberg), and the ls-g(s*) values were 
multiplied by (1 Svedberg/10-13 s). 
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 Figure 38a. Full s* range: ls-g(s*) versus s* for the high-concentration data (Figures 32 and 34) of 
the concentration-dependent system, fit with the lower and upper radial limits of analysis equal 
to rm + 0.01 cm and rb – 0.01 cm, respectively, at t = 21 min (∙∙∙∙∙∙∙∙), t = 51 min (∙∙∙∙∙∙∙∙) and t = 
81 min (∙∙∙∙∙∙∙∙); and fit with the lower and upper radial limits of analysis equal to rm + 0.1124 cm 
and rb – 0.1165 cm, respectively, at t = 21 min (───), t = 51 min (───) and t = 81 min (───). 
Data are shown on a logarithmic scale above the break in the ls-g(s*)-axis. 
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 Figure 38b. Edited s* range: ls-g(s*) versus s* for the high-concentration data (Figures 32 and 
34) of the concentration-dependent system, fit with the lower and upper radial limits of analysis 
equal to rm + 0.01 cm and rb – 0.01 cm, respectively, at t = 21 min (∙∙∙∙∙∙∙∙), t = 51 min (∙∙∙∙∙∙∙∙) and 
t = 81 min (∙∙∙∙∙∙∙∙); and fit with the lower and upper radial limits of analysis equal to rm + 0.1124 
cm and rb – 0.1165 cm, respectively, at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the ls-g(s*)-axis. 
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 Figure 39a. Full s* range: ls-g(s*) versus s* for the low-concentration data (Figures 33 and 35) of 
the concentration-dependent system, fit with the lower and upper radial limits of analysis equal 
to rm + 0.01 cm and rb – 0.01 cm, respectively, at t = 21 min (∙∙∙∙∙∙∙∙), t = 51 min (∙∙∙∙∙∙∙∙) and t = 
81 min (∙∙∙∙∙∙∙∙); and fit with the lower and upper radial limits of analysis equal to rm + 0.1124 cm 
and rb – 0.1165 cm, respectively, at t = 21 min (───), t = 51 min (───) and t = 81 min (───). 
Data are shown on a logarithmic scale above the break in the ls-g(s*)-axis. 
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 Figure 39b. Edited s* range: ls-g(s*) versus s* for the low-concentration data (Figures 33 and 35) 
of the concentration-dependent system, fit with the lower and upper radial limits of analysis 
equal to rm + 0.01 cm and rb – 0.01 cm, respectively, at t = 21 min (∙∙∙∙∙∙∙∙), t = 51 min (∙∙∙∙∙∙∙∙) and 
t = 81 min (∙∙∙∙∙∙∙∙); and fit with the lower and upper radial limits of analysis equal to rm + 0.1124 
cm and rb – 0.1165 cm, respectively, at t = 21 min (───), t = 51 min (───) and t = 81 min 
(───). Data are shown on a logarithmic scale above the break in the ls-g(s*)-axis. 
 
Figures 36 to 39 illustrate the time-dependence of |g(s*)| and ls-g(s*) results for a concentration-
dependent system. Compared to the results for the concentration-independent example (Figures 
28 and 30), the shape and position of the |g(s*)| and ls-g(s*) peaks are more variable in the 
concentration-dependent case. Nevertheless, the |g(s*)| and ls-g(s*) peaks of the high-
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concentration solutes (Figures 36 and 38) appear to sharpen with time, as would be expected in 
the absence of any concentration dependence. 
 
For the low-concentration results (Figures 37 and 39), the peaks in the vicinity of s* = -6.5E-13 s 
and s* = 6.5E-13 s show signs of splitting, but the newly developing pairs of peaks at t = 81 min 
occupy a similar range of s* as the corresponding peaks at t = 21 min. (From t = 21 min to t = 81 
min, the range of s* occupied by these peaks grows more narrow as judged by the |g(s*)| results. 
Over the same time period, the negative-s* peak grows more narrow and the positive-s* peak 
broadens as judged by the ls-g(s*) results fit with the truncated range of s*.) 
 
At each time point, ls-g(s*) fit with the truncated range of s* lacks the peaks in |g(s*)| that result 
from concentration gradients in the supernatant and pellet regions toward rm = 6 cm and rb = 7.2 
cm, respectively (Figures 32 and 33). A comparison of Figures 36 and 38, which pertain to the 
high-concentration solutes, shows that |g(s*)| most resembles ls-g(s*) obtained with the 
broadest radial limits of analysis. A comparison of Figures 37 and 39, which pertain to the low-
concentration solutes, shows that, within -8E-13 s < s* < 8E-13 s, |g(s*)| most resembles ls-g(s*) 
obtained with the most narrow radial limits of analysis, while, as might be expected, for s* 
< -8E-13 s and s* > 8E-13 s, |g(s*)| only resembles ls-g(s*) obtained with the broadest radial 
limits of analysis. 
 
The greatest differences between |g(s*)| and ls-g(s*) are seen with the low-concentration data 
(Figures 37 and 39) at time t = 51 min, for which the ls-g(s*) results appear to be noisy and 
weakly responsive in the vicinity of s* = -6.5E-13 s and s* = 6.5E-13 s. That weak response is 
likely due to the substantial overlap of oppositely directed boundaries at that time. Although 
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ls-g(s*) appears to be less sensitive than g(s*) in this instance, the sensitivity of ls-g(s*) was 
greater than that of g(s*) in the case of the overlapping boundaries in the concentration-
independent example discussed previously (t = 2460 s, Figure 28). With either approach, in 
general, analysis at multiple time points should reduce the extent to which instances of 
overlapping boundaries lead to erroneous conclusions. 
 
The step function that describes cs* 
 
As previously discussed, at any given time, the sum of an infinite number of step functions can be 
used to describe the total solute concentration at all radial positions. (Regions of supernatant and 
pellet accumulation can be included in such an approach, even though such regions are often 
excluded in any g(s*) analysis.) At a given time, t, at a given radial position, r, cs* (Equation 24), 
which is the concentration of a hypothetical solute characterised by s*, can be expressed as 

SE∗ = �Sd,E∗[1 − Ò(V − VE∗)] ��V Z∗ ≤ 0Sd,E∗Ò(V − VE∗) ��V Z∗ ≥ 0 � , 
(46) 
where 

Ò(V − VE∗) = Ó1 ��V V − VE∗ ≥ 00 ��V V − VE∗ < 0Ô  
(47) 
is the Heaviside step function as it applies to r – rs*. At time t, rs* is the boundary position of a 
hypothetical solute characterised by s* in the zero diffusion limit, and that boundary position is 
characterised by a hyper-sharp change in the solute concentration, cs*, from 0 to its plateau value, 
cp,s*. As rs* (Equation 23) and cp,s* (Equation 16) are time-dependent, cs* is time-dependent. 
 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

100 

 

The sum of all cs* at a given radial position and time is equal to c at that position and time. As s* is 
continuous within Z�­∗  ≤ s* ≤ Z®­∗  (Equations 35 and 36), there is an infinite number of cs* values 
at a given position and time. There are also two oppositely buoyant hypothetical solutes that 
would each exhibit the same boundary position, rs*, at time t. At a given time, t, such solutes are 
related through 

VE∗ = ÕVE³∗ = V�`E³∗ ��:VEÖ∗ = V�`EÖ∗ ��:× , 
(48) 
where the hypothetical solute of positive buoyancy is characterised by 

Z�∗ = 1noY �x TVE³∗V� W  < 0, 
(49) 
the hypothetical solute of negative buoyancy is characterised by 

Z®∗ = 1noY �x TVEÖ∗V� W > 0,  
(50)  
and the difference between the two s* values for which VEÖ∗  = VE³∗  = rs* is 

∆Z±∗ = Z®∗ − Z�∗ = 1noY �x bV�V�
VEÖ∗VE³∗ e = 1noY �x TV�V�W . 

(51)  
(The equation describing ∆Z±∗  can also be obtained by equating the two expressions for rs* in 
Equation 48, and solving for Z®∗ − Z�∗ .) 
 
As �x 58g³∗8� 9 and �x 58gÖ∗8� 9 are proportional to t, Z�∗  and Z®∗  are time-independent. As �x 58�8�9 is a 
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constant, ∆Z±∗  is inversely proportional to t. At any given time, then, 56E³∗6: 98 = 0 and 56EÖ∗6: 98 = 0, 
but 56∆E±∗6: 98 = − ∆E±∗: . Any derivatives of Z®∗ , Z�∗  or ∆Z±∗  at constant t are equal to zero. 
 
Given Equations 49 and 50, which describe the two oppositely signed s* values, Z�∗  and Z®∗ , that 
characterise the two hypothetical solutes with oppositely directed boundaries at VEÖ∗  = VE³∗  = rs* at 
time t, Equation 46 can be rewritten as 

SE∗ = Ó SE³∗SEÖ∗  Ô = �Sd,E³∗ Ø1 − Ò�V − VE³∗  ÙSd,EÖ∗ Ò�V − VEÖ∗   � = ÕSd,E³∗ Ø1 − Ò�V − V�`E³∗ ��: ÙSd,EÖ∗ Ò�V − V�`EÖ∗ ��:  ×, 
(52) 
where, at any given time, SE³∗  is the r-dependent concentration and Sd,E³∗  is the r-independent 
plateau concentration of the hypothetical solute characterised by Z�∗ , while SEÖ∗  is the r-dependent 
concentration and Sd,EÖ∗  is the r-independent plateau concentration of the hypothetical solute 
characterised by Z®∗ . In general, SE³∗ , Sd,E³∗ , SEÖ∗  and Sd,EÖ∗  are t-dependent. 
 
At a given radial position, r, at a given time, t, the sum of all cs* as described by Equation 52 is 
equal to 

S = z RSE³∗
7g³∗ Úf

7g³∗ Úg³´∗ + z RSEÖ∗
7gÖ∗ ÚgÖ´∗

7gÖ∗ Úf
= z Ø1 − Ò�V − V�`E³∗ ��: ÙRSd,E³∗

7g³∗ Úf
7g³∗ Úg³´∗ + z Ò�V − V�`EÖ∗ ��: RSd,EÖ∗

7gÖ∗ ÚgÖ´∗
7gÖ∗ Úf  

(53a)  
in the continuous case, and 
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S = Û SE³∗
c

E³∗ ÜE³´∗ + Û SEÖ∗
EÖ´∗

EÖ∗ Üc = Û Sd,E³∗ Ø1 − Ò�V − V�`E³∗ ��: Ùc
E³∗ ÜE³´∗ + Û Sd,EÖ∗ Ò�V − V�`EÖ∗ ��: EÖ´∗

EÖ∗ Üc  
(53b) 
in the discrete case. 
 
If Equation 53 were used to differentiate c with respect to s* at constant t, or if Equation 3 were 
applied to Equation 53, only the essential values of 5 676E∗9: would be obtained. To obtain the 
redundant values of 5 676E∗9: from c described as a function of r and t, the step functions in Equation 
52 must be written in terms of the s* values at which 5 676E∗9:  would be redundant. Doing so results 
in 

SE∗ = Ó SE³∗SEÖ∗  Ô = �Sd,E³∗ Ø1 − Ò�V − VE³∗  ÙSd,EÖ∗ Ò�V − VEÖ∗   � = ÕSd,E³∗ Ø1 − Ò�V − V�`ÝE³∗ ®∆E±∗ Þ��: ÙSd,EÖ∗ Ò�V − V�`ÝEÖ∗ �∆E±∗ Þ��:  ×. 
(54) 
 
At a given radial position, r, at a given time, t, the sum of all cs* as described by Equation 54 is  
S = z RSE³∗

7g³∗ Úf
7g³∗ Úg³´∗ + z RSEÖ∗

7gÖ∗ ÚgÖ´∗
7gÖ∗ Úf

= z Ø1 − Ò�V − V�`ÝE³∗ ®∆E±∗ Þ��: ÙRSd,E³∗
7g³∗ Úf

7g³∗ Úg³´∗ + z Ò�V − V�`ÝEÖ∗ �∆E±∗ Þ��: RSd,EÖ∗
7gÖ∗ ÚgÖ´∗

7gÖ∗ Úf  
(55a)  
in the continuous case, and 
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S = Û SE³∗
c

E³∗ ÜE³´∗ + Û SEÖ∗
EÖ´∗

EÖ∗ Üc
= Û Sd,E³∗ Ø1 − Ò�V − V�`ÝE³∗ ®∆E±∗ Þ��: Ùc

E³∗ ÜE³´∗ + Û Sd,EÖ∗ Ò�V − V�`ÝEÖ∗ �∆E±∗ Þ��: EÖ´∗

EÖ∗ Üc  
(55b) 
in the discrete case. 
 
Equations 53 and 55 both describe c as a function of r and t, and either can be used to determine 
567689:, but both are needed to determine 5 676E∗9: . The two expressions for 567689: will be obtained 
first, and to obtain 5 676E∗9: , Equation 3 will then be applied to both expressions for 567689:. 
 
As with Sd,E∗  (Equation 16), Sd,EÖ∗  and Sd,E³∗  are dependent on t, but independent of r, so that, at any 
given time, T67h,gÖ∗68 W:= 0 and 567h,g³∗68 9: = 0. Thus, differentiating c with respect to r at constant t 
yields, using the discrete form of Equation 53 to express c, 

TUSUVW: = Û bUSE³∗UV e:
c

E³∗ ÜE³´∗ + Û bUSEÖ∗UV e:
EÖ´∗

EÖ∗ Üc  = TUSE∗UV W: =
���
��bUSE³∗UV e: 

bUSEÖ∗UV e: ���
�� = �−Sd,E³∗ ß�V − VE³∗  Sd,EÖ∗ ß�V − VEÖ∗   �

= Õ−Sd,E³∗ ß�V − V�`E³∗ ��: Sd,EÖ∗ ß�V − V�`EÖ∗ ��:  ×, 
(56a) 
or, using the discrete form of Equation 55 to express c, 
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TUSUVW: = Û bUSE³∗UV e:
c

E³∗ ÜE³´∗ + Û bUSEÖ∗UV e:
EÖ´∗

EÖ∗ Üc  = TUSE∗UV W: =
���
��bUSE³∗UV e: 

bUSEÖ∗UV e: ���
�� = �−Sd,E³∗ ß�V − VE³∗  Sd,EÖ∗ ß�V − VEÖ∗   �

= Õ−Sd,E³∗ ß�V − V�`ÝE³∗ ®∆E±∗ Þ��: Sd,EÖ∗ ß�V − V�`ÝEÖ∗ �∆E±∗ Þ��:  ×, 
(56b) 
where, in either case, for rs* = VEÖ∗  or rs* = VE³∗ , 

ß(V − VE∗) = bUÒ(V − VE∗)UV e: = Ó∞ ��V V − VE∗ = 00 ��V V − VE∗ ≠ 0 Ô  
(57) 
is the Dirac delta function as it applies to r – rs*. The sum of all 567g∗68 9: at a given radial position 
and time is equal to 567689: at that position and time, and as with cs*, there is an infinite number of 
567g∗68 9: values at a given radial position and time. However, as δ(r – rs*) = 0 except where r = rs*, 
at any time t, and at any position r, 567689: is equal to just the two nonzero values of 567g∗68 9: for 
which r = rs*, those being 567g³∗68 9: and T67gÖ∗68 W:. Hence, starting with either form of Equations 53 or 
55, 567689: yields neither a summation nor an integral.  
 
Calculating 5 676E∗9: from 567689: 
 
Applying Equation 3 to the sum of both results given by Equation 56 yields 
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T USUZ∗W: = TUSUVW: T UVUZ∗W: = TUSE∗UV W: VnoY =
���
��bUSE³∗UV e: VnoY

bUSEÖ∗UV e: VnoY���
�� = �−Sd,E³∗ ß�V − VE³∗  VnoY Sd,EÖ∗ ß�V − VEÖ∗  VnoY �

= Õ−Sd,E³∗ Øß�V − V�`E³∗ ��:  + ß�V − V�`ÝE³∗ ®∆E±∗ Þ��: ÙVnoY Sd,EÖ∗ Øß�V − V�`EÖ∗ ��:  + ß�V − V�`ÝEÖ∗ �∆E±∗ Þ��: ÙVnoY ×
= Õ−Sd,E³∗ ß�V − V�`E³∗ ��: noYV�`E³∗ ��: − Sd,E³∗ ß�V − V�`ÝE³∗ ®∆E±∗ Þ��: noYV�`ÝE³∗ ®∆E±∗ Þ��: Sd,EÖ∗ ß�V − V�`EÖ∗ ��: noYV�`EÖ∗ ��: + Sd,EÖ∗ ß�V − V�`ÝEÖ∗ �∆E±∗ Þ��: noYV�`ÝEÖ∗ �∆E±∗ Þ��: ×, 

(58) 
where VEÖ∗  = VE³∗  = rs*, and where the various forms of δ(r – rs*)rω2t were equated to the 
corresponding forms of δ(r – rs*)rs*ω2t on the basis of δ(r – rs*) being equal to zero for all r ≠ rs*. 
 
The properties of the Dirac delta function are such that 

ß(Z∗ − ¶∗ ) = bUÒ(Z∗ − ¶∗)UZ∗ e: = bUÒ(V − VE∗)UV e: T UVUZ∗W: = ß(V − VE∗)VnoY = ß(V − VE∗)VE∗noY, 
(59) 
where δ(r – rs*)rω2t can be equated to δ(r – rs*)rs*ω2t on the basis of δ(r – rs*) being equal to zero 
for all r ≠ rs*. As applied to c and 5 676E∗9: , in both the Heaviside step function, H(s* – ϛ*), and its 
Dirac delta function, δ(s* – ϛ*), ϛ* will be shown (Equations 64 and 67) to be one of the two 
values, Z®∗  and Z�∗ , that characterise the two hypothetical solutes with oppositely directed 
boundaries at VEÖ∗  = VE³∗  = rs* at time t (Equation 48). Thus, in Equation 58, 

−Sd,E³∗ ß�V − V�`E³∗ ��: noYV�`E³∗ ��: = −Sd,E³∗ ß(Z∗ − Z�∗ ) = _(Z�∗ , Y) , 
(60) 

Sd,EÖ∗ ß�V − V�`EÖ∗ ��: noYV�`EÖ∗ ��: = Sd,EÖ∗ ß(Z∗ − Z®∗ ) = _(Z®∗ , Y) , 
(61) 
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−Sd,E³∗ ß�V − V�`ÝE³∗ ®∆E±∗ Þ��: noYV�`ÝE³∗ ®∆E±∗ Þ��: = −Sd,E³∗ ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  = `(Z�∗ , Y)  
(62) 
and 

Sd,EÖ∗ ß�V − V�`ÝEÖ∗ �∆E±∗ Þ��: noYV�`ÝEÖ∗ �∆E±∗ Þ��: = Sd,EÖ∗ ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  = `(Z®∗ , Y) . 
(63) 
In Equation 62, ÝZ�∗ + ∆Z±∗ Þ is equal to the value of Z®∗  that shares rs* in common with Z�∗ , such that 
rs* = V�`ÝE³∗ ®∆E±∗ Þ��: = V�`E³∗ ��:. In Equation 63, ÝZ®∗ − ∆Z±∗ Þ is equal to the value of Z�∗  that shares 
rs* in common with Z®∗ , such that rs* = V�`ÝEÖ∗ �∆E±∗ Þ��:= V�`EÖ∗ ��:. 
 
The step-function form of c as a function of s* and t 
 
For c expressed as a function of s* and t, cs* is the concentration of a hypothetical solute 
characterised by s*. In transforming the independent variables from r and t to s* and t, c at each 
radial position r becomes equal to c at the two corresponding values of s* given by Equation 27. 
At any given time, for c expressed as a function of s* and t, SE³∗  is the s*-dependent concentration 
and Sd,E³∗  is the plateau concentration of the hypothetical solute characterised by Z�∗ , while SEÖ∗  is 
the s*-dependent concentration and Sd,EÖ∗  is the plateau concentration of the hypothetical solute 
characterised by Z®∗ . In general, for c expressed as a function of s* and t, SE³∗ , Sd,E³∗ , SEÖ∗  and Sd,EÖ∗  are 
t-dependent. 
 
At a given apparent sedimentation coefficient, s*, at a given time, t, the sum of all cs* is equal to  
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S = z RSE³∗
7g³∗ Úf

7g³∗ Úg³´∗ + z RSEÖ∗
7gÖ∗ ÚgÖ´∗

7gÖ∗ Úf
= z Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞ7g³∗ Úf

7g³∗ Úg³´∗ RSd,E³∗

+ z ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Þ7gÖ∗ ÚgÖ´∗
7gÖ∗ Úf RSd,EÖ∗ , 

(64a)  
in the continuous case, and 

S = Û SE³∗
c

E³∗ ÜE³´∗ + Û SEÖ∗
EÖ´∗

EÖ∗ Üc
= Û Sd,E³∗ Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞc

E³∗ ÜE³´∗

+ Û Sd,EÖ∗ ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÞEÖ´∗

EÖ∗ Üc , 
(64b) 
in the discrete case. The value of Z®∗  that shares rs* in common with Z�∗  has been expressed as 
ÝZ�∗ + ∆Z±∗ Þ in the integral with respect to SE³∗  or the sum over all Z�∗ . The value of Z�∗  that shares rs* 
in common with Z®∗  has been expressed as ÝZ®∗ − ∆Z±∗ Þ in the integral with respect to SEÖ∗  or the 
sum over all Z®∗ . The integrals or sums in which [1 – H(s* – {Z�∗  + ∆Z±∗ })] and H(s* – {Z®∗  – ∆Z±∗ }) 
appear will give rise to the redundant values of 5 676E∗9:, while the integrals or sums in which [1 – 
H(s* – Z�∗ )] and H(s* – Z®∗ ) appear will give rise to the essential values of 5 676E∗9:. 
 
The Heaviside step functions in Equation 64 are described by 
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Ò(Z∗ − ¶∗) = Ó1 ��V Z∗ − ¶∗ ≥ 00 ��VZ∗ − ¶∗ < 0Ô , 
(65) 
where ϛ* may equal Z�∗ , ÝZ�∗ + ∆Z±∗ Þ, Z®∗  or ÝZ®∗ − ∆Z±∗ Þ. The corresponding Dirac delta function is 
given by 

bUÒ(Z∗ − ¶∗)UZ∗ e: bU(Z∗ − ¶∗)UZ∗ e: = bUÒ(Z∗ − ¶∗)UZ∗ e: \TUZ∗UZ∗W: − TU¶∗UZ∗W:^ = bUÒ(Z∗ − ¶∗)UZ∗ e:
= ß(Z∗ − ¶∗) = Ó∞ ��V Z∗ − ¶∗ = 00 ��VZ∗ − ¶∗ ≠ 0 Ô , 

(66) 
where 56E∗6E∗9: = 1 and, for ϛ* equal to Z�∗ , ÝZ�∗ + ∆Z±∗ Þ, Z®∗  or ÝZ�∗ − ∆Z±∗ Þ, 56ä∗6E∗9: = 0. The relationship 
of δ(s* - ϛ*) to δ(r - rs*), is described by Equation 59. 
 
Applying Equation 3 to 567h,g³∗68 9: = 0 and T67h,gÖ∗68 W:= 0 yields 567h,g³∗6E∗ 9: = 567h,g³∗68 9: 5 686E∗9: = 0 and 
T67h,gÖ∗6E∗ W:= T67h,gÖ∗68 W: 5 686E∗9: = 0, respectively. Thus, using the discrete form of Equation 64 to 
express c, 

T USUZ∗W: = Û bUSE³∗UZ∗ e:
c

E³∗ ÜE³´∗ + Û bUSEÖ∗UZ∗ e:
EÖ´∗

EÖ∗ Üc  = TUSE∗UZ∗ W: =
���
��bUSE³∗UZ∗ e: 

bUSEÖ∗UZ∗ e: ���
��

= �−Sd,E³∗ Øß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ Ù Sd,EÖ∗ Øß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Ù �
= �−Sd,E³∗ ß(Z∗ − Z�∗ ) − Sd,E³∗ ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  Sd,EÖ∗ ß(Z∗ − Z®∗ ) + Sd,EÖ∗ ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  � = Ó _(Z�∗ , Y) + `(Z�∗ , Y)_(Z®∗ , Y) + `(Z®∗ , Y) Ô
= _(Z∗, Y) + `(Z∗, Y), 
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(67) 
where _(Z�∗ , Y) = = −Sd,E³∗ ß(Z∗ − Z�∗ ), _(Z®∗ , Y) = Sd,EÖ∗ ß(Z∗ − Z®∗ ), `(Z�∗ , Y) =  
−Sd,E³∗ ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  and `(Z®∗ , Y) = Sd,EÖ∗ ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ . Equations 37 and 64 both 
describe c as a function of s* and t. Equation 67 describes the integrand of Equation 37. 
 
Back-calculating 567689: from 5 676E∗9:  
 
Applying Equations 3 and 28 to Equation 67, and using Equations 27, 49, 50 and 51 to express s*, 
Z�∗ , Z®∗  and ∆Z±∗ , respectively, in terms of ω, t, r, rb and rm, yields 
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T USUZ∗W: = T USUZ∗W: TUZ∗UV W: = TUSE∗UZ∗ W:
1VnoY =

���
��bUSEÖ∗UZ∗ e:

1VnoY
bUSE³∗UZ∗ e:  1VnoY���

��

= å− Sd,E³∗VnoY Øß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ Ù Sd,EÖ∗VnoY Øß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Ù æ

=
���
�
���− Sd,E³∗VE³∗ noY çß è�x 5 VV�9 − �x 5VE³∗V� 9noY é + ß è�x 5 VV�9 − ê�x 5VE³∗V� 9 + �x 5V�V�9ënoY éì 

Sd,EÖ∗VEÖ∗ noY çß è�x 5 VV�9 − �x 5VEÖ∗V� 9noY é + ß è�x 5 VV�9 − ê�x 5VEÖ∗V� 9 − �x 5V�V�9ënoY éì ���
�
���

=
���
�
���− Sd,E³∗VE³∗ noY çß è�x 5 VV�9 − �x 5VE³∗V� 9noY é + ß è�x 5 VV�9 − �x 5VE³∗V� 9noY éì 

Sd,EÖ∗VEÖ∗ noY çß è�x 5 VV�9 − �x 5VEÖ∗V� 9noY é + ß è�x 5 VV�9 − �x 5VEÖ∗V� 9noY éì ���
�
���

=
���
�
���− Sd,E³∗VE³∗ noY çß è�x T VVE³∗ WnoY é + ß è�x T VVE³∗ WnoY éì 

Sd,EÖ∗VEÖ∗ noY çß è�x T VVEÖ∗ WnoY é + ß è�x T VVEÖ∗ WnoY éì ���
�
��� =

���
�� _(Z�∗ , Y)VE³∗ noY + `(Z�∗ , Y)VE³∗ noY_(Z®∗ , Y)VEÖ∗ noY + `(Z®∗ , Y)VEÖ∗ noY  ���

��, 

(68) 
where the r in rω2t is equated to the only value of r at which the Dirac delta function it divides is 
not equal to zero. Similarly, when expressing s* in terms of ω, t, r and r0, r0 is equated to the only 
one if its two possible values, rm or rb, that can yield a nonzero result for the Dirac delta function 
in which it appears. The entire exercise is somewhat futile, however, as once s*, Z�∗ , Z®∗  and ∆Z±∗  
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are expressed in terms of ω, t, r, rb and rm, information by which q(Z�∗ ,t) can be distinguished 
from e(Z�∗ ,t), or q(Z®∗ ,t) can be distinguished from e(Z®∗ ,t), is lost upon simplification. 
 
Expressing 5676:9E∗  and 5676:98 in terms of step functions 
 
Differentiating c with respect to t at constant r yields, using the discrete form of Equation 64 to 
express c, 

TUSUYW8 = Û bUSE³∗UY e8
c

E³∗ ÜE³´∗ + Û bUSEÖ∗UY e8
EÖ´∗

EÖ∗ Üc

= Û
íî
ïbUSd,E³∗UY e8 Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞ +

Sd,E³∗ bUÝ[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞUY e8 ðñ
òc

E³∗ ÜE³´∗

+ Û
íî
ïbUSd,EÖ∗UY e8 ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Þ +

Sd,EÖ∗ bUÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÞUY e8 ðñ
òEÖ´∗

EÖ∗ Üc

=

���
���
���
��

íî
ï Sd,E³∗ Z�∗Y Øß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ Ù −

2no Û Z�∗ Sd,E³∗ Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞc
E³∗ ÜE³´∗ ðñ

ò 

í
îîï

−Sd,EÖ∗ Z®∗Y Øß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Ù −
2no Û Z®∗ Sd,EÖ∗ ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÞEÖ´∗

EÖ∗ Üc ð
ññò 

���
���
���
��

. 

(69) 
Equations 70 to 75, which follow, describe all the individual terms used to determine 5676:98 . 
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At constant r, the time-derivatives of the Heaviside step functions of Equation 64 are given by 

bUÒ(Z∗ − ¶∗)UY e8 = bUÒ(Z∗ − ¶∗)UZ∗ e8 bU(Z∗ − ¶∗)UY e8 = ß(Z∗ − ¶∗) \TUZ∗UY W8 − TU¶∗UY W8^
= ß(Z∗ − ¶∗) \T− Z∗Y W − TU¶∗UY W8^ = −ß(Z∗ − ¶∗) \Z∗Y + TU¶∗UY W8^
= −ß(Z∗ − ¶∗) \¶∗Y + TU¶∗UY W8^ 

(70) 
where 56E∗6: 98 is equal to the inverse of Equation 30, and where δ(s* – ϛ*)s* can be equated to 
δ(s* - ϛ*)ϛ* on the basis of δ(s* – ϛ*) being equal to zero for all s* ≠ ϛ*. As in Equation 65, ϛ* may 
equal Z�∗ , ÝZ�∗ + ∆Z±∗ Þ, Z®∗  or ÝZ®∗ − ∆Z±∗ Þ. 
 
As Z�∗  (Equation 49) and Z®∗  (Equation 50) are time-independent, where ϛ* equals Z�∗  or Z®∗ , 
56ä∗6: 98 = 0. As ∆Z±∗  (Equation 51) is equal to a constant divided by t, however,  

TU∆Z±∗UY W8 = − ∆Z±∗Y  . 
(71) 
Thus, where ϛ* equals ÝZ�∗ + ∆Z±∗ Þ, 

−ß(Z∗ − ¶∗) \¶∗Y + TU¶∗UY W8^ = −ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  \Z�∗ + ∆Z±∗Y + TU∆Z±∗UY W8^
= −ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  \Z�∗ + ∆Z±∗Y − ∆Z±∗Y ^ = −ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  Z�∗Y  . 

(72) 
Similarly, where ϛ* equals ÝZ®∗ − ∆Z±∗ Þ, 
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−ß(Z∗ − ¶∗) \¶∗Y + TU¶∗UY W8^ = −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  \Z®∗ − ∆Z±∗Y − TU∆Z±∗UY W8^
= −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  \Z®∗ − ∆Z±∗Y + ∆Z±∗Y ^ = −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  Z®∗Y  . 

(73) 
By Equation 16, Sd,E³∗ = Sc,E³∗ `�oE³∗ ��: and Sd,EÖ∗ = Sc,EÖ∗ `�oEÖ∗ ��:. Thus, the derivatives of Sd,E³∗  and Sd,EÖ∗  in Equation 69 can be written as 

bUSd,E³∗UY e8 =  (−2Z�∗ no)Sc,E³∗ `�oE³∗ ��: = −2Z�∗ noSd,E³∗  
(74) 
and 

bUSd,EÖ∗UY e8  =  (−2Z®∗ no)Sc,EÖ∗ `�oEÖ∗ ��: = −2Z®∗ noSd,EÖ∗  , 
(75) 
respectively. 
 
Indirect determination of 5676:9E∗  
 
Incorporating the expressions for 5 676E∗9:  (Equation 67), 5676:98 (Equation 69) and 56E∗6: 98 (the 
inverse of Equation 30) in Equation 6, and solving for 5676:9E∗ , results in 
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TUSUYWE∗ = TUSUYW8 − T USUZ∗W: TUZ∗UY W8

=

���
���
���
��

íî
ï Sd,E³∗ Z�∗Y Øß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ Ù −

2no Û Z�∗ Sd,E³∗ Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞc
E³∗ ÜE³´∗ ðñ

ò 

í
îîï

−Sd,EÖ∗ Z®∗Y Øß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Ù −
2no Û Z®∗ Sd,EÖ∗ ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÞEÖ´∗

EÖ∗ Üc ð
ññò 

���
���
���
��

−
���
�� Sd,E³∗ Z�∗Y \ß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  T1 + ∆Z±∗Z�∗ W^

−Sd,EÖ∗ Z®∗Y \ß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  T1 − ∆Z±∗Z®∗ W^���
��

=

���
���
���
��

íî
ï −Sd,E³∗ ∆Z±∗Y ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  −

2no Û Z�∗ Sd,E³∗ Ý[1 − Ò(Z∗ − Z�∗ )] + Ø1 − Ò�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÙÞc
E³∗ ÜE³´∗ ðñ

ò 

í
îîï

−Sd,EÖ∗ ∆Z±∗Y ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  −
2no Û Z®∗ Sd,EÖ∗ ÝÒ(Z∗ − Z®∗ ) + Ò�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÞEÖ´∗

EÖ∗ Üc ð
ññò 

���
���
���
��

 , 

(76) 
where 
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T USUZ∗W: TUZ∗UY W8 =
���
��bUSE³∗UZ∗ e: TUZ∗UY W8 

bUSEÖ∗UZ∗ e: TUZ∗UY W8 ���
�� = ��

�−Sd,E³∗ \ß(Z∗ − Z�∗ ) TUZ∗UY W8 + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  TUZ∗UY W8^
Sd,EÖ∗ \ß(Z∗ − Z®∗ ) TUZ∗UY W8 + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  TUZ∗UY W8^ ��

�

= å−Sd,E³∗ \ß(Z∗ − Z�∗ ) T− Z∗Y W + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  T− Z∗Y W^
Sd,EÖ∗ \ß(Z∗ − Z®∗ ) T− Z∗Y W + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  T− Z∗Y W^ æ

= å Sd,E³∗ 1Y Øß(Z∗ − Z�∗ )Z∗ + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ Z∗Ù
−Sd,EÖ∗ 1Y Øß(Z∗ − Z®∗ )Z∗ + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ Z∗Ùæ

= å Sd,E³∗ 1Y Øß(Z∗ − Z�∗ )Z�∗ + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ ÝZ�∗ + ∆Z±∗ ÞÙ
−Sd,EÖ∗ 1Y Øß(Z∗ − Z®∗ )Z®∗ + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ ÝZ®∗ − ∆Z±∗ ÞÙæ

=
���
�� Sd,E³∗ Z�∗Y \ß(Z∗ − Z�∗ ) + ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  T1 + ∆Z±∗Z�∗ W^

−Sd,EÖ∗ Z®∗Y \ß(Z∗ − Z®∗ ) + ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  T1 − ∆Z±∗Z®∗ W^���
��. 

(77) 
In Equation 77, the value of s* obtained from 56E∗6: 98 is equated to the only value of s* at which the 
Dirac delta function it multiplies is not equal to zero. 
 
Direct determination of 5676:9E∗  
 
At constant s*, the time-derivatives of the Heaviside step functions of Equation 64 are given by 

bUÒ(Z∗ − ¶∗)UY eE∗ = bUÒ(Z∗ − ¶∗)UZ∗ eE∗ bU(Z∗ − ¶∗)UY eE∗ = ß(Z∗ − ¶∗) \TUZ∗UY WE∗ − TU¶∗UY WE∗^
= ß(Z∗ − ¶∗) \0 − TU¶∗UY WE∗^ = −ß(Z∗ − ¶∗) TU¶∗UY WE∗  . 
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(78) 
As in Equations 65 and 70, ϛ* may equal Z�∗ , ÝZ�∗ + ∆Z±∗ Þ, Z®∗  or ÝZ®∗ − ∆Z±∗ Þ. 
 
Again, as Z�∗  (Equation 49) and Z®∗  (Equation 50) are time-independent, where ϛ* equals Z�∗  or Z®∗ , 
56ä∗6: 9E∗ = 0. And again, as ∆Z±∗  (Equation 51) is equal to a constant divided by t,  

TU∆Z±∗UY WE∗ = − ∆Z±∗Y = TU∆Z±∗UY W8 . 
(79) 
Thus, where ϛ* equals ÝZ�∗ + ∆Z±∗ Þ, 

= −ß(Z∗ − ¶∗) TU¶∗UY WE∗ = −ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  TU∆Z±∗UY WE∗ = −ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  \− ∆Z±∗Y ^
= ß�Z∗ − ÝZ�∗ + ∆Z±∗ Þ  ∆Z±∗Y . 

(80) 
Similarly, where ϛ* equals ÝZ®∗ − ∆Z±∗ Þ, 

−ß(Z∗ − ¶∗) TU¶∗UY WE∗ = −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  \− TU∆Z±∗UY WE∗^ = −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  \∆Z±∗Y ^
= −ß�Z∗ − ÝZ®∗ − ∆Z±∗ Þ  ∆Z±∗Y . 

(81) 
The derivatives of Sd,E³∗  and Sd,EÖ∗  with respect to t at constant s* are 

bUSd,E³∗UY eE∗ =  (−2Z�∗ no)Sc,E³∗ `�oE³∗ ��: = −2Z�∗ noSd,E³∗ = bUSd,E³∗UY e8 
(82) 
and 

bUSd,EÖ∗UY eE∗  =  (−2Z®∗ no)Sc,EÖ∗ `�oEÖ∗ ��: = −2Z®∗ noSd,EÖ∗ = bUSd,EÖ∗UY e8 , 
(83) 
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respectively. 
 
Using Equation 64 to express c, and applying Equations 78 to 83, yields the same result for 5676:9E∗  
as that obtained in Equation 76. A comparison of Equations 69 and 76 shows that 5676:98 differs 
from 5676:9E∗  solely with respect to the Dirac delta functions. In 5676:98 (Equation 69), the Dirac delta 
functions that contribute to the peaks and valleys of q(s*,t) and e(s*,t) are multiplied by either Z®∗  
or Z�∗ . In 5676:9E∗  (Equation 76), there is no Dirac delta function that would contribute to the peaks 
and valleys of q(s*,t), but the Dirac delta functions that contribute to the peaks and valleys of 
e(s*,t) are multiplied by ∆Z±∗ . As ∆Z±∗ = Z®∗ − Z�∗  (Equation 51), 5676:9E∗  makes a higher magnitude 
contribution to the peaks and valleys of e(s*,t) than 5676:98 does. 
 
Calculating g(s*) in terms of step functions 
 
Subtracting e(s*,t) (Equations 62 and 63) from Equation 58 yields 

_(Z∗, Y) = TUSE∗UZ∗ W: − `(Z∗, Y) =
���
��bUSE³∗UZ∗ e: − `(Z�∗ , Y) 

bUSEÖ∗UZ∗ e: − `(Z®∗ , Y)���
��

= Õ−Sc,E³∗ `�oE³∗ ��:ß�V − V�`E³∗ ��: noYV�`E³∗ ��:Sc,EÖ∗ `�oEÖ∗ ��:ß�V − V�`EÖ∗ ��: noYV�`EÖ∗ ��: × = Ó_(Z�∗ , Y) _(Z®∗ , Y)Ô . 
(84) 
 
Subtracting e(s*,t) from Equation 67 yields 
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_(Z∗, Y) = TUSE∗UZ∗ W: − `(Z∗, Y) =
���
��bUSE³∗UZ∗ e: − `(Z�∗ , Y) 

bUSEÖ∗UZ∗ e: − `(Z®∗ , Y)���
�� = Õ−Sc,E³∗ `�oE³∗ ��:ß(Z∗ − Z�∗  )Sc,EÖ∗ `�oEÖ∗ ��:ß(Z∗ − Z®∗  ) × = Ó_(Z�∗ , Y) _(Z®∗ , Y)Ô . 

(85) 
 
Multiplying q(s*,t) (Equations 60 and 61) by `oE∗��:, which, in Equations 84 or 85, involves 
multiplying the expressions for q(Z�∗ ,t) and q(Z®∗ ,t) by `oE³∗ ��: and `oEÖ∗ ��:, respectively, 
normalises for the radial dilution/concentration effect, and thus yields 

a(Z∗ ) = _(Z∗, Y)`oE±∗ ��: = �_(Z�∗ , Y) `oE³∗ ��: _(Z®∗ , Y)`oEÖ∗ ��: � = Õ−Sc,E³∗ ß�V − V�`E³∗ ��: noYV�`E³∗ ��:Sc,EÖ∗ ß�V − V�`EÖ∗ ��: noYV�`EÖ∗ ��: ×
= Ó−Sc,E³∗Sc,EÖ∗ Ô ß(V − VE∗  )noYVE∗  , 

(86) 
from Equation 84, and 

a(Z∗ ) = _(Z∗, Y)`oE±∗ ��: = �_(Z�∗ , Y) `oE³∗ ��: _(Z®∗ , Y)`oEÖ∗ ��: � = �−Sc,E³∗ ß(Z∗ − Z�∗  )Sc,EÖ∗ ß(Z∗ − Z®∗  ) �, 
(87) 
from Equation 85.  
 
Applying finite-difference approximations of 5676:9E∗  and 5676:98 to experimental data 
 
Equations 69 and 76 can be applied to experimental data by using the finite-difference 
approximations, ∆7Ã∆:  and ∆7g∗∆: , in place of 5676:98 and 5676:9E∗ , respectively, as was done in Figures 18 
to 20. Subtracting ∆7g∗∆:  from ∆7Ã∆: , and multiplying by ∆:∆EÃ∗ (where ∆Z8∗ is given by Equation 43), yields 
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∆7∆E∗ (Equation 42), which is the finite form of 5 676E∗9:. The time difference, Δt = t - [t - Δt], is that 
between the later and the earlier data sets employed. 
 
As noted with respect to Figures 19 and 20, ∆7g∗∆:  contributes little to the peaks and valleys of 
q(s*,t), but is critical to identifying the redundant peaks and valleys that must be assigned to 
e(s*,t). Furthermore, away from the regions of ∆7g∗∆:  and ∆7Ã∆:  that contribute to the peaks and valleys 
of e(s*,t) and q(s*,t), the subtraction of ∆7g∗∆:  from ∆7Ã∆:  cancels any effects of radial 
dilution/concentration that Δcs* and Δcr accumulate during Δt. (The expectations arising from a 
comparison of Equations 69 and 76 are consistent with the results shown in Figures 19 to 20.) 
 
The difference between the RI noise at times [t - Δt] and t should be the same for ∆S8 and ∆SE∗. 
Thus, any RI noise should be eliminated when ∆7g∗∆:  is subtracted from ∆7Ã∆:  in the course of 
calculating ∆7∆E∗ (Equation 42). (Provided that transport is slow relative to Δt, ó∆S8ô and ó∆SE∗ô, 
which are the mean values of ∆S8 and ∆SE∗, respectively, can be fairly good approximations of the 
RI-noise difference within a given Δt.) 
 
Time-independent (TI) noise is eliminated in the course of calculating ∆S8. As noted with respect 
to Equation 41 and Figure 20, however, TI noise is not eliminated in the course of calculating Δcs*. 
Thus, ∆7∆E∗ will ultimately include − ∆:∆EÃ∗ times whatever TI noise is present in ∆7g∗∆: . (See Equations 42 
to 44.) 
 
The iterative approach of Stafford (1992) calculates TI-noise-free approximations of ∆7g∗∆:  from ∆7Ã∆: . 
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That iterative approach will not generate the ∆7g∗∆:  values needed to identify redundant peaks, 
however, and thus will not work for analytical systems in which s* ranges above and below zero. 
 
In ls-g(s*) analysis, TI noise can be fit (Schuck & Rossmanith, 2000), but as discussed with 
respect to Figure 30, information regarding solutes that are not neutrally buoyant may be lost as 
a result. Fitting both the RI and TI noise results in a loss of information regarding neutrally 
buoyant solutes only, which is not such a high price to pay, as it is known that the vicinity of s* = 
0 is where that information would be. As will be shown (Figures 48 and 50), however, misleading 
results can be obtained if too few data sets from too short a short time period are included in 
ls-g(s*) analysis. Thus, if g(s*) results are sought for an extremely narrow time range, alternative 
methods of eliminating TI noise are needed. One such method, which requires that there be data 
consisting of just TI noise plus an offset in the signal, is presented next. 
 
Using data from early time-points to estimate the TI noise in ∆7g∗∆: : Background 
 
The TI noise in any given set of ∆7g∗∆:  data can be determined from data obtained before any 
significant concentration gradients have developed, or, if the supernatant and pellet regions are 
on no interest, from data obtained after the solute concentration has been almost totally depleted 
between those regions. For data collected from a given system over time, subtracting the earliest 
data set from all subsequent data sets should eliminate the TI noise from the later data, at a cost 
of introducing an offset in the signal. As such an offset is a form of RI noise, it will be eliminated in 
the course of calculating ∆7∆E∗. 
 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

121 

 

Although c, or the signal that corresponds to c, is a continuous function of r and t, data are only 
collected at discrete time-points and radial positions. Let ca represent the signal as a function of r 
at the earliest time, ta, that data were collected. Let cm represent the signal as a function of r at 
time tm, where tm is much greater than ta. Let cn represent the signal as a function of r at time tn, 
where tn is also much greater than ta, but only slightly greater than tm. It is assumed that data are 
collected at the same radial positions at each time. (Any time-dependence in the alignment of the 
detection system with the chemical system, such as that due to rotor deformation with changing 
angular velocity, in ignored.) It is further assumed that the meniscus and base lie within r1 ≤ rh ≤ 
rN, where h is the index of the N radial positions at which data are collected at each time. 
(Assuming that the index increases with increasing radial position, r1 < rm and rb < rN.) 
 
To evaluate ∆7Ã∆: , the c-versus-r (or signal-versus-r) data at two time-points are used without prior 
transformation or interpolation. At each common rh value, the concentration at the earlier time is 
subtracted from the concentration at the later time to obtain Δcr. Dividing Δcr by Δt yields ∆7Ã∆: , 
where Δt is the time-difference between the two data sets. 
 
To evaluate ∆7g∗∆: , the c-versus-r (or signal-versus-r) data at two time-points must first be 
transformed to c-versus-s* (or signal-versus-s*) data. Next, at least one of the transformed data 
sets must be interpolated, so that both transformed data sets share common values of s*. 
Following the transformations and interpolations, at each common s* value, the concentration at 
the earlier time is subtracted from the concentration at the later time to obtain Δcs*. Dividing Δcs* 
by Δt yields ∆7g∗∆: , where Δt is the time-difference between the two data sets. 
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In the example presented here, the time-difference, Δt = Δtnm = tn - tm, is that which pertains to 
the two data sets, cn versus r and cm versus r. The corresponding concentration difference at 
constant r, Δcr = ∆[S¯�]8 = cn - cm, is that at each value of rh, which the two data sets share in 
common by default. The corresponding concentration difference at constant s*, Δcs* = ∆[S¯�]E∗, is 
that at each common s* value, and may equal cn - cm*, cn* - cm* or cn* - cm, where cn* and cm* are 
interpolated values of cn and cm, respectively. Division of each ∆[S¯�]8 by Δtnm yields ∆[7±�]Ã∆:±� = ∆7Ã∆:  
as a function of the common values of rh. Division of each ∆[S¯�]E∗ by Δtnm yields ∆[7±�]g∗∆:±� = ∆7g∗∆:  as 
a function of the common values of s*. 
 
Let Z�∗  represent s* at tm, and let Z∗̄  represent s* at tn, where both Z�∗  and Z∗̄  are only calculated at 
r = rh. By Equation 27, 

Z�∗ = 1noY� �x TVÁVcW 
(88) 
and 

Z∗̄ = 1noY¯ �x TVÁVcW . 
(89) 
As tn > tm, at a given value of rh and a given value of r0, |Z∗̄| < |Z�∗ |, and as the c-versus-r data are 
far from continuous, there are unlikely to be values of Z∗̄  and Z�∗  in common. Thus, at a given 
value of Z∗̄  (where data exists for cn), there will usually be no data for cm. Likewise, at a given 
value of Z�∗  (where data exists for cm), there will usually be no data for cn. To calculate ∆[S¯�]E∗, 
which requires that the concentrations at two different times have s* values in common, at least 
one of the transformed data sets, cm versus Z�∗  or cn versus Z∗̄ , must be interpolated. 
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Using the convention employed for the preceding examples (Figures 8 to 20), the earlier 
transformed data set, cm versus Z�∗ , is interpolated, and the later transformed data set, cn versus 
Z∗̄ , is used as is. The interpolated values of cm are denoted as cm*. As a function of s*, the cm* values 
are found at the corresponding, interpolated values of Z�∗ , which are denoted as Z�∗∗ . As a function 
of r, the cm* values are found at the corresponding, interpolated values of rh, which are denoted as 
rm*. By Equation 27, 

Z�∗∗ = 1noY� �x TV�∗Vc W , 
(90) 
and as the Z�∗∗  values must equal the existing values of Z ∗̄  , the right-hand sides of Equations 89 
and 90 can be equated, and solved for rm* to obtain 

V�∗ = �VÁ:�Vc∆:±�  i:±  . 
(91) 
(For rm* = r1, rh = r2, tm = tn and Δtnm = t2 – t1, Equations 91 and 41 are identical.) In combination, 
Equations 27, 88, 90 and 91 yield 

Z�∗∗ = Z�∗  �x 5V�∗Vc 9�x 5VÁVc9 = 1noY� �x TV�∗Vc W =
���
�� 1noY� �x õ\VÁV�^:�:± ö ≤ 0

1noY� �x õ\VÁV�^:�:± ö ≥ 0���
�� . 

(92) 
 
The concentration difference as a function of Z�∗∗  is ∆[S¯�]E∗ = S¯ − S�∗, where cn is that at Z∗̄ , cm* 
is that at Z�∗∗ , and Z�∗∗ = Z∗̄ . Division of each ∆[S¯�]E∗ by Δtnm yields ∆[7±�]g∗∆:±�  as a function of either 
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Z∗̄  or Z�∗∗ . Although any function of Z∗̄  could also be considered a function of Z�∗∗ , Z∗̄  is regarded as 
the independent variable here, in part to be consistent with the convention adopted previously 
(Figures 11 to 13, and Figures 18 to 22), and in part because Z∗̄  is a less ambiguous function of a 
time than Z�∗∗  is. (As defined in Equation 89, Z∗̄  is a function of tn, rh, r0 and ω. As defined in 
Equation 92, Z�∗∗  is a function of tm, tn, rh, r0 and ω. Thus, Z∗̄  depends on just one time, while Z�∗∗  
depends on two times.) 
 
At any given time, the RI noise at all values of rh, and at all s* values derived from those values of 
rh (Equations 88 and 89), must be equal. Furthermore, at any given time, the RI noise at all 
interpolated radial positions (Equation 91), and at all interpolated s* values (Equation 92) 
derived from those interpolated radial positions, must be equal to the RI noise at all values of rh 
from which the interpolated radial positions arise. The RI noise at times ta, tm and tn is denoted as 
RIa, RIm and RIn, respectively. The contribution of RI noise to either ∆[S¯�]8 or ∆[S¯�]E∗ is thus 

∆sm̄ � = sm̄ − sm�, 
(93) 
where ΔRInm is a function of tm and tn. 
 
At any given radial position, the TI noise at times ta, tm and tn must be equal. Let TIh denote the TI 
noise at a given value of rh, and let TIm* denote the interpolated TI noise at a given value of rm*. 
The contribution of TI noise to ∆[S¯�]E∗ is thus 

∆÷mÁ�∗ = ÷mÁ − ÷m�∗, 
(94) 
where ΔTIhm* is a function of rh and rm*, which, in turn (Equation 91), is a function of tm, tn and rh. 
(With respect to its usage, however, ΔTIhm* is treated as a function of Z∗̄  (Equation 89).) The 
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contribution of TI noise to ∆[S¯�]8 is 
∆÷mÁÁ = ÷mÁ − ÷mÁ = 0. 

(95) 
In the limit as tm approaches tn, the set of all rm* approaches the set of all rh, at which point, ΔTIhm* 
approaches ΔTIhh. 
 
According to Equations 93 and 94, the net contribution of the RI and TI noise to ∆[S¯�]E∗ is 
ΔRInm + ΔTIhm*. Substituting the ca versus r data for both the cm versus r and cn versus r data in 
Equations 93 and 94, but keeping tm and tn as their respective time-points, results in ∆[S¯�→««]E∗ 
= ΔTIhm* + ΔRInm→aa, where the subscript, xv → ��, indicates that ca values have replaced both 
the cn values and the cm values used to calculate ∆[S¯�]E∗. 
 
With respect to Z∗̄ , ∆[S¯�→««]E∗ = S« − S«∗, where ca is that at Z∗̄ , ca* is that at Z�∗∗ , and Z�∗∗ = Z∗̄ . 
With respect to radial position, ∆[S¯�→««]E∗ = S« − S«∗, where ca is that at rh, ca* is that at rm*, and 
by Equation 91, V�∗ = �VÁ:�Vc∆:±�  Â�± . The ca* values must be interpolated. The ca values are used as 
is. 
 
As the contribution of RI noise to ∆[S¯�→««]E∗ is 

∆sm̄ �→«« = sm« − sm« = 0, 
(96) 
∆[S¯�→««]E∗= ΔTIhm*. Thus, the difference, ∆[S¯�]E∗ − ∆[S¯�→««]E∗, should be free of TI noise, but 
should have the same RI noise as ∆[S¯�]E∗, which, in turn, has the same RI noise as ∆[S¯�]8 . (With 
respect to either ∆[S¯�]E∗ or ∆[S¯�]8 , the contribution of RI noise is ΔRInm (Equation 93).) 
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Incorporating ∆[S¯�→««]E∗ (a special case of Equation 94) into Equation 42 corrects ∆7∆E∗ for TI-
noise. So-corrected, Equation 42 becomes 

∆S∆Z∗ = b∆[S¯�]8∆Y¯� − ∆[S¯�]E∗ − ∆[S¯�→««]E∗∆Y¯� e ∆Y¯�∆Z8∗  , 
(97) 
where ∆:±�∆EÃ∗  is an approximation of 5 6:6E∗98 and, on the basis of Equation 27 in general, and 
Equations 89 and 90 in particular, 

∆Z8∗ = Z∗̄ − Z�∗∗ = 1no \ 1Y¯ − 1Y�^ �x TVÁVcW = \ −∆Y¯�noY�Y¯^ �x TVÁVcW 
(98) 
is the change in s* from time tm to time tn at radial position rh. Each of the two possible values of 
r0 is discussed with respect to Equation 27. (Substituting t1 for tm and t2 for tn in Equation 98 
yields Equation 43.) 
 
signal difference ∆[S¯�]8 ∆[S¯�]E∗ ∆[S¯�→««]E∗ 
RI noise difference ∆sm̄ � = sm̄ − sm� ∆sm̄ � = sm̄ − sm� ∆sm̄ �→«« = sm« − sm« = 0 
TI noise difference ∆÷mÁÁ = ÷mÁ − ÷mÁ = 0 ∆÷mÁ�∗ = ÷mÁ − ÷m�∗ ∆÷mÁ�∗ = ÷mÁ − ÷m�∗ 
Table 1. The contribution of the RI and TI noise to ∆[S¯�]8 , ∆[S¯�]E∗ and ∆[S¯�→««]E∗. (See 
Equations 93 to 96.) 
 
The net contribution of the RI and TI noise (Table 1) to the difference,  
∆[S¯�]8 − (∆[S¯�]E∗ − ∆[S¯�→««]E∗), is zero. Thus, ∆7∆E∗ should be free of either RI or TI noise. 
Contributions from random noise will remain present in ∆7∆E∗, no matter how it is evaluated, 
however. 
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Using data from early time-points to estimate the TI noise in ∆7g∗∆: : Illustrative example 
 
The figures that follow apply the method described in the preceding section to data that, but for 
the addition of RI and TI noise, and the retention of data in the supernatant and pellet regions, 
are identical to the data shown in Figure 15. 
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 Figure 40. Plots of cm versus r = rh at tm = 2910 s (───), and cn versus r = rh at tn = 2916 s 
(───). With the RI and TI noise subtracted, and the supernatant and pellet regions excluded, 
these same data would be identical to the data shown in Figure 15. Also shown is ca versus r = rh 
at ta = 0 s (∙∙∙∙∙∙∙∙), which is an ideal initial time-point at which data are available from 
simulations, but is an admittedly inaccessible time-point with respect to experimental data. The 
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RI noise at ta = 0 s, tm = 2910 s and tn = 2916 s, respectively, is RIa = -5.4 g/ml, RIm = -5.5 g/ml 
and RIn = 6.5 g/ml. The TI noise is equal to ca - RIa. 
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 Figure 41. Plots of cm versus s* = Z�∗  at tm = 2910 s (───), and cn versus s* = Z∗̄  at tn = 2916 s 
(───). With the RI and TI noise subtracted, and the supernatant and pellet regions excluded, 
these same data would be identical to the data shown in Figure 17. Also shown are ca versus s* = 
Z�∗  at tm = 2910 s (∙∙∙∙∙∙∙∙) and ca versus s* = Z∗̄  at tn = 2916 s (∙∙∙∙∙∙∙∙), which do not quite overlap. 
The RI noise at ta = 0 s, tm = 2910 s and tn = 2916 s, respectively, is RIa = -5.4 g/ml, RIm = -5.5 
g/ml and RIn = 6.5 g/ml. 
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 Figure 42. Plots of ∆[7±�]Ã∆:±�  versus r = rh (───) and ∆[7±�→¤¤]Ã∆:±�  versus r = rh (∙∙∙∙∙∙∙∙), where ∆Y¯� = 
2916 s – 2910 s. Except for an offset of ∆øù±�∆:±� = io °/�¨ú E , and excluding the supernatant and pellet 
regions, ∆[7±�]Ã∆:±�  would be identical to ∆7Ã∆: , which is shown in Figure 16 as a function of r = rh, and in 
Figure 19 as a function of s* = Z∗̄ . The RI noise at tm = 2910 s and tn = 2916 s, respectively, is RIm 
= -5.5 g/ml and RIn = 6.5 g/ml. Thus, ΔRInm = RIn - RIm = 12.0 g/ml, and ∆øù±�∆:±�  = 2.0 g/ml. 
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Figure 43. Plots of ∆[7±�]g∗∆:±�  versus s* = Z∗̄  (───) and ∆[7±�→¤¤]g∗∆:±�  versus s* = Z∗̄  (∙∙∙∙∙∙∙∙), where ∆Y¯� 
= 2916 s – 2910 s. Compare these data, which show the consequences of RI noise (resulting in an 
offset of ∆øù±�∆:±� = io °/�¨ú E ) and TI noise (resulting in a fairly complicated oscillatory pattern), to ∆7g∗∆:  
in Figure 18. The RI noise at tm = 2910 s and tn = 2916 s, respectively, is RIm = -5.5 g/ml and RIn 
= 6.5 g/ml. Thus, ΔRInm = RIn - RIm = 12.0 g/ml, and ∆øù±�∆:±�  = 2.0 [g/ml]/s. As ΔRInm→aa = RIa – RIa 
= 0, ∆øù±�→¤¤∆:±�  = 0 [g/ml]/s. 
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Figure 44. Plots of ∆[7±�]Ã∆:±�  versus s* = Z∗̄  (───) and ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  versus s* = Z∗̄  (───), 
where ∆Y¯� = 2916 s – 2910 s. Compare these data, which show the consequences of RI noise 
(resulting in an offset of ∆øù±�∆:±� = io °/�¨ú E ), to ∆7Ã∆:  and ∆7g∗∆:  in Figure 19. 
 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

132 

 

-1.5x10
-12

-1.0x10
-12

-5.0x10
-13 0.0 5.0x10

-13
1.0x10

-12
1.5x10

-12

-0.00015

-0.00010

-0.00005

0.00000

0.00005

0.00010

∆
[c

n
m
] r/∆

t n
m
 -

 {
∆

[c
n
m
] s

*/∆
t n

m
 -

 ∆
[c

n
m

->
a
a
] s

*/∆
t n

m
} 

([
g
/m

l]
/s

)

s* (s)

 
Figure 45. Plot of ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  versus s* = Z∗̄  (───), where ∆Y¯� = 2916 s – 2910 
s. Except for points near s* = 0 and the extrema in s*, these data are identical to ∆7Ã∆: − ∆7g∗∆:  in 
Figure 19. Table 1 shows the contribution of the RI and TI noise to ∆[S¯�]8 , ∆[S¯�]E∗ and 
∆[S¯�→««]E∗. The net contribution of the RI and TI noise to the difference, 
∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±� , is zero. 
 
Applying Equations 97 and 98 to ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  (Figure 45) yields ∆7∆E∗, which, away 
from s* = 0 and the extrema in s*, is identical to ∆7∆E∗ in Figure 20, and elsewhere closely resembles 
5 676E∗9: at t = 2910 s (Figure 25). Applying Equations 29 and 7 to determine q(s*,t) from ∆7∆E∗, and 
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applying Equation 32 to normalise q(s*,t) for the effects of radial dilution/concentration, yields 
g(s*), which, away from s* = 0 and the extrema in s*, is identical to g(s*) in Figure 21, and 
elsewhere closely resembles g(s*) at t = 2910 s (Figure 26). 
 
Calculating g(s*) from the TI-noise corrected application of Equation 3 
 
Figure 46 presents |g(s*)| from ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  (Figure 45), along with |g(s*)| 
calculated from a TI-noise corrected application of Equation 3, 

T USUZ∗W: = bU[S¯ − S«]UV e: T UVUZ∗W:, 
(99) 
where, in 5 686E∗9: = VnoY (Equation 28), t = tn = 2916 s. The subtraction, cn – ca, yields a TI-noise 
corrected concentration, and the RI-noise that remains in cn – ca is eliminated when the 
derivative, 56[7±�7¤]68 9:, is taken. (Figure 40 shows cn versus r and ca versus r.) Figure 46 also 
includes the previously shown (Figure 26) results for |g(s*)| obtained by the application of 
Equation 3 to noise-free data (Figure 23) for which t = tm = 2910 s. The results in all three cases 
are practically indistinguishable. 
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 Figure 46. Plots of |g(s*)| versus s* at t = 2910 s (───) from Figure 26b, |g(s*)| versus s* at t = 
2916 s (- - - - -) from ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  (Figure 45), and |g(s*)| versus s* at t = 2916 s 
(∙∙∙∙∙∙∙∙) from 5 676E∗9: = 56[7±�7¤]68 9: 5 686E∗9: (Equation 99), which is a TI-noise corrected application of 
Equation 3. Data are shown on a logarithmic scale above the |g(s*)|-axis break. 
 
|g(s*)| and ls-g(s*) results for data that include RI and TI noise 
 
In this section, the results of |g(s*)| and ls-g(s*) analysis of data that include noise are compared 
with the results of such analysis with noise-free data. With respect to the ls-g(s*) analysis, the 
effect of the number and time span of the data sets is also examined. In the first set of 
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comparisons, the ls-g(s*) analysis is applied to just three sets of data from an extremely short (12 
s) period, while in the second set of comparisons, the ls-g(s*) analysis is applied to five sets of 
data from a substantially longer (900 s) period. 
 
Each ls-g(s*) analysis shown in Figure 48 was applied to three data sets, each consisting of signal 
versus r or c versus r data at times t = 2904 s, t = tm = 2910 s, or t = tn = 2916 s. The data that 
included RI and TI noise are shown in Figure 47. The corresponding noise-free data are those at t 
= 2910 s ± 6 s, for which the results of previous ls-g(s*) analyses are shown in Figures 28 and 
30. 
 
For the ls-g(s*) analyses presented in Figure 48, the positions of the radial extrema of the system 
were set to the known positions of the meniscus ( rm = 6 cm) and the base (rb = 7.2 cm); the 
lower and upper radial limits of analysis were set at rm + 0.02 cm and rb – 0.02 cm, respectively; a 
range of -12 Svedberg to 12 Svedberg, with a resolution of 240 points, was used; the meniscus 
position was not fit; and the confidence level was set to 0. Both the RI and TI noise were fit, 
except in one of the analyses of the noise-free data, in which neither were fit. (The ls-g(s*) 
analyses shown in Figures 28 and 30 did not include TI noise in any fit, but were otherwise 
identical to the analyses shown in Figure 48.) 
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 Figure 47. The previously shown (Figure 40) plots of cm versus r = rh at tm = 2910 s (───), and 
cn versus r = rh at tn = 2916 s (───). Also shown is cl versus r = rh at tl = 2904 s (───). The RI 
noise at tl = 2904 s, tm = 2910 s and tn = 2916 s, respectively, is RIl = -2.5 g/ml, RIm = -5.5 g/ml 
and RIn = 6.5 g/ml. As in Figure 40, the TI noise is equal to ca - RIa. 
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 Figure 48. A plots of the previously shown (Figure 46) |g(s*)| versus s* results at t = 2916 s 
(───) from ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  (Figure 45). Also shown are the ls-g(s*) versus s* results, 
obtained with the RI and TI noise fit, for the three data sets (t = 2910 s ± 6 s) of Figure 47 
(───). Additionally, the ls-g(s*) versus s* results, obtained with (∙∙∙∙∙∙∙∙) and without (- - - - -) the 
RI and TI noise fit, are shown for the equivalent noise-free data. (The noise-free data at the 
central time-point of t = 2910 s are found in Figure 23.) Data are shown on a logarithmic scale 
above the |g(s*)|-axis break. To put ls-g(s*) versus s* and |g(s*)| versus s* on the same scale, the 
s* values returned by SEDFIT were multiplied by (10-13 s/Svedberg), and the ls-g(s*) values were 
multiplied by (1 Svedberg/10-13 s). 
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In Figure 48, the ls-g(s*) results obtained with the noise-free data, and without fitting the RI or TI 
noise, closely resemble the corresponding |g(s*)| results. There is a substantial difference 
between any of the other corresponding ls-g(s*) and |g(s*)| results in Figure 48, however. The 
divergent results seem due to the shortness of the period (12 s) spanned by the three data sets 
used in the ls-g(s*) analyses. When that time-span is extended to 900 s, using five sets of either 
the noise-free data shown in Figure 23, or the corresponding data that include RI and TI noise 
(Figure 49), the ls-g(s*) results become much less distinguishable from one of the corresponding 
|g(s*)| results (Figure 50). Thus, the likelihood of obtaining misleading results from ls-g(s*) 
analysis seems to be low, except when too few data sets from too short a short time period are 
included in the analysis. 
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 Figure 49. Plots of signal versus r = rh at t = tθ = 2010 s (───), t = tι = 2310 s (───), t = tκ = 
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2460 s (───) and t = tλ = 2610 s (───), plus the previously shown (Figures 40 and 47) plot of 
cm versus r = rh at t = tm = 2910 s (───). The RI noise at tθ = 2010 s, tι = 2310 s, tκ = 2460 s, tλ = 
2610 s and tm = 2910 s, respectively, is RIθ = 2.00 g/ml, RIι = 3.25 g/ml, RIκ = 3.50 g/ml, RIλ = 
2.50 g/ml and RIm = -5.50 g/ml. As in Figures 40 and 47, the TI noise is equal to ca - RIa. 
 
Each of the two ls-g(s*) analyses shown in Figure 50 was applied to five data sets. In one analysis, 
the data were those shown in Figure 49, and included RI and TI noise. The corresponding noise-
free data are those shown in Figure 23. The ls-g(s*) analyses presented in Figure 50 were 
conducted largely as described for those of Figure 48. Briefly, the positions of the radial extrema 
of the system were set to the known positions of the meniscus ( rm = 6 cm) and the base (rb = 7.2 
cm); the lower and upper radial limits of analysis were set at rm + 0.02 cm and rb – 0.02 cm, 
respectively; a range of -12 Svedberg to 12 Svedberg, with a resolution of 240 points, was used; 
the meniscus position was not fit; the confidence level was set to 0; and both the RI and TI noise 
were fit. 
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 Figure 50. A plot of the previously shown (Figure 46) |g(s*)| versus s* results at t = 2916 s 
(───) from ∆[7±�]Ã∆:±� − ∆[7±�]g∗�∆[7±�→¤¤]g∗∆:±�  (Figure 45). Also shown are the ls-g(s*) versus s* results, 
obtained with the RI and TI noise fit, for the five data sets (t = 2010 s to t = 2910 s) of Figure 49 
(∙∙∙∙∙∙∙∙). Additionally, the ls-g(s*) versus s* results, obtained with the RI and TI noise fit, are 
shown for the equivalent noise-free data (───) of Figure 23. Data are shown on a logarithmic 
scale above the |g(s*)|-axis break. To put ls-g(s*) versus s* and |g(s*)| versus s* on the same 
scale, the s* values returned by SEDFIT were multiplied by (10-13 s/Svedberg), and the ls-g(s*) 
values were multiplied by (1 Svedberg/10-13 s). 
 
g(v*) analysis of data obtained by membrane-confined electrophoresis 
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Membrane-confined electrophoresis (MCE) is similar enough to AUC that the data from both 
methods can be analysed in a similar fashion. The data collected during MCE include the values of 
a dependent variable related to the total mass concentration, c, of all solutes, and the 
corresponding independent variables of time, t, and spatial position, ξ. Data regarding electrical, 
temperature and other parameters that are likely to affect 5676�9:  and 5676:9�  are also recorded. The 
proportionality between an experimentally measured signal and a specific solute concentration 
may vary from one solute to another. For example, it is often the case that some solutes, such as 
buffer salts, are completely undetectable, or nearly so. 
 
MCE differs from AUC with respect to the geometry and boundary characteristics of the system. 
In MCE, the sample occupies an open system with rectangular geometry. An electrical current, i, 
flows through semipermeable membranes that are in contact with dialysate at the top and the 
base of the system. Sufficiently large molecules, including macro-ions, remain between the 
membranes. Thus, MCE is an electrical analogue of AUC. Details regarding MCE can be found 
elsewhere (Laue et al., 1989), including the reference (Moody, 2011b) relied upon here. 
 
Characteristics of v* and g(v*) 
 
The apparent product of the electric field, E, and the electrophoretic mobility coefficient, u, is 
defined as the apparent electrophoretic velocity coefficient, v*. The distribution function of the 
electrophoretic velocity coefficient is g(v*). (Due to the concentration-dependent characteristics 
of both E and u, it is only practical to work with their product when defining the apparent 
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parameter that is analogous to s* in AUC. As will be discussed, after analysis, v* can be divided by 
an estimate of E, and g(v*) can be multiplied by the same estimate of E, in an effort to normalise 
the results for electric field strength.) 
 
Each value of v* is a combined transformation of a value of ξ, a value of t, and a reference 
position. By definition, v* is equal to the electrophoretic velocity coefficient of a 
thermodynamically ideal solute that, in the limit of zero diffusion, would exhibit a hyper-sharp 
boundary in its concentration at a specific spatial position and a specific time. There are two 
possible orientations of that hyper-sharp boundary, one of which would arise from a negatively-
directed solute for which v* is less than zero, the other of which would arise from a positively-
directed solute for which v* is greater than zero. Thus, each value of v* describes the behaviour of 
a step function that can represent a hypothetical solute concentration in an all-or-none fashion. 
 
Henceforth, a hypothetical solute is defined as an imaginary, thermodynamically ideal, non-
diffusing solute characterised by a v* value and a constant of concentration. Of the two oppositely 
signed v* values that correspond to a transition in a hypothetical solute concentration at spatial 
position ξ and time t, the one having v* < 0 corresponds to the transition for which the 
hypothetical solute concentration at time t is zero at all spatial positions greater than ξ, and the 
one having v* > 0 corresponds to the transition for which the hypothetical solute concentration 
at time t is zero at all spatial positions less than ξ. 
 
A hypothetical solute can be said to exhibit a zone of depletion where its concentration is zero, 
and a plateau region within which its concentration is greater than zero and independent of 
spatial position. The concentration of a hypothetical solute in its plateau region is, by virtue of 
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being independent of spatial position, called its plateau concentration. In MCE, the plateau 
concentration of a hypothetical solute is equal to a value that, due to the rectangular geometry of 
the system, is independent of time. 
 
To within some approximation, g(v*) analysis reveals the relationship between v* values and the 
initial concentrations of the corresponding, hypothetical solutes. With the possible exceptions of 
the extreme time points, the number of v* values is infinite at any given time. Thus, within a g(v*) 
distribution, for any given hypothetical solute characterised by a randomly chosen v* value, the 
apparent initial concentration is most likely zero, or of a magnitude attributable to noise. 
 
Given a function to convert between ξ and v* at any given time (Equation 117), the independent 
variables of MCE data can be transformed from t and ξ to t and v*. It is then possible to plot c 
versus v* at time t, but in doing so, the value of c at any single spatial position at that time will 
map to the two values of v* that are calculated for that spatial position and time. Likewise, 
following such a transformation, it is straightforward to obtain the derivative, 5 676¬∗9:, which is 
single-valued when viewed as a function of v*, but is double-valued when viewed as a function of 
ξ. 
 
At any given time, where �5676�9:� is greater than zero at some value of ξ, G5 676¬∗9:G will be greater 
than zero at the two values of v* calculated from that value of ξ, but the sign of 5 676¬∗9: will match 
the sign of just one of those v* values. The v* value where the signs of 5 676¬∗9: and v* match will be 
the v* value that matches the orientation of 5676�9:  at the corresponding ξ value. Each 5 676¬∗9: that 
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matches the sign of v* is deemed essential with respect to calculating g(v*). Each 5 676¬∗9: that is 
opposite in sign to v* is deemed redundant, and a value of zero is used in its place when 
calculating g(v*). At any given time, half of the nonzero 5 676¬∗9: values will be deemed essential, 
and half will be deemed redundant. 
 
Nullifying the redundant nonzero values of 5 676¬∗9: yields g(v*). The integral of |g(v*)| with 
respect to v* yields the cumulative distribution function, G(v*), which equates to a weakly time-
dependent measure of the concentration of all solutes for which the apparent electrophoretic 
velocity coefficient is less than or equal to v*, but greater than or equal to the minimum possible 
value (Equation 124) of v* at some specific time. 
 
Derivation of g(v*) 
 
By an approach analogous to Bridgeman’s (1942) derivation of g(s*), the derivation of g(v*) can 
start with the total differential of c with respect to ξ and t, 

 RS = TUSU�W: R� + TUSUYW� RY . 
(100) 
At constant t, this equation reduces to 

RS: = TUSU�W: R�. 
(101) 
Thus, where c is defined as a function of ξ and t, the partial derivative of c with respect to v* at 
constant t, obtained through division by an infinitesimally small change in v* at constant t, is 
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T USU�∗W: = TUSU�W: T U�U�∗W:. 
(102) 
By an approach analogous to Stafford’s (1992, 1994, 2000) derivation of g(s*), the derivation of 
g(v*) can also start with the total differential of c with respect to v* and t, 

 RS = T USU�∗W: R�∗ + TUSUYW¬∗ RY , 
(103) 
from which, through division by an infinitesimally small change in t at constant ξ, the partial 
derivative of c with respect to t at constant ξ,  

TUSUYW� = T USU�∗W: TU�∗UY W� + TUSUYW¬∗ , 
(104) 
is obtained. Solving Equation 104 for 5 676¬∗9: yields 

T USU�∗W: = �TUSUYW� − TUSUYW¬∗� T UYU�∗W� . 
(105) 
Equation 105 can be applied using finite differences in c, t and v*. In the limit as the finite time-
difference approaches zero, Equation 105 and Equation 102 yield identical results. 
 
Of the four time-dependent effects described for AUC, one, the radial dilution/concentration 
effect, has no equivalent in MCE. The remaining three time-dependent effects exhibited by 5 676E∗9: 
in AUC, however, do have equivalents that are exhibited by 5 676¬∗9: in MCE. The least subtle of 
these is the time dependence of the positions (in terms of v*) and magnitudes of redundant 
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nonzero values of 5 676¬∗9:. As with g(s*) analysis, this is the one time dependence that can be 
unambiguously eliminated, which is accomplished simply by subtracting the redundant nonzero 
values from 5 676¬∗9:. Doing so leaves, q(v*,t), which is the nonredundant derivative of c with 
respect to v* at constant t. As there is no spatial dilution/concentration effect with time in MCE, 

a(�∗) = _(�∗, Y) = T USU�∗W: − `(�∗, Y) , 
(106) 
where e(v*,t) is equal 5 676¬∗9: wherever and whenever 5 676¬∗9:is redundant, but is equal to zero at 
all other v* and t. 
 
Just as redundant nonzero values of 5 676E∗9: are found where s* reflects the location but not the 
sign of 567689:, redundant nonzero values of 5 676¬∗9: are found where v* reflects the location but not 
the sign of 5676�9: . Furthermore, given that 5 676¬∗9: = 5676�9: 5 6�6¬∗9:  (Equation 102) and given that, as 
will be shown, 5 6�6¬∗9: cannot be less than zero (Equation 120), the signs of 5676�9:  and 5 676¬∗9: must 
be the same, or 5676�9: and 5 676¬∗9: must both equal zero. Thus, 5 676¬∗9: is essential if the signs of v* 
and 5 676¬∗9: are the same, and 5 676¬∗9: is redundant if the signs of v* and 5676¬9: are opposite. This 
distinction provides the basis for a test parameter, 

�¬∗,: = �∗ T USU�∗W:  . 
(107) 
If Qv*,t > 0, 5 676¬∗9: is essential and e(v*,t) is equated to zero, but if Qv*,t ≤ 0, e(v*,t) is equated to 
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5 676¬∗9:. 
 
Nonzero diffusion coefficients and concentration-dependent transport affect g(v*) and g(s*) 
identically, and thus render g(v*) at least somewhat dependent on time. 
 
Nonzero diffusion coefficients cause the peaks and valleys of 5 676¬∗9: and g(v*)  to sharpen with 
time. As the range of v* occupied by a transition region of G(v*) coincides with the breadth of a 
corresponding peak or valley of g(v*), nonzero diffusion coefficients also cause transition regions 
of G(v*) to sharpen with time. The effect is due to the fact that the range of v* (Equations 124 and 
125) narrows in proportion to i: , while the range of ξ encompassed by a diffusing boundary 
region broadens in proportion to ij: in the simplest, concentration-independent case (van Holde, 
1985). (In terms of c as a function of ξ and t, a boundary region can be defined as any region 
within ξ where �5676�9:� ≠ 0 at time t.) 
 
In the simplest case, compared to a concentration-independent system, concentration-dependent 
transport simply adds a time-dependence to the weight-average positions of the peaks and 
valleys of g(v*). Concentration-dependent transport may also skew the shape of a peak or valley, 
and a chemical reaction can render the area of a peak or valley time-dependent. Where 
concentration-dependent transport results in the MCE-equivalent of Johnston-Ogston effects, the 
number, position and magnitude of peaks and valleys in g(v*) can differ from that which would 
be seen otherwise. Any effect of concentration-dependent transport on g(v*) results in a 
corresponding effect on G(v*). 
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Equations of continuity and mass flow 
 
The continuity equation for electrophoresis in a system with rectangular geometry can be 
written as 

TUSUYW� = − TUmU�W: , 
(108) 
where I is the total mass flow of all solutes. 
 
In terms of D and u, the gradient-average diffusion and weight-average electrophoretic mobility 
coefficients, respectively, for all solute components, 

m = ��S − p TUSU�W: , 
(109)  
where the electric field, E, is a function of concentration gradients, electrical current, cross-
sectional area and conductivity, which, in turn, is a function of the concentration, valence, 
electrophoretic mobility coefficient and diffusion coefficient of each solute (Equations H5 and H6 
of Moody, 2011b). The diffusion coefficient (Equation A21, Moody, 2011b) of each solute and the 
electrophoretic mobility coefficient (Equation A22, Moody, 2011b) of each solute are dependent 
on the concentration of each solute, and the latter coefficient includes a term that is proportional 
to the solvent velocity (in the system frame of reference) divided by E. 
 
The continuity equation in the limit as 5676�9:  approaches zero 
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In regions of the system where 5676�9: = 0, which condition can only persist if 56	
6� 9: = 0 wherever 
5676�9:  = 0, Equations 108 and 109 lead to 

limT676�W�→c TUSUYW� = limT676�W�→c �−S TU��U� W: − �� TUSU�W:� = 0. 
(110) 
To describe this condition in detail, let the lowest and highest spatial positions of a region where 
Equation 110 holds be denoted as ξmin and ξmax, respectively, where, in general, ξmin and ξmax are 
time-dependent. Within a time-dependent region where Equation 110 holds, which is to say, 
within ξmin ≤ ξ ≤ ξmax, c = cp, where cp is the time-independent plateau concentration. The plateau 
concentration is the total concentration of all solutes within ξmin ≤ ξ ≤ ξmax, and its time 
independence stems from the rectangular geometry of the system. For as long as the plateau 
region exists, 567h6� 9: = 0, and wherever it exists, 567h6: 9�  = 0. As c = cp in a plateau region, it can be 
stated that, in general, 5676:9�  = 0 wherever 5676�9:  = 0. 
 
In MCE, the initial time, t0, can be equated to the time at which the electrical current starts to 
flow. For the systems considered here, the current is assumed to be constant from t0 on, and t0 is 
equated to 0. It is further assumed that, at t0, at all ξ, c = c0, where c0 is the initial total 
concentration of all solutes. Thus, cp = c0 at t0, at which time, ξmin = ξm and ξmax = ξb, where ξm = 0 
is the spatial position of the upper membrane (analogous to the meniscus position in AUC), and 
ξb is the spatial position of the lower membrane (analogous to the base of the system in AUC). 
 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

150 

 

The equation of mass flow in the limit as 5676�9:  approaches zero 
 
In the limit as 5676�9:  approaches 0, Equation 109 reduces to 

limT676�W�→c m = S�� . 
(111) 
 
The mass flow, I, is equal to cv, where, in the system frame of reference, v is the weight-average 
velocity of all solute components at t and ξ. Expressing v as ���:  , and dividing Equation 111 by c, 
results in 

limT676�W�→c � = R�RY = �� . 
(112) 
Wherever 5676�9:  = 0, 56	
6� 9: = 0, in which case, if the functional form of the t-dependence of uE 
were known, Equation 112 might be solved by separation of variables and integration. Such a 
solution would take the form of 

z R��¥
�f = z ��RY:¥

:f  , 
(113) 
where ξ0 would be the extreme radial position away from which a hypothetical solute with an 
electrophoretic velocity of uE would travel, and at time tv, ξv would be the radial position of the 
transition in the concentration of that solute in the limit as its diffusion coefficient approached 
zero. 
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As 56	
6� 9: = 0 wherever 5676�9:  = 0, and as 5676:9�  = 0 wherever 5676�9: = 0, it follows that 56	
6: 9�  = 0 
wherever 5676�9:  = 0. Given that Equation 113 applies to a plateau region, uE can be factored out of 
the integral on the right-hand side, and the equation can be evaluated. Outside of a plateau 
region, however, c will depend on time, and thus uE will usually depend on time. To find a 
solution that applies anywhere in the system, uE is redefined in such a way that the entire system 
can be described in terms of hypothetical solutes that exhibit neither diffusion nor a dependence 
on concentration. 
 
As the relationship between uE and t is complicated, Equation 112 is solved using the same 
approach applied to the similar problems presented by Equations 13 and 20. The c-dependent 
parameter, uE, in Equation 112 is replaced with an infinite number of c-independent, and 
therefore t-independent, v* values, resulting in an infinite number of integrals, each of which 
applies to a hypothetical solute, and each of which is given by 

z R��¥∗
�f = �∗ z RY:¥∗

:f ,  
(114) 
where ξ0 is the extreme radial position (ξm for v* > 0, and ξb for v* < 0) away from which a 
hypothetical solute of electrophoretic velocity coefficient v* travels, ξv* is the spatial position of 
the transition in the concentration of that solute in the zero-diffusion limit, and tv* is the time that 
corresponds to the location of that transition at ξv*. 
 
For each such hypothetical solute, ξ0 = ξb if v* < 0, and ξ0 = ξm if v* > 0. At time tv*, at spatial 
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position ξv*, each such solute exhibits a transition in concentration from 0 to cp,v*, where cp,v* is 
the time-independent plateau concentration of that solute. Thus, at any time, cp,v* = c0,v*, where 
c0,v* is the initial concentration of the hypothetical solute throughout the system. (In AUC, the 
plateau concentration of each hypothetical solute has a time-dependence described by Equation 
74 or 75.) At any given time, the concentration of such a solute could be described by a step 
function equal to 0 from ξ0 to ξv*, and equal to cp,v* from ξv* to the extremity at the opposite end of 
the system from ξ0. (The extremity at the opposite end of the system from ξ0 is ξm if ξ0 = ξb, or at 
ξb if ξ0 = ξm.) 
 
The right-hand side of Equation 114 evaluates to v*tv*, and the left-hand of Equation 114 
evaluates to ξv* - ξ0. Solving for ξv* yields 

�¬∗ = �c + �∗Y¬∗ , 
(115) 
which describes the boundary position (the transition point of the corresponding step function) 
that would be observed for a purely hypothetical solute characterised by an electrophoretic 
velocity coefficient of v*, in the limit as D* (the solute’s diffusion coefficient) approached zero.  
 
If an analytic solution of Equations 113 existed, it would only apply to a plateau region. In 
contrast, Equation 115, which is the analytic solution of Equation 114, can be applied to the 
entire system. Thus, a description of the whole system is gained at the remarkably low cost of 
having to cast that description in terms of an infinite set of imaginary, nondiffusing, 
concentration-independent solutes. 
 
Equation 110 shows that cp,v* = c0,v* as long as the plateau region of which cp,v* is a part persists. 
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On that basis, and on the basis of Equation 115, the relationship between the plateau 
concentration and the boundary position of a hypothetical solute of electrophoretic velocity 
coefficient v*, in the limit as D* approaches zero, can be described by 

S¬∗ = å 0 �Y Ó� < �¬∗ = �� + �∗Y¬∗  ��V �∗ > 0� > �¬∗ = �� + �∗Y¬∗  ��V �∗ < 0 Ô
Sd,¬∗ = Sc,¬∗  �Y Ó� ≥ �¬∗ = �� + �∗Y¬∗  ��V �∗ ≥ 0� ≤ �¬∗ = �� + �∗Y¬∗  ��V �∗ ≤ 0 Ôæ . 

(116) 
Equation 116 describes cv* as a step function with a time-independent height of cp,v* = c0,v*, and a 
time-dependent transition at ξ0 + v*tv* (Equation 115), where ξ0 = ξm for v* > 0, and ξ0 = ξb for v* 
< 0. Over time, for v* ≠ 0, the region in which cv* = 0 expands from ξ0 to ξ0 + v*tv*. While cv* 
depends on ξ and t, cp,v* is time-independent and equal to c0,v* at all ξ > ξ0 + v*tv* (Equation 115). 
Thus, in general, 567h,¥∗6� 9: = 0 and 567h,¥∗6: 9�  = 0. As there is an infinite number of v* values, at any 
given time, there is an infinite number of step functions, each given by Equation 116. The sum of 
all such step functions at a given time yields c as a function of r at that time. 
 
Transforming the independent variables from ξ and t to v* and t 
 
Solving Equation 115 for v* yields 

�∗ = �¬∗ − �cY¬∗  . 
(117) 
 
For each time, t, the set of all spatial positions, ξ, is now equated to the set of boundary positions, 
ξv*, needed to transform the independent variable ξ to the independent variable v*. Replacing ξv* 
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and tv* of Equation 115 with ξ and t, respectively, results in 
� = �c + �∗Y , 

(118) 
which, solved for v*, yields 

�∗ = � − �cY = å� − ��Y ≤ 0
� − ��Y ≥ 0æ . 

(119) 
At t > 0, v* is a function of t, ξ and ξ0, such that v* < 0 for ξ0 > ξ, v* = 0 for ξ0 = ξ, v* > 0 for ξ0 < ξ, 
and for a given value of ξ - ξ0, |v*| decreases as t increases. As ξm and ξb are the two possible 
values of ξ0, at a given t > 0, for each spatial position ξ within ξm ≤ ξ ≤ ξb, there are two values of 
v*. For each spatial position ξ within ξm < ξ < ξb, at a given t > 0, there is one negative and one 
positive value of v*. For ξ = ξm, one v* equals zero and the other is less than zero at any t > 0. For 
ξ = ξb, one v* equals zero and the other is greater than zero at any t > 0. At a given t > 0, the 
minimum value of v* occurs where ξ = ξm and ξ0 = ξb, while the maximum value of v* occurs 
where ξ = ξb and ξ0 = ξm. At t0, v* is undefined for all ξ. As can be seen by equating − 5����: 9 to 
����:  and solving for ξ, there is one spatial position, � = ��®��o , for which, at any given time, the 
positive v* equals the absolute value of the negative v*. 
 
Determining q(v*,t) from 5 676¬∗9:, and expressing g(v*) in terms of q(v*,t), ξ and t 
 
Differentiating Equation 118 with respect to v* at constant t yields 

T U�U�∗W: = Y. 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

155 

 

(120) 
As t cannot be less than zero, Equation 102, which states that 5 676¬∗9: = 5676�9: 5 6�6¬∗9:, shows, in 
combination with Equation 120, that the signs of 5 676¬∗9: and 5676�9:  must be the same at all t > 0. 
 
The relationship between q(v*,t) and \5676:9� − 5676:9¬∗^ of Equation 105 becomes clear once 5 6:6¬∗9�  
has been expressed in terms of v* and t. Solving Equation 118 for t and differentiating with 
respect to v* at constant ξ yields 

T UYU�∗W� = − � − �c�∗o = − Y�∗ . 
(121) 
As t cannot be less than zero, Equation 121 shows that the signs of 5 6:6¬∗9�  and v* are always 
opposite. Given this, and given the relationship (Equation 107) between v* and essential nonzero 
values of 5 676¬∗9:, it follows that the sign of any essential nonzero value of 5 676¬∗9:and the sign of 
5 6:6¬∗9�  must be opposite at any time after t0. Thus, in Equation 105, which states that 5 676¬∗9: =
\5676:9� − 5676:9¬∗^ 5 6:6¬∗9� , the difference, \5676:9� − 5676:9¬∗^, must be less than zero for all essential 
nonzero values of 5 676¬∗9:, and must be greater than zero for all redundant nonzero values of 
5 676¬∗9:. 
 
Concentration change across a transition point (ξv*), and concentration within a v* range 
 
A real boundary may encompass multiple species’ boundaries, each of which is broadened by 
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diffusion and affected by the concentration of each species present. In g(v*) analysis, such a 
boundary is modeled as a set of hyper-sharp transitions in concentration, where each transition 
corresponds to a hypothetical solute characterised by a concentration-independent velocity 
coefficient of v*, an initial concentration of c0,v*, and a diffusion coefficient that approaches zero. 
 
At a given time, t, the difference in the detectable concentration between two adjacent plateau 
regions separated by a boundary is Δce, where the subscript e indicates that e(v*,t), which are the 
redundant values of 5 676¬∗9:, are included in the calculation of the quantity. In contrast to its AUC 
counterpart (Δct of Equation 33), Δce is a time-independent quantity, provided that it is 
calculated for a region in which 5 676¬∗9: is unaffected by overlapping boundaries of oppositely 
directed solutes. For a boundary located between �¬�¢~�£∗  and �¬¤��¥¢∗ , 

∆S§ = z T USU�∗W: R�∗¬¤��¥¢∗
¬�¢~�£∗ , 

(122) 
where ��§¨©ª∗  and �«�©¬§∗  are calculated from �¬�¢~�£∗  and �¬¤��¥¢∗ , respectively, using Equation 119. 
In the plateau regions just below ��§¨©ª∗  and just above �«�©¬§∗ , 5 676¬∗9: = 0. If all v* are less than 
zero within ��§¨©ª∗  ≤ v* ≤ �«�©¬§∗ , as would be the case for �¬�¢~�£∗  = ξmax of the plateau for which c 
is higher, Δce will be less than zero. If all v* are greater than zero within ��§¨©ª∗  ≤ v* ≤ �«�©¬§∗ , as 
would be the case for �¬¤��¥¢∗  = ξmin of the plateau for which c is higher, Δce will be greater than 
zero. (Respectively, ξmin and ξmax are the lowest and highest spatial positions of a region where 
Equation 110 holds.) 
 
The cumulative concentration of detectable solutes that can be characterised by v* within ��§¨©ª∗  



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

157 

 

≤ v* ≤ �«�©¬§∗  is 
∆S = z |a(�∗)|R�∗¬¤��¥¢∗

¬�¢~�£∗ . 
(123) 
The result cannot be less than zero. If ��§¨©ª∗  ≤ v* ≤ �«�©¬§∗  encompasses an entire peak or valley 
of g(v*), Δc should, in the absence of overlapping boundaries of oppositely directed and 
detectable solutes, be time-independent for concentration-independent systems, as well as for 
concentration-dependent systems in which the solute concentrations are not altered by chemical 
reactions. 
 
The range of integration in Equation 123 can be extended to the extrema of v*. The extrema in v* 
are inversely proportional to t. At time t, 

��­∗ = �� − ��Y   
(124)  
is the minimum value of v*, and 

�®­∗ = �� − ��Y  , 
(125)  
is the maximum value of v*. As noted with respect to Equation 119, each spatial position gives 
rise to two v* values. At ξ = ξm, v* = ��­∗  for ξ0 = ξb (Equation 124) and v* = 0 for ξ0 = ξm. 
Likewise, at ξ = ξb, v* = �®­∗  for ξ0 = ξm (Equation 125) and v* = 0 for ξ0 = ξb. With the integration 
limits of Equation 123 set to ��§¨©ª∗  = ��­∗  and �«�©¬§∗  = �®­∗ , Δc is equal to the apparent value of c0, 
which is to say, the apparent initial concentration of all solutes that contribute to 5 676¬∗9:, and thus 
contribute to g(v*). 
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The range of integration in Equation 122 can also be extended to the extrema of v*, and with the 
addition of an offset, can be used to reconstruct c as a function of v* and t. At any given time, t, the 
concentration at v* = �¯§°∗  < 0 is given by 

S = S�­ + z T USU�∗W: R�∗¬±¢²∗
¬³´∗ , 

(126a) 
and the concentration at v* = �d©E∗  > 0 is given by 

S = S�­ + z T USU�∗W: R�∗c
¬³´∗ + z T USU�∗W: R�∗¬h�g∗

c = Sc® + z T USU�∗W: R�∗¬h�g∗
c , 

(126b) 
where, at time t, S�­ is equal to c corresponding to v*in the limit as ��­∗  is approached from above, 
and Sc® is equal to c corresponding to v*in the limit as 0 is approached from above. The offsets, 
S�­ and Sc®, should be equal. 
 
Experimentally obtained data can be complicated by optical artefacts near ξm and ξb, as well as by 
inaccuracies wherever the solute concentration is outside the suitable range of the detection 
system, and over time, unsuitably high solute concentrations are likely to develop toward ξm or 
ξb. Outside of some well behaved simulations, then, when using Equation 126, the practical range 
of v* will not extend to either of the theoretical extrema, ��­∗  or �®­∗ . In general, to accommodate 
such limitations, the offset of Equation 126a will equal c corresponding to v*in the limit as its 
lowest practical negative value is approached from above, and the offset of Equation 126b will 
equal c corresponding to v*in the limit as its lowest practical positive value is approached from 
above. 
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The cumulative distribution function, 

µ(�∗) = z |a(�∗)|R�∗¬∗
¬³´∗ , 

(127) 
permits Equation 123 to be rewritten as Δc = G(�«�©¬§∗ ) – G(��§¨©ª∗ ). The cumulative distribution 
function is a measure of the concentration of all solutes for which the apparent electrophoretic 
velocity coefficient is less than or equal to v*, but greater than or equal to ��­∗  at some specific 
time. Nonzero diffusion coefficients and concentration-dependent transport render G(v*) at least 
somewhat dependent on time. Overlapping boundaries of oppositely directed solutes can render 
G(v*) highly dependent on time. 
 
The step function that describes cv* 
 
As previously discussed, at any given time, the sum of an infinite number of step functions can be 
used to describe the total solute concentration at all spatial positions. (Regions of supernatant 
and pellet accumulation can be included in such an approach, even though such regions are likely 
to be excluded in any g(v*) analysis.) At a given time, t, at a given spatial position, ξ, cv* (Equation 
116), the concentration of a hypothetical solute characterised by v*, can be expressed as 

S¬∗ = �Sd,¬[1 − Ò(� − �¬∗)] ��V �∗ ≤ 0Sd,¬∗Ò(� − �¬∗) ��V �∗ ≥ 0 � , 
(128) 
where 

Ò(� − �¬∗) = Ó1 ��V � − �¬∗ ≥ 00 ��V � − �¬∗ < 0Ô  
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(129) 
is the Heaviside step function as it applies to ξ – ξv*. At time t, ξv* is the boundary position of a 
hypothetical solute characterised by v* in the zero diffusion limit, and that boundary position is 
characterised by a hyper-sharp change in the solute concentration, cv*, from 0 to its plateau value, 
cp,v*. As cp,v* is time-independent (Equations 110 and 116), from t0 on, cp,v* = c0,v* at all ξ where cv* 
does not equal zero. Due to the time dependence of ξv* (Equation 115), however, cv* (Equation 
116) is time-dependent. 
 
The sum of all cv* at a given spatial position and time is equal to c at that position and time. As v* 
is continuous within ��­∗  ≤ v* ≤ �®­∗  (Equations 124 and 125), there is an infinite number of cv* 
values at a given position and time. There are also two oppositely directed hypothetical solutes 
that would each exhibit the same boundary position, ξv*, at time t. At a given time, t, such solutes 
are related through 

�¬∗ = � �¬³∗ = �� + ��∗ Y 
�¬Ö∗ = �� + �®∗ Y � , 

(130) 
where the negatively directed hypothetical solute is characterised by 

��∗ = �¬³∗ − ��Y < 0, 
(131) 
the positively directed hypothetical solute is characterised by 

�®∗ = �¬Ö∗ − ��Y > 0,  
(132)  
and the difference between the two v* values for which �¬Ö∗  =�¬³∗  = ξv* is 
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∆�±∗ = �®∗ − ��∗ = ��¬Ö∗ − �¬³∗   + (�� − ��)Y = �� − ��Y  . 
(133)  
(The equation describing ∆�±∗  can also be obtained by equating the two expressions for ξv* in 
Equation 130, and solving for �®∗ − ��∗ .) 
 
As ��¬³∗ − ��  and ��¬Ö∗ − ��  are proportional to t, ��∗  and �®∗  are time-independent. As (�� − ��) 
is a constant, ∆�±∗  is inversely proportional to t. At any given time, then, 56¬³∗6: 9� = 0 and 
56¬Ö∗6: 9� = 0, but 56∆¬±∗6: 9� = − ∆¬±∗: . Any derivatives of �®∗ , ��∗  or ∆�±∗  at constant t are equal to zero. 
 
Given Equations 131 and 132, which describe the two oppositely signed v* values, ��∗  and �®∗ , that 
characterise the two hypothetical solutes with oppositely directed boundaries at �EÖ∗  = �E³∗  = ξv* at 
time t, Equation 128 can be rewritten as 

S¬∗ = Ó S¬³∗S¬Ö∗  Ô = �Sd,¬³∗ Ø1 − Ò�� − �¬³∗  ÙSd,¬Ö∗ Ò�� − �¬Ö∗   � = �Sd,¬³∗ [1 − Ò(� − [�� + ��∗ Y])]Sd,¬Ö∗ Ò(� − [�� + �®∗ Y]) �, 
(134) 
where, at any given time, S¬³∗  is the ξ-dependent concentration and Sd,¬³∗  is the ξ-independent 
plateau concentration of the hypothetical solute characterised by ��∗ , while S¬Ö∗  is the ξ-dependent 
concentration and Sd,¬Ö∗  is the ξ-independent plateau concentration of the hypothetical solute 
characterised by �®∗ . As Sd,¬³∗  and Sd,¬Ö∗  are t-independent, Sd,¬³∗ = Sc,¬³∗  and Sd,¬Ö∗ = Sc,¬Ö∗  at all times. 
Nevertheless, S¬³∗  and S¬Ö∗  are t-dependent by virtue of the t-dependence of �¬³∗  and �¬Ö∗ , 
respectively. 
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At a given spatial position, ξ, at a given time, t, the sum of all cv* as described by Equation 134 is 
equal to 

S = z RS¬³∗
7¥³∗ Úf

7¥³∗ Ú¥³´∗ + z RS¬Ö∗
7¥Ö∗ Ú¥Ö´∗

7¥Ö∗ Úf
= z [1 − Ò(� − [�� + ��∗ Y])]RSd,¬³∗

7¥³∗ Úf
7¥³∗ Ú¥³´∗ + z Ò(� − [�� + �®∗ Y])RSd,¬Ö∗

7¥Ö∗ Ú¥Ö´∗
7¥Ö∗ Úf  

(135a)  
in the continuous case, and 

S = Û S¬³∗
c

¬³∗ Ü¬³´∗ + Û S¬Ö∗
¬Ö´∗

¬Ö∗ Üc = Û Sd,¬³∗ [1 − Ò(� − [�� + ��∗ Y])]c
¬³∗ Ü¬³´∗ + Û Sd,¬Ö∗ Ò(� − [�� + �®∗ Y])¬Ö´∗

¬Ö∗ Üc  
(135b) 
in the discrete case. 
 
If Equation 135 were used to differentiate c with respect to v* at constant t, or if Equation 102 
were applied to Equation 135, only the essential values of 5 676¬∗9: would be obtained. To obtain 
the redundant values of 5 676¬∗9: from c described as a function of ξ and t, the step functions in 
Equation 134 must be written in terms of the v* values at which 5 676¬∗9: would be redundant. 
Doing so results in 

S¬∗ = Ó S¬³∗S¬Ö∗  Ô = �Sd,¬³∗ Ø1 − Ò�� − �¬³∗  ÙSd,¬Ö∗ Ò�� − �¬Ö∗   � = �Sd,¬³∗ Ø1 − Ò�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ ÙSd,¬Ö∗ Ò�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ  �. 
(136) 
 
At a given spatial position, ξ, at a given time, t, the sum of all cv* as described by Equation 136 is  
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S = z RS¬³∗
7¥³∗ Úf

7¥³∗ Ú¥³´∗ + z RS¬Ö∗
7¥Ö∗ Ú¥Ö´∗

7¥Ö∗ Úf
= z Ø1 − Ò�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ ÙRSd,¬³∗

7¥³∗ Úf
7¥³∗ Ú¥³´∗

+ z Ò�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ RSd,¬Ö∗
7¥Ö∗ Ú¥Ö´∗

7¥Ö∗ Úf  
(137a)  
in the continuous case, and 

S = Û S¬³∗
c

¬³∗ Ü¬³´∗ + Û S¬Ö∗
¬Ö´∗

¬Ö∗ Üc
= Û Sd,¬³∗ Ø1 − Ò�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ Ùc

¬³∗ Ü¬³´∗

+ Û Sd,¬Ö∗ Ò�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ ¬Ö´∗

¬Ö∗ Üc  
(137b) 
in the discrete case. 
 
Equations 135 and 137 both describe c as a function of ξ and t, and either can be used to 
determine 5676�9: , but both are needed to determine 5 676¬∗9:. The two expressions for 5676�9:  will be 
obtained first, and to obtain 5 676¬∗9:, Equation 102 will then be applied to both expressions for 
5676�9: . 
While cv* depends on ξ and t, cp,v* is time-independent and equal to c0,v* at all ξ > ξ0 + v*t 
(Equation 118). Thus, in general, 567h,¥∗6� 9: = 0 and 567h,¥∗6: 9�  = 0. 
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As Sd,¬³∗ = Sc,¬³∗  at all ξ where S¬³∗  does not equal zero, and Sd,¬Ö∗ = Sc,¬Ö∗  at all ξ where S¬Ö∗  does not 
equal zero, T67h,¥Ö∗6� W:= 0 and 567h,¥³∗6� 9: = 0. Thus, differentiating c with respect to ξ at constant t 
yields, using the discrete form of Equation 135 to express c, 

TUSU�W: = Û bUS¬³∗U� e:
c

¬³∗ Ü¬³´∗ + Û bUS¬Ö∗U� e:
EÖ´∗

¬Ö∗ Üc  = TUS¬∗U� W: =
���
��bUS¬³∗U� e: 

bUS¬Ö∗U� e:  ���
�� = �−Sd,¬³∗ ß�� − �¬³∗  Sd,¬Ö∗ ß�� − �¬Ö∗   �

= �−Sd,¬³∗ ß(� − [�� + ��∗ Y])Sd,¬Ö∗ ß(� − [�� + �®∗ Y]) �, 
(138a) 
or, using the discrete form of Equation 137 to express c, 

TUSU�W: = Û bUS¬³∗U� e:
c

¬³∗ Ü¬³´∗ + Û bUS¬Ö∗U� e:
¬Ö´∗

¬Ö∗ Üc  = TUS¬∗U� W: =
���
��bUS¬³∗U� e: 

bUS¬Ö∗U� e:  ���
�� = �−Sd,¬³∗ ß�� − �¬³∗  Sd,¬Ö∗ ß�� − �¬Ö∗   �

= �−Sd,¬³∗ ß�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ Sd,¬Ö∗ ß�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ  �, 
(138b) 
where, in either case, for ξv* = �¬Ö∗  or ξv* = �¬³∗ , 

ß(� − �¬∗) = bUÒ(� − �¬∗)U� e: = Ó∞ ��V � − �¬∗ = 00 ��V � − �¬∗ ≠ 0 Ô  
(139) 
is the Dirac delta function as it applies to ξ – ξv*. The sum of all 567¥∗6� 9:  at a given spatial position 
and time is equal to 5676�9:  at that position and time, and as with cv*, there is an infinite number of 
567¥∗6� 9:  values at a given spatial position and time. However, as δ(ξ – ξv*) = 0 except where ξ = ξv*, 
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at any time t, and at any position ξ, 5676�9:  is equal to just the two nonzero values of 567¥∗6� 9:  for 
which ξ = ξv*, those being 567¥³∗6� 9: and T67¥Ö∗6� W: . Hence, starting with either form of Equations 135 
or 137, 5676�9:  yields neither a summation nor an integral. 
 
Calculating 5 676¬∗9: from 5676�9:  
 
Applying Equation 102 to the sum of both results given by Equation 138 yields 

T USU�∗W: = TUSU�W: T U�U�∗W: = TUS¬∗U� W: Y =
���
��bUS¬³∗U� e: Y

bUS¬Ö∗U� e: Y���
�� = �−Sd,¬³∗ ß�� − �¬³∗  YSd,¬Ö∗ ß�� − �¬Ö∗  Y �

= �−Sd,¬³∗ Øß(� − [�� + ��∗ Y]) + ß�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ ÙY Sd,¬Ö∗ Øß(� − [�� + �®∗ Y]) + ß�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ ÙY �
= �−Sc,¬³∗ ß(� − [�� + ��∗ Y])Y − Sc,¬³∗ ß�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ Y Sc,¬Ö∗ ß(� − [�� + �®∗ Y])Y + Sc,¬Ö∗ ß�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ Y �, 

(140) 
where use has been made of the fact that Sd,¬³∗ = Sc,¬³∗  and Sd,¬Ö∗ = Sc,¬Ö∗ . 
 
The properties of the Dirac delta function are such that 

ß(�∗ − �∗ ) = bUÒ(�∗ − �∗)U�∗ e: = bUÒ(� − �¬)U� e: T U�U�∗W: = ß(� − �¬)Y. 
(141) 
As applied to c and 5 676¬∗9:, in both the Heaviside step function, H(v* – β*), and its Dirac delta 
function, δ(v* – β*), β* will be shown (Equations 146 and 149) to be one of the two values, �®∗  
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and ��∗ , that characterise the two hypothetical solutes with oppositely directed boundaries at �EÖ∗  
= �E³∗  = ξv* at time t (Equation 130). Thus, in Equation 140, 

−Sc,¬³∗ ß(� − [�� + ��∗ Y])Y = −Sc,¬³∗ ß(�∗ − ��∗ ) = _(��∗ , Y) , 
(142) 

Sc,¬Ö∗ ß(� − [�� + �®∗ Y])Y = Sc,¬Ö∗ ß(�∗ − �®∗ ) = _(�®∗ , Y), 
(143) 

−Sc,¬³∗ ß�� − Ø�� + Ý��∗ + ∆�±∗ ÞYÙ Y = −Sc,¬³∗ ß��∗ − Ý��∗ + ∆�±∗ Þ  = `(��∗ , Y) 
(144) 
and 

Sc,¬Ö∗ ß�� − Ø�� + Ý�®∗ − ∆�±∗ ÞYÙ Y = Sc,¬Ö∗ ß��∗ − Ý�®∗ − ∆�±∗ Þ  = `(�®∗ , Y). 
(145) 
In Equation 144, Ý��∗ + ∆�±∗ Þ is equal to the value of �®∗  that shares ξv* in common with ��∗ , such 
that ξv* = �� + Ý��∗ + ∆�±∗ ÞY = �� + ��∗ Y. In Equation 145, Ý�®∗ − ∆�±∗ Þ is equal to the value of ��∗  
that shares ξv* in common with �®∗ , such that ξv* = �� + Ý�®∗ − ∆�±∗ ÞY= �� + �®∗ Y. 
 
The step-function form of c as a function of v* and t 
 
For c expressed as a function of v* and t, cv* is the concentration of a hypothetical solute 
characterised by v*. In transforming the independent variables from ξ and t to v* and t, c at each 
spatial position ξ becomes equal to c at the two corresponding values of v* given by Equation 
119. At any given time, for c expressed as a function of v* and t, S¬³∗  is the v*-dependent 
concentration and Sd,¬³∗  is the plateau concentration of the hypothetical solute characterised by 
��∗ , while S¬Ö∗  is the v*-dependent concentration and Sd,¬Ö∗  is the plateau concentration of the 
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hypothetical solute characterised by �®∗ . As Sd,¬³∗  and Sd,¬Ö∗  are t-independent, Sd,¬³∗ = Sc,¬³∗  and 
Sd,¬Ö∗ = Sc,¬Ö∗  at all times. Nevertheless, S¬³∗  and S¬Ö∗ , as they appear in the equation describing c as a 
function of v* and t (Equation 146), are t-dependent by virtue of the t-dependence of v* 
(Equation 119) and ∆�±∗  (Equation 133). 
 
At a given apparent electrophoretic velocity coefficient, v*, at a given time, t, the sum of all cv* is 
equal to  

S = z RS¬³∗
7¥³∗ Úf

7¥³∗ Ú¥³´∗ + z RS¬Ö∗
7¥Ö∗ Ú¥Ö´∗

7¥Ö∗ Úf
= z Ý[1 − Ò(�∗ − ��∗ )] + Ø1 − Ò��∗ − Ý��∗ + ∆�±∗ Þ ÙÞ7¥³∗ Úf

7¥³∗ Ú¥³´∗ RSd,¬³∗

+ z ÝÒ(�∗ − �®∗ ) + Ò��∗ − Ý�®∗ − ∆�±∗ Þ Þ7¥Ö∗ Ú¥Ö´∗
7¥Ö∗ Úf RSd,¬Ö∗ , 

(146a)  
in the continuous case, and 
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S = Û S¬³∗
c

¬³∗ Ü¬³´∗ + Û S¬Ö∗
¬Ö´∗

¬Ö∗ Üc
= Û Sd,¬³∗ Ý[1 − Ò(�∗ − ��∗ )] + Ø1 − Ò��∗ − Ý��∗ + ∆�±∗ Þ ÙÞc

¬³∗ Ü¬³´∗

+ Û Sd,¬Ö∗ ÝÒ(�∗ − �®∗ ) + Ò��∗ − Ý�®∗ − ∆�±∗ Þ Þ¬Ö´∗

¬Ö∗ Üc
= Û Sc,¬³∗ [1 − Ò(�∗ − ��∗ )] + Û Sc,¬³∗ Ø1 − Ò��∗ − Ý��∗ + ∆�±∗ Þ Ùc

¬³∗ Ü¬³´∗
c

¬³∗ Ü¬³´∗

+ Û Sc,¬Ö∗ Ò(�∗ − �®∗ ) + Û Sc,¬Ö∗ Ò��∗ − Ý�®∗ − ∆�±∗ Þ ¬Ö´∗

¬Ö∗ Üc
¬Ö´∗

¬Ö∗ Üc , 
(146b) 
in the discrete case. The value of �®∗  that shares ξv* in common with ��∗  has been expressed as 
Ý��∗ + ∆�±∗ Þ in the integral with respect to S¬³∗  or the sum over all ��∗ . The value of ��∗  that shares 
ξv* in common with �®∗  has been expressed as Ý�®∗ − ∆�±∗ Þ in the integral with respect to S¬Ö∗  or the 
sum over all �®∗ . The integrals or sums in which [1 – H(v* – {��∗  + ∆�±∗ })] and H(v* – {�®∗  –  ∆�±∗ }) 
appear will give rise to the redundant values of 5 676¬∗9:, while the integrals or sums in which [1 – 
H(v* – ��∗)] and H(v* – �®∗ ) appear will give rise to the essential values of 5 676¬∗9:. 
 
The Heaviside step functions in Equation 146 are described by 

Ò(�∗ − �∗) = Ó1 ��V �∗ − �∗ ≥ 00 ��V�∗ − �∗ < 0Ô , 
(147) 
where β* may equal ��∗ , Ý��∗ + ∆�±∗ Þ, �®∗  or Ý��∗ − ∆�±∗ Þ. The corresponding Dirac delta function is 



g(s*) for s* within -∞ < s* < ∞, copyright May 11, 2012 (CIPO 1095598), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 
 

169 

 

given by 
bUÒ(�∗ − �∗)U�∗ e: bU(�∗ − �∗)U�∗ e: = bUÒ(�∗ − �∗)U�∗ e: \TU�∗U�∗W: − TU�∗U�∗W:^ = bUÒ(�∗ − �∗)U�∗ e:

= ß(�∗ − �∗) = Ó∞ ��V �∗ − �∗ = 00 ��V�∗ − �∗ ≠ 0 Ô , 
(148) 
where 56¬∗6¬∗9: = 1 and, for β* equal to ��∗ , Ý��∗ + ∆�±∗ Þ, �®∗  or Ý�®∗ − ∆�±∗ Þ, 56
∗6¬∗9: = 0. The 
relationship of δ(v* - β*) to δ(ξ - ξv*), is described by Equation 141. 
 
Applying Equation 102 to 567h,¥³∗6� 9: = 567f,¥³∗6� 9:  = 0 and T67h,¥Ö∗6� W:=T67f,¥Ö∗6� W:= 0 yields 567h,¥³∗6¬∗ 9: = 
567h,¥³∗6� 9: 5 6�6¬∗9: = 0 and T67h,¥Ö∗6¬∗ W:= T67h,¥Ö∗6� W: 5 6�6¬∗9: = 0, respectively. Thus, using the discrete form 
of Equation 146 to express c, 

T USU�∗W: = Û bUS¬³∗U�∗ e:
c

¬³∗ Ü¬³´∗ + Û bUS¬Ö∗U�∗ e:
¬Ö´∗

¬Ö∗ Üc = TUS¬∗U�∗ W: =
���
��bUS¬³∗U�∗ e: 

bUS¬Ö∗U�∗ e: ���
��

= �−Sd,¬³∗ Øß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ Ù Sd,¬Ö∗ Øß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ Ù �
= �−Sc,¬³∗ ß(�∗ − ��∗ ) − Sc,¬³∗ ß��∗ − Ý��∗ + ∆�±∗ Þ  Sc,¬Ö∗ ß(�∗ − �®∗ ) + Sc,¬Ö∗ ß��∗ − Ý�®∗ − ∆�±∗ Þ  � = Ó _(��∗ , Y) + `(��∗ , Y)_(�®∗ , Y) + `(�®∗ , Y) Ô
= _(�∗, Y) + `(�∗, Y), 

(149) 
where _(��∗ , Y) = −Sc,¬³∗ ß(�∗ − ��∗ ), _(�®∗ , Y) = Sc,¬Ö∗ ß(�∗ − �®∗ ), `(��∗ , Y) =  
−Sc,¬³∗ ß��∗ − Ý��∗ + ∆�±∗ Þ  and `(�®∗ , Y) = Sc,¬Ö∗ ß��∗ − Ý�®∗ − ∆�±∗ Þ . Equations 126 and 146 both 
describe c as a function of v* and t. Equation 149 describes the integrand of Equation 126. 
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Back-calculating 5676�9:  from 5 676¬∗9: 
 
Applying Equations 102 and 120 to Equation 149, and using Equations 119, 131, 132 and 133 to 
express v*, ��∗ , �®∗  and ∆�±∗ , respectively, in terms of t, ξ, ξb and ξm, yields 

T USU�∗W: = T USU�∗W: TU�∗U� W: = TUS¬∗U�∗ W:
1Y =

���
��bUS¬³∗U�∗ e:  1Y

bUS¬Ö∗U�∗ e:  1Y���
��

= å− Sc,¬³∗Y Øß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ Ù Sc,¬Ö∗Y Øß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ Ù æ

=
���
��− Sc,¬³∗Y �ß b� − ��Y − �¬³∗ − ��Y e + ß b� − ��Y − ��¬³∗ − ��Y + �� − ��Y �e� Sc,¬Ö∗Y �ß b� − ��Y − �¬Ö∗ − ��Y e + ß b� − ��Y − ��¬Ö∗ − ��Y − �� − ��Y �e� ���

��

=
���
��− Sc,¬³∗Y �ß b� − ��Y − �¬³∗ − ��Y e + ß b� − ��Y − �¬³∗ − ��Y e� Sc,¬Ö∗Y �ß b� − ��Y − �¬Ö∗ − ��Y e + ß b� − ��Y − �¬Ö∗ − ��Y e� ���

��

=
���
��− Sc,¬³∗Y �ß b� − �¬³∗Y e + ß b� − �¬³∗Y e� Sc,¬Ö∗Y �ß b� − �¬Ö∗Y e + ß b� − �¬Ö∗Y e� ���

�� = å _(��∗ , Y)Y + `(��∗ , Y)Y_(�®∗ , Y)Y + `(�®∗ , Y)Y  æ, 
(150) 
where, when expressing v* in terms of t, ξ and ξ0, ξ0 is equated to the only one if its two possible 
values, ξm or ξb, that can yield a nonzero result for the Dirac delta function in which it appears. 
The entire exercise is somewhat futile, however, as once v*, ��∗ , �®∗  and ∆�±∗  are expressed in 
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terms of t, ξ, ξb and ξm, information by which q(��∗ ,t) can be distinguished from e(��∗ ,t), or q(�®∗ ,t) 
can be distinguished from e(�®∗ ,t), is lost upon simplification. 
 
Expressing 5676:9¬∗  and 5676:9�  in terms of step functions 
 
Differentiating c with respect to t at constant ξ yields, using the discrete form of Equation 146 to 
express c, 

TUSUYW� = Û bUS¬³∗UY e
�

c
¬³∗ Ü¬³´∗ + Û bUS¬Ö∗UY e

�

¬Ö´∗

¬Ö∗ Üc

= Û
í
îîïbUSc,E³∗UY e

�
Ý[1 − Ò(�∗ − ��∗ )] + Ø1 − Ò��∗ − Ý��∗ + ∆�±∗ Þ ÙÞ +

Sc,EÖ∗ bUÝ[1 − Ò(�∗ − ��∗ )] + Ø1 − Ò��∗ − Ý��∗ + ∆�±∗ Þ ÙÞUY e
� ð

ññòc
¬³∗ Ü¬³´∗

+ Û
í
îîïbUSc,EÖ∗UY e

�
ÝÒ(�∗ − �®∗ ) + Ò��∗ − Ý�®∗ − ∆�±∗ Þ Þ +

Sc,EÖ∗ bUÝÒ(�∗ − �®∗ ) + Ò��∗ − Ý�®∗ − ∆�±∗ Þ ÞUY e
� ð

ññò¬Ö´∗

¬Ö∗ Üc

= Sc,E³∗ ��∗Y Øß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ Ù  
− Sc,EÖ∗ �®∗Y Øß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ Ù. 

(151) 
Equations 152 to 157, which follow, describe all the individual terms used to determine 5676:9� . 
 
At constant ξ, the time-derivatives of the Heaviside step functions of Equation 146 are given by 
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bUÒ(�∗ − �∗)UY e
�

= bUÒ(�∗ − �∗)U�∗ e
�

bU(�∗ − �∗)UY e
�

= ß(�∗ − �∗) �TU�∗UY W� − TU�∗UY W��
= ß(�∗ − �∗) �T− �∗Y W − TU�∗UY W�� = −ß(�∗ − �∗) ��∗Y + TU�∗UY W��
= −ß(�∗ − �∗) ��∗Y + TU�∗UY W�� 

(152) 
where 56¬∗6: 9�  is equal to the inverse of Equation 121, and where δ(v* – β*)v* can be equated to 
δ(v* - β*)β* on the basis of δ(v* – β*) being equal to zero for all v* ≠ β*. As in Equation 147, β* 
may equal ��∗ , Ý��∗ + ∆�±∗ Þ, �®∗  or Ý�®∗ − ∆�±∗ Þ. 
 
As ��∗  (Equation 131) and �®∗  (Equation 132) are time-independent, where β* equals ��∗  or �®∗ , 
56¬∗6: 9� = 0. As ∆�±∗  (Equation 133) is equal to a constant divided by t, however,  

TU�∗UY W� = − ∆�±∗Y  . 
(153) 
Thus, where β* equals Ý��∗ + ∆�±∗ Þ, 

−ß(�∗ − �∗) ��∗Y + TU�∗UY W�� = −ß��∗ − Ý��∗ + ∆�±∗ Þ  ���∗ + ∆�±∗Y + TU∆�±∗UY W��= −ß��∗ − Ý��∗ + ∆�±∗ Þ  \��∗ + ∆�±∗Y − ∆�±∗Y ^ = −ß��∗ − Ý��∗ + ∆�±∗ Þ  ��∗Y  . 
(154) 
Similarly, where β* equals Ý�®∗ − ∆�±∗ Þ, 

−ß(�∗ − �∗) ��∗Y + TU�∗UY W�� = −ß��∗ − Ý�®∗ − ∆�±∗ Þ  ��®∗ − ∆�±∗Y − TU∆�±∗UY W��= −ß��∗ − Ý�®∗ − ∆�±∗ Þ  \�®∗ − ∆�±∗Y + ∆�±∗Y ^ = −ß��∗ − Ý�®∗ − ∆�±∗ Þ  �®∗Y  . 
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(155) 
As Sc,¬³∗  and Sc,¬Ö∗  are time-independent, 

bUSc,¬³∗UY e
�

= 0 
(156) 
and 

bUSc,¬Ö∗UY e
�

 =  0. 
(157) 
 
Indirect determination of 5676:9¬∗  
 
Incorporating the expressions for 5 676¬∗9: (Equation 149), 5676:9�  (Equation 151) and 56¬∗6: 9�  (the 
inverse of Equation 121) in Equation 105, and solving for 5676:9¬∗ , results in 

TUSUYW¬∗ = TUSUYW� − T USU�∗W: TU�∗UY W�
= ÓSc,E³∗ ��∗Y Øß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ Ù  
− Sc,EÖ∗ �®∗Y Øß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ ÙÔ
−

���
�� Sc,¬³∗ ��∗Y \ß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ  T1 + ∆�±∗��∗ W^

−Sc,¬Ö∗ �®∗Y \ß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ  T1 − ∆�±∗�®∗ W^���
��

= å−Sc,¬³∗ ∆�±∗Y ß��∗ − Ý��∗ + ∆�±∗ Þ  
−Sc,¬Ö∗ ∆�±∗Y ß��∗ − Ý�®∗ − ∆�±∗ Þ  æ , 
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(158) 
where 

T USU�∗W: TU�∗UY W� =
���
��bUS¬³∗U�∗ e: TU�∗UY W�  

bUS¬Ö∗U�∗ e: TU�∗UY W�  ���
��

=
���
��−Sc,¬³∗ �ß(�∗ − ��∗ ) TU�∗UY W� + ß��∗ − Ý��∗ + ∆�±∗ Þ  TU�∗UY W��Sc,¬Ö∗ �ß(�∗ − �®∗ ) TU�∗UY W� + ß��∗ − Ý�®∗ − ∆�±∗ Þ  TU�∗UY W�� ���

��

= å−Sc,¬³∗ \ß(�∗ − ��∗ ) T− �∗Y W + ß��∗ − Ý��∗ + ∆�±∗ Þ  T− �∗Y W^
Sc,¬Ö∗ \ß(�∗ − �®∗ ) T− �∗Y W + ß��∗ − Ý�®∗ − ∆�±∗ Þ  T− �∗Y W^ æ

= å Sc,¬³∗ 1Y Øß(�∗ − ��∗ )�∗ + ß��∗ − Ý��∗ + ∆�±∗ Þ �∗Ù
−Sc,¬Ö∗ 1Y Øß(�∗ − �®∗ )�∗ + ß��∗ − Ý�®∗ − ∆�±∗ Þ �∗Ùæ

= å Sc,¬³∗ 1Y Øß(�∗ − ��∗ )��∗ + ß��∗ − Ý��∗ + ∆�±∗ Þ Ý��∗ + ∆�±∗ ÞÙ
−Sc,¬Ö∗ 1Y Øß(�∗ − �®∗ )�®∗ + ß��∗ − Ý�®∗ − ∆�±∗ Þ Ý�®∗ − ∆�±∗ ÞÙæ

=
���
�� Sc,¬³∗ ��∗Y \ß(�∗ − ��∗ ) + ß��∗ − Ý��∗ + ∆�±∗ Þ  T1 + ∆�±∗��∗ W^

−Sc,¬Ö∗ �®∗Y \ß(�∗ − �®∗ ) + ß��∗ − Ý�®∗ − ∆�±∗ Þ  T1 − ∆�±∗�®∗ W^���
��. 

(159) 
In Equation 159, the value of v* obtained from 56¬∗6: 9�  is equated to the only value of v* at which 
the Dirac delta function it multiplies is not equal to zero. 
 
Direct determination of 5676:9¬∗  
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At constant v*, the time-derivatives of the Heaviside step functions of Equation 146 are given by 

bUÒ(�∗ − �∗)UY e¬∗ = bUÒ(�∗ − �∗)UZ∗ e¬∗ bU(�∗ − �∗)UY e¬∗ = ß(Z∗ − ¶∗) \TU�∗UY W¬∗ − TU�∗UY W¬∗^
= ß(�∗ − �∗) \0 − TU�∗UY W¬∗^ = −ß(�∗ − �∗) TU�∗UY W¬∗  . 

(160) 
As in Equations 147 and 152, β* may equal ��∗ , Ý��∗ + ∆�±∗ Þ, �®∗  or Ý�®∗ − ∆�±∗ Þ. 
 
Again, as ��∗  (Equation 131) and �®∗  (Equation 132) are time-independent, where β* equals ��∗  or 
�®∗ , 56
∗6: 9¬∗ = 0. And again, as ∆�±∗  (Equation 133) is equal to a constant divided by t,  

TU∆�±∗UY W¬∗ = − ∆�±∗Y = TU∆�±∗UY W�  . 
(161) 
Thus, where β* equals Ý��∗ + ∆�±∗ Þ, 

= −ß(�∗ − �∗) TU�∗UY W¬∗ = −ß��∗ − Ý��∗ + ∆�±∗ Þ  TU∆�±∗UY WE∗ = −ß��∗ − Ý��∗ + ∆�±∗ Þ  \− ∆�±∗Y ^
= ß��∗ − Ý��∗ + ∆�±∗ Þ  ∆�±∗Y . 

(162) 
Similarly, where β* equals Ý�®∗ − ∆�±∗ Þ, 

−ß(�∗ − �∗) TU�∗UY W¬∗ = −ß��∗ − Ý�®∗ − ∆�±∗ Þ  \− TU∆�±∗UY WE∗^ = −ß��∗ − Ý�®∗ − ∆�±∗ Þ  \∆�±∗Y ^
= −ß��∗ − Ý�®∗ − ∆�±∗ Þ  ∆�±∗Y . 

(163) 
As Sc,¬³∗  and Sc,¬Ö∗  are time-independent, 
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bUSc,¬³∗UY e¬∗ = 0 
(164) 
and 

bUSc,¬Ö∗UY e¬∗ = 0 . 
(165) 
 
Using Equation 146 to express c, and applying Equations 160 to 165, yields the same result for 
5676:9¬∗  as that obtained in Equation 158. A comparison of Equations 151 and 158 shows that 5676:9�  
differs from 5676:9¬∗  solely with respect to the Dirac delta functions. In 5676:9�  (Equation 151), the 
Dirac delta functions that contribute to the peaks and valleys of q(v*,t) and e(v*,t) are multiplied 
by either �®∗  or ��∗ . In 5676:9¬∗ (Equation 158), there is no Dirac delta function that would 
contribute to the peaks and valleys of q(v*,t), but the Dirac delta functions that contribute to the 
peaks and valleys of e(v*,t) are multiplied by ∆�±∗ . As ∆�±∗ = �®∗ − ��∗  (Equation 133), 5676:9¬∗  
makes a higher magnitude contribution to the peaks and valleys of e(v*,t) than 5676:9�  does. 
 
Calculating g(v*) in terms of step functions 
 
Subtracting e(v*,t) (Equations 144 and 145) from Equation 140 yields 
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a(�∗ ) = _(�∗, Y) = TUS¬∗U�∗ W: − `(�∗, Y) =
���
��bUS¬³∗U�∗ e: − `(��∗ , Y) 

bUS¬Ö∗U�∗ e: − `(�®∗ , Y)���
�� = �−Sc,¬³∗ ß(� − [�� + ��∗ Y])Y Sc,¬Ö∗ ß(� − [�� + �®∗ Y])Y �

= Ó_(��∗ , Y) _(�®∗ , Y)Ô . 
(166) 
 
Subtracting e(v*,t) from Equation 149 yields 

a(�∗ ) = _(�∗, Y) = T USU�∗W: − `(�∗, Y) =
���
�� bUS¬³∗U�∗ e: − `(�, Y) 

bUS¬Ö∗U�∗ e:  − `(�®∗ , Y)���
�� = �−Sc,¬³∗ ß(�∗ − ��∗ ) Sc,¬Ö∗ ß(�∗ − �®∗ ) �

= Ó _(��∗ , Y)_(�®∗ , Y) Ô . 
(167) 
 
Normalising v* and g(v*) for electric field strength 
 
Given an estimate of the electric field, E, the apparent electrophoretic mobility coefficient can be 
calculated as 

�∗ = �∗
� , 

(168) 
which normalises v* for E, while the distribution function of the apparent electrophoretic 
mobility coefficient, 

a(�∗) = a(�∗)� 
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(169) 
normalises g(v*) for E. Estimating E is complicated by its dependence on many parameters, some 
of which can vary with spatial position and, prior to the system achieving steady state, are likely 
to vary with time. Nevertheless, given the current, i, the cross-sectional area of the system, A, and 
the conductivity of the solution κ, a first approximation of the electric field can be calculated as  

� ≃ w
�� . 

(170) 
 
Using Equations 168 to 170, g(u*) versus u* can be determined for data from a single system 
studied at multiple currents, where all conditions except current are the same during the 
collection of all data sets. Such a collection of data can be fit in a process that refines the 
estimated values of E at each current. Assuming, for example, that the peaks and valleys of g(u*) 
versus u* should superimpose, the value of E used to obtain g(u*) versus u* at each current can 
be adjusted until the best superimposition is achieved. The fact that E should approach zero as 
current approaches zero can be incorporated as a constraint imposed on the fit. 
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