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An irreversible thermodynamic description of membrane-confined electrophoresis (MCE)
applied to a solution of the time- and electrical-potential-space-dependent continuity

equation for MCE

Introduction

Irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962;
Katchalsky and Curran, 1965], also known as nonequilibrium thermodynamics, is a
theoretical framework that has been used to describe a variety of transport processes. The
theory is generally applicable to coupled flows in multi-component systems, and is applied
here to membrane-confined electrophoresis (MCE). (The cgs system is used to express
most parameters in MCE, and is the default system used here, though the mks system is

used for some parameters.)

Along with presenting the relevant theoretical context, this work presents a method of
simulation that is built on that which Claverie, Dreux and Cohen [1975] described in their
solution to the Lamm equation, but differs in several respects. To correctly implement their
concentration dependence, the transport coefficients are defined as spatially-independent
parameters. To correctly evaluate the concentration-dependent transport coefficients at the
time to be evaluated, the concentrations are calculated iteratively. By such an evaluation of
the concentration-dependent transport coefficients at both the time already evaluated and
the time being evaluated, the accuracy of each new set of concentrations is maximised.
Computational artefacts are reduced by first calculating all concentrations in one order,
then recalculating all concentrations in the opposite order, and averaging the results. The
time-and-distance-dependent continuity equation for the rectangular coordinate system of
MCE yields results of integration that are simpler than those obtained from the Lamm
equation, which is the time-and-radial-position-dependent continuity equation that
pertains to analytical ultracentrifugation [Moody, 2011]. Additionally, a simple coupled-

flow equation has been implemented.

The application of irreversible thermodynamics (Sections A, I and G) provides a proper
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description of molar flows in the system. Mass flows are calculated from the molar flows
(Section I), and these mass flows are used in the applicable continuity equation (Section A).
An integral, finite-element approach then yields a numerical solution to the continuity
equation (Sections B and C). The solution presented here is referred to as a “second
approximate solution,” to distinguish it from the type of approximate solution previously
obtained by similar finite-element approaches. The aim of all of these solutions is to
calculate solute concentrations throughout the system sequentially from one point in time

to the next.

The second approximate solution can be used non-iteratively, but is then expected to
gradually accumulate errors that, depending on the system, may become significant after
many time increments. An iterative application of the second approximate solution (Section
]) yields a general solution to the continuity equation. The time taken to calculate a set of
results with the iterative approach will be proportional to the average number of iterations
per time increment. Concentrations and concentration-dependent transport coefficients
change very little from one time point to the next, however, so convergence, as judged by a
marked decrease in change with further iterations, is likely to take just a few iterations per
time point, provided that the acceptance criterion is not set too stringently. When analysing
a system with highly concentration-dependent transport coefficients and high solute

concentrations that change rapidly, the iterative process should be most advantageous.
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Section A: An application of irreversible thermodynamics to membrane-confined

electrophoresis (MCE)

The application of irreversible thermodynamics [Onsager, 1931a; Onsager, 1931b; de Groot
and Mazur, 1962; Katchalsky and Curran, 1965] to MCE yields the flow equation. Given the
flow equation, the coupled flow diffusion and electrophoretic mobility coefficients can be
defined. The flow equation requires a description of the conjugate molar forces in the
system. For MCE, those forces are primarily due to electrical and chemical potential
gradients, and secondarily involve gravitational potential gradients that are only significant

for solutes that, relative to electrophoretic velocities, exhibit rapid transportat 1 g.
The sum of the electrical, chemical and gravitational potential gradients equals VUx

The molar flow of solute component k in the system frame of reference is

Ck_\

Je =Ji +_V0—2qu a vO’

(A1)

where J; is the molar flow of component k in the solvent frame of reference, 7, is the
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velocity of the solvent flow through the system, My is the molar mass of solute component k,
ck is the mass concentration of solute component k, )?q is the conjugate molar force
(Equations A2, A14 and 116) of solute component q, Lkq is the coupled-flow-
phenomenological coefficient linking the molar flow of solute component k to the conjugate
molar force of solute component g, and n is the total number of solute components. (Each
solute component is indexed by an integer that is greater than or equal to 1, and less than or
equal to n. With the exception of its velocity through the system, the solvent component is
treated implicitly, and by implication, is assigned an index of 0.) The molar flow of

component k in the system frame of reference bears a somewhat complicated relationship

to the mass flow, fk, of component k in the system frame of reference. (See Section I:
Calculating valence, molar mass, chemical potential and partial specific volume for a multi-
species component.) The molar flow of component k in the solvent frame of reference is
discussed further in Section G (The dissipation function and the Curie-Prigogine principle).

The molar mass of a component is discussed below, and described in detail in Section I. In

Equation N55 of Section N (A simple coupled-flow equation for MCE), ;I—" D, is expressed in
k

terms of conjugate molar forces and coupled-flow-phenomenological coefficients.

In an MCE system at a fixed point on the surface of the Earth, the gradient of the total molar
potential of solute component q is equal to

VU, = =X, = Vg + 2,FVY + M, Vgzh,
(A2)
where Uq is the total molar potential of solute component g, |4 is the chemical potential of
solute component q, zq is the valence of solute component q, F is the cgs Faraday, W is the
cgs electrical potential, Mq is the molar mass of solute component q, gt (the standard
acceleration due to gravity) is the magnitude of the gravitational field at the Earth’s surface,
and h is the height above the Earth’s surface. The component parameter 4 is equal to (pg)n,
which is the number average of the chemical potentials of all species of component g, but in
general, V(ug)n does not equal (Vug)n, which is the number average of the chemical
potential gradients of all species of component q. In general, zq is equal to (zq)g, which is the

¢-dependent valence of component g, and Mg is equal to (Mq)g which is the §-dependent
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molar mass of component g. (For the definitions of g, Zq and Mg in the general case, see
Section I: Calculating valence, molar mass, chemical potential and partial specific volume for a
multi-species component. In the limit as all concentration and pressure gradients approach
zero, the component parameters, Vg, zq and Mq become the number averages of the
corresponding species parameters of component q. Furthermore, based on an expectation
of charge neutrality, zq of any component should be zero. Conditions in which zq can be
nonzero are proposed following Equation 117, and examined more deeply in Section M:
Effects of ionic strength on (apparent) reduced valence and zeta potential.) The molar
gravitational potential of component q due to the Earth’s gravitational acceleration is
Mggeh. As h decreases in the direction of gg, the gravitational force is described by -MqVgeh
= -Mqge(0d[h - ho]/dh)t = -Mqgg, where the reference height, hy, is typically considered to be

zero. It will be shown that -M(Vgeh is negligible in most cases in MCE.

Each chemical potential is a function of time, t, and spatial position. The electrical potential
will also be shown to depend on space and time. Each molar gravitational potential, Mqgeh,
varies spatially with h, but as (dh/0t)space = 0, Mqgeh can only vary temporally if Mq varies
temporally. Thus, the time dependence of each molar gravitational potential is proportional
to the time dependence of Mg. For a single-species component, (0Mg/0t)space = 0 and
(0zq/0t)space = 0. For a multi-species component in a system that has not yet reached steady
state, if Vuq # 0, pq is almost certain to vary with time, in which case, where (dpq/0t)space #
0, (OMq/0t)space # 0 and (0zq/0t)space # 0. (See Steady state at the end of this section. Also
see Section I: Calculating valence, molar mass, chemical potential and partial specific volume
for a multi-species component.) Furthermore, even for a system composed of single-species
components, for each of which, (0zq/9t)space = 0, if a gradient in the chemical potential of
any component varies with time, then in all likelihood, where (9pq/0t)space # O for at least
one component, (W /0t)space # 0. (See Section H: Factors affecting the electrical field in
MCE.) Thus, once an electrical current starts to flow, the electrical potential in an MCE
system will probably become time dependent, and remain so until the system reaches

steady state.

The mks/cgs electrical field in the MCE system is
5
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E=-aoV¥,
(A3)
where @ is the applicable electrical-potential conversion factor. (See Notes following List of

selected parameters, their indices, and their cgs or mks dimensions.)

The MCE system is open, but bounded by semi-permeable membranes at two opposite
ends. The total electrical current, i, is carried by small ions that are able to flow through the
semi-permeable membranes, and thus, from one end of the system to the other.
Furthermore, the geometry of the MCE instrument is such that, between the membranes,
the current density, , should be invariant with position, so that V - j = 0 everywhere at all
times. Due to conservation of current, and because there are no sources or sinks of current
within the system, Vi = 0 everywhere at all times. (See Section H: Factors affecting the
electrical field in MCE.)

By definition, free-flowing components freely permeate the membranes, partially-confined
components flow more slowly through the membranes than they do through the system
between the membranes, and membrane-confined components never permeate the
membranes. Conceivably, some components could flow more swiftly through the
membranes than they do through the system between the membranes, but as the solution
conditions outside the system are kept constant by continuous and rapid buffer
replenishment, once dialysis has reached steady state across the membranes, such
components would appear to behave just like free-flowing components that permeate the

membranes and the system between with equal ease.

In MCE, the sample occupies a system with rectangular geometry, through which the
current is oriented parallel to gg, which usually ensures that all flows of solute components
within the system are even, laminar and vertically directed. Thus, each VUq is significant in
the vertical direction only. Consequently, vector notation can be neglected, and a single
spatial variable can be used to describe all spatial dependencies of interest in the system.
Density gradients that increase with height are unstable in the Earth’s gravitational field. To

avoid such instabilities, the system must be set up to ensure that the solution density
6
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increases as height decreases, on the basis of which, the spatial variable chosen, ¢, is defined

as the magnitude of a downward and vertically directed spatial vector, g; . Thus, € describes
the inverted vertical position in the MCE system. Henceforth, therefore, with a few
exceptions, E, vi, Jx, Ix and & are used in place of E, ﬁk,fk, fk and 5, respectively, where v, is
the velocity of component k in the system frame of reference. The upper membrane is
defined as the upper boundary of the system, the position of which is denoted as &m. The
lower membrane is defined as the lower boundary of the system, the position of which is

denoted as &p.

On the basis of the relationship described by Equation A3,  can be considered the natural
independent variable of choice in MCE, as the derivative of the electrical potential with
respect to € is proportional to the electrical field: (0W/0¢): = -E/®. (See Section H: Factors
affecting the electrical field in MCE.) Hence, € is the parameter associated with the electrical-
potential-space in the title of this work. As § and h are oppositely directed, where the
dimensionality of € and h is the same, d§/dh = -1.

Chemical potential

The chemical potential of component k is given by

tr = (U)o + RTInycy

(A4)

where R is the ideal gas constant, T is the absolute temperature, yx is the activity coefficient
of solute component k, and the constant (ux)o is the standard-state chemical potential of
solute component k. Given that px is a function of the temperature of the system, the

pressure of the system and the concentrations of all solute components in the system,

n

) -, 050,60 50,9

w=1 t.T.P,Cazw

(A5)

where P is the pressure of the system, and cw is the mass concentration of solute component
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Temperature control ensures that

(A6)
A standard thermodynamic relation, when applied to a multi-species component in the
presence of concentration and pressure gradients, yields

O
" = M, v, ,
(ap )t,T,C kvk

(A7)
where v, = (¥4)pg4 (defined in Section I) is the §-dependent partial specific volume of the
system with respect to solute componentk, and M, = (M), (also defined in Section I) is

the same molar mass parameter that applies to Equation A2.

Applying a convenient form of Bernoulli’s equation to the MCE system yields

UZ

¢
P:Pm+gEf pds +p=,

m

(A8)
where p is the cgs solution density, Pn is the pressure at &y, and vo is the velocity of the

solvent (component 0) in the system frame of reference.

As the density of the solvent, po, tends to be constant with, or only weakly dependent on, &,
(0po/0%)tis almost certain to be negligible. As p is likely to be dominated by po, (0p/0%): is
likely to be negligible. Furthermore, except where (dpo/dt)s # 0, (0vo/9%): = 0 throughout
the system by virtue of geometry. Finally, (dge/0¢): = 0 throughout the system by virtue of
scale. Thus, the sought after derivative of the preceding expression for P can be

approximated as
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<6P) 3 N (ap) Vg
af . ng aé— . 2 _ng’

(A9)
so that

(3, G), = pevupae.
(A10)

For Mxv,p < 107 g/mol (approximately),
o) (@) som 2,
OP Jyrc \O& mol - s
(A11)
While the upper value of this range may seem significant, it is still less than 0.2% of
Mk ¥ pWmin?I'min, Which is the radially directed molar gravitational force at the lowest
possible radial position (approximately 5.7 cm), rmin, and the lowest practical angular

velocity (2m[3,000 RPM]/[60 s/min]), ®wmin, in the Beckman-Coulter XL-A/I analytical

ultracentrifuge.
For the remaining part of Vy,

> (%) <ar (e i

w=1

rae ), (32 (G
i dcy dc,,

w=1 t'T'P'Castw]

t,T,P,Ckzw

(A12)

The term in square brackets describes the deviation of pkx from van ‘t Hoff behaviour.

The sum of the above descriptions of the various parts of Vyy yields the gradient of the

chemical potential of component k in the system. Thus,

<) [va Y (52) (B2

Op ]
w=1 t,T,P,Cazw

_ dln
Vit = (a—f) = MyBipgs + RT (=
t

)
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(A13)

where the gravitational force term, Mxv, pgg, is usually negligible (Mxv, pge <

0.002-Mk¥), pwmin?Imin). For cases where Mk, pge, may not be negligible, its contribution to

the total mass flow can be estimated by evaluating the system at zero electrical current.

Applying the above descriptions of the various parts of VU, the gradient of the total molar

potential of solute component k in an MCE system can be written as

. i E
VU = =X = =M (1 — Uyp) g — ZkF_

err (%) e 3, (529 (522

)
w=1 t;T;P:CaJtW]

(Al4a)
and, assuming |Mx(1 - 7;p)|ge < 0.002|Mk(1 - U p)|®Wmin®r'min, VUk can be approximated as

n
- E dincy, dcy,\ (Olnyy
VU, = =X, = —zxF—+RT 1 Z(—)( )
. k 2k w+ < 0¢ )t[ T G . dci/, \ dcy,
w=

t,T,P,caiW]'

(A14b)

where )?k is the conjugate molar force (Equations A2 and 116) of solute component k. In
general, the system in the MCE instrument would have be maintained at a temperature well
below 273.15 K, or |Mk(1 - v;p)| would have to exceed approximately 107 g/mol, before
Mk(1 - 7. p)ge would make a clearly detectable contribution to the gradient. (See Equation

A23b))

Using Equation A14b to describe the conjugate molar force of solute component g, the

molar flow of solute component k in the system frame of reference, given in Equation Al,

n
dc diny,
v d (52) (Ger)
! acq t Ocw t,T,P,Cqazw

w=1

can be re-written as

< F _ Olncq
Jk = Z Liq)Zq = E + My(1—,p)gs — RT

q=1

Vo Ck

M’
(Al15a)
when the effects due to gravity are included, or

10



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

n n
F dinc dcy\ (dlny, VoCk
]k=ZLk,q{zq—E—RT< ) [ qz< > < 42k
q=1 @ =1 va Cw t.T.P,Cazw Mk

(A15b)

when the effects due to gravity are excluded.

For the effect of component g on component %, the coupled-flow-electrophoretic mobility

coefficient is defined as

M, F

_L 7 —
¢ k.q 0’

Ug,q

(A16)

and the coupled-flow-diffusion coefficient is defined as

n
dc dlny,
te 2 (52), (G, |
! acq t Ocw t,T,P,Cquw

w=1

Mq
=—2L L, RT

Dy
Cq

q

(A17)
so that
n
dlnc Vo C
q q oCk
ZM_ uqu Dkq< af >l+Mk
q:
(A18)

Like Lig, uxgand Dgqlink the molar flow of solute component kto the conjugate molar force

of solute component g. Unlike Lxg kg # Ugx and Dxg # Dyx

An application of irreversible thermodynamics to the continuity equation for MCE

Equation A18 describes the molar flow of one solute component in a multi-component
system in the MCE instrument, and derives from the application of irreversible
thermodynamics to MCE [Godfrey, 1989; Laue et al., 1989; Moody and Shepard, 2004]. The
result is similar to that obtained from the application of irreversible thermodynamics to

analytical ultracentrifugation (AUC) [Williams et al., 1958; Fujita, 1962; Fujita, 1975].
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Each coupled-flow-electrophoretic mobility (Equation A16) and coupled-flow-diffusion
(Equation A17) coefficient is described in terms of its corresponding phenomenological
coefficient, Liq. In the absence of magnetic fields or Coriolis forces, the reciprocal relations
give Likq = Lgk but for q not equal to k, there is no equation that describes Ly in terms of
independently determinable parameters. (In the presence of magnetic fields or Coriolis
forces, resort must be made of the more general form of the reciprocal relations mentioned

in Section G: The dissipation function and the Curie-Prigogine principle.) For Lk,

Ck
lim L,, =——
K,k ,
Cqzk—0 NyMy fx

(A19)

where Na is Avogadro's number and fx is the frictional coefficient of solute component k, but
this equation only applies in the limit as all solute concentrations other than that of solute
component k approach zero. Nevertheless, if there are no solute components other than k,
and if fx, cx and Mg are known, Lk is the one phenomenological coefficient that can be

calculated.

For a system of n components, there are n Ly - values and (172 - n)/2 Ly g2k = Lgzkk
values (assuming the absence of magnetic fields or Coriolis forces). Given nlinearly

independent equations in the form of Equation A1, in which the nvalues of Ly 4, the n

values of)?q, and the nvalues offk are known, the remaining unknowns, which are the
(12 - n)/2 Ly g+ = Lqzi values, could be calculated for any part of the system in which n

did not exceed 3, as for n> 3, (n2-n)/2 > n.

Of all the parameters needed to calculate Lk, fk is the most challenging to determine. In the

absence of solute components other than %, fi can be calculated from the Stokes equation,
fie = 6mNRy,

(A20)

if Ry, the Stokes radius of an equivalent sphere of solute component k; and 7, the solution

viscosity, are known. The applicability of the Stokes equation, however, is questionable

except as cxapproaches zero, at which point, 7becomes identical to the solvent viscosity.

Given the restricted applicability of Equation A19, the prospects for calculating Dk q or uxq

12
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would hardly be less promising if Lxk could not be calculated under any conditions.
(Nevertheless, for a practical approach to using such coefficients, see Section N: A simple
coupled-flow equation for MCE.) The main utility of Equation A19 is to show that
hydrodynamic parameters appear in the denominator of the one phenomenological
coefficient that can be calculated. Thus, if expressions for other phenomenological
coefficients were found, it would not be surprising if they too included hydrodynamic
parameters in their denominators. (It should thus come as no surprise that no
hydrodynamic parameters are found in Equation N10, from which the phenomenological

coefficients of its sources cancel.)

In general, for n > 2 at least, Lixq, Dxq and ukq cannot be calculated from other
experimentally determinable parameters, and cannot be determined directly by any
practical or routine approach. (For an attempt to calculate Lk q values from results obtained
from special cases of systems in which n < 3, see the discussion following Equation N44.)
Informative parameters derived from Lkg, Dxq and uxq can be determined experimentally,
however. These experimentally determinable parameters are the apparent diffusion
coefficient, the apparent electrophoretic mobility coefficient, and the apparent reduced
valence coefficient. (In reference to these coefficients, the word “apparent” is dropped
henceforth, except parenthetically in the three definitive descriptions that immediately

follow.)

The (apparent) diffusion coefficient of solute component k is

D, = M;, cq (0lncy D, — M, 1 [0cq D
k= " Idlnc, M, \ ¢ k4T (9cy Mg\ 3¢ ) 4
C — q t q t

k o0& t(l—l

n
M, dlnc,
_WRTZL"”< )
9¢) ‘

Ck
$ /e

(A21)

and the (apparent) electrophoretic mobility coefficient of solute component k is
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n
_ Mk 1 UO L
U = CqUkq t o w kaqZq t
=1 1 "

(A22)

where, for a multi-species component, Mk = (Mx); is the molar-flow-average molar mass of
component k. (See Section I: Calculating valence, molar mass, chemical potential and partial
specific volume for a multi-species component.) Resort to (M); is necessary for the
definition of the mass flow of component k in terms of the molar flow of component k. As
mass is conserved but molarity is not, the mass flow of component k is preferable to the
molar flow of component k when casting the continuity equation, the solution to which

provides the sought-after description of transport in the system.

Excluding the effects due to gravity, the (apparent) reduced valence coefficient of solute

component kis defined as

dinc c dlnc 1 C
b (30, (EZQ 177, Cattiea TV OMk) (55%), (Zies a7 €000 P + w0
Ok = Dk Bl n acq n va
a=111, (65> Diq a=111, (65) Diq
dinc F c
~ (Tk)t (E523=1 Lk,qu + Vo M—’;)
dlnc ac dlny, ’
RT S b (T2 |1+ o2 (322) (F) |
a=17ea\ og 1 AN
(A23a)

while including the effects due to gravity yields

dlncy F i .
( af )t [E5 Z=1 Lk,qzq + IE ZZ:l Lk,qu(l — vqp) + Vo M_k]

dlnc, Ocw) (Tt
RT Xg=1Lkq (5_f> l o 2iv=1 (5Cq) ( dcw )t'T'P'Ca*W

O, =

(A23b)

where, for the effect of component g on component 4; g4 is the coupled-flow analogue of
ok As shown in Section N, oxq = Eukq/ Dkq (Equation N10). Like ugqand Dig 0%qlinks the
molar flow of solute component kto the conjugate molar force of solute component g. Also
like uxqgand Dig, Oxq # 041 While ox cannot be completely defined without specifying £, on

which it explicitly depends, this might be viewed as a virtue, as unlike ux, ox preserves
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information regarding the field dependence of transport, including some effects that might
be expected in cases of field-dependent solvent velocity. (At a minimum, for uxto be field-
independent, vpwould have to be proportional to £over the range of experimentally

practical fields.)

Because ok is proportional to the ratio of ux and Dx, and because both ukx and Dy, are
proportional to the highly fraught parameter, (Mx); (see Equations 113 to I15), the two
(My); terms cancel in ox. As shown in Section I, however, Mj and other parameters
pertaining to multi-species components are no less inconvenient. Such issues are rendered
moot, however, by working, as in Section C (A solution to the t- and §-dependent continuity

equation for MCE in terms of species), with species rather than components.

Along with Dy, either uk or ok are the transport coefficients needed to describe MCE results
or simulate transport in MCE. In principle, for each solute component, all three of these
parameters can be determined experimentally, though in practice, for complicated systems,
it can be difficult to obtain more than an average or approximate value of some parameters

by analysis of experimental data.

The coupled flow coefficients, Dk q and ukgq, are distinct from Dk;j and uxj, respectively, which,
respectively, are the t-dependent, ¢-independent scalar coefficients derived from Dy and ux
in Section B (Steps taken to solve the t- and &-dependent continuity equation for MCE), and
are also distinct from Dke and uke, respectively, which, respectively, are the diffusion and
electrophoretic mobility coefficients of species e of component k in Section C. To highlight
their distinction from similarly denoted parameters, Dxq and uxq are shown in bold

typeface.

The relationship between Jx and Ik is given by Ix = MyJx, the derivation of which is shown in
Section I (Calculating valence, molar mass, chemical potential and partial specific volume for
a multi-species component). Thus, in terms of Dk and ug, or Dk and ok, the mass flow of

solute component k can be written as
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dincy
JiMy, = I, = ¢, ukE_Dk< )
t

¢
or
al
JiMy, = I, = ¢, Dy lUk - ( ;Z:k> l :
t
(A24)

The total mass flow is

n
IZZIk
k=1

(A25)

As a function of t and &, the continuity equation for MCE can be written as

©),--&)

or
n
> (55), == (5)
k=1 gt § k=1 0¢ t
(A26)
where
n
Cc = Z Ck
k=1
(A27)

is the total solute concentration.

Applying the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981],
a numerical solution to the t- and §-dependent form of the continuity equation for MCE can
be obtained. (See Section B: Steps taken to solve the t- and §-dependent continuity equation

for MCE.)
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Averages

Equations A24 and A25 can be combined to yield

k=1
or
n
ack
I = Z [CkukE - Dk (a_) lr
k=1 ¢ t
(A28)

which is the equation of total mass flow.

The most useful averages that can be applied to the total mass flow equation are the overall
gradient-average diffusion coefficient, Dg, and the overall weight-average electrophoretic
mobility coefficient, uw. The diffusion coefficients and concentration gradients of all solute
components are used to calculate D¢, while the electrophoretic mobility coefficients and
concentrations of all solute components are used to calculate uw. Respectively, these

averages can be calculated as
dc dc
n k n k
B Yie=1 Dk(az )t B k=1Dk(ar )t

De = n (%) I (%)
k=1\"9¢ ), k=1\Tr ),

(A29)

and, in terms of its product with E,

m L UC n_oxDyc
EuW=EZk_1 k k=2k_1 kPKCr _ D), ,

n n
k=1Ck k=1 Ck

(A30)
where (oD)w is the weight average of the product, oxDy, for all solute components. Applied

to the flow equation, D¢ and uw yield
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(A31)

In general, at any time up to and including steady state,

n (ﬂ)
uw_[EZﬁﬂukal =1\od¢ ), | _(olnc E Yj=1UiCr
D, n_ ac <a ) ac
S TG ) B LA )

_ (alnc> Z;(l:l O'kaCk

(A32)

Though general, this equation cannot be applied to the case of all (dck/0%): = 0, except by
taking the limit as all (dck/08): become vanishingly small after having first been perturbed
from zero. Such a limiting case pertains in the approach to steady state at zero field,
provided that a field has been applied long enough to perturb (dck/0¢): from zero. Steady

state is dealt with next.
Steady state

Throughout an MCE system (hence, at all §) at steady state, (dc/dt)s = 0, | = l» is constant,
and all derivatives of I« equal zero, where I« is the total mass flow of all solute components
at steady state. Furthermore, at steady state, all system properties become t-independent,
so that all partial differentials with respect to all spatial dimensions, including &, become
ordinary differentials. Additionally, it is assumed here that all partial differentials with
respect to the spatial dimensions other than € are zero. For the steady state condition, then,

Equations A24 and A25 yield

n

= de
Z [CkaO'k — Dy d_f] = Z Ik,oo =lw,
k=1

k=1

or, applying the definition of ox in Equation A23a,
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n n
de
Z [ckukE — Dy, d_f] = z Ik,oo =y,
k=1

k=1

(A33)

where the expression in square brackets is equal to Ixw, which is the mass flow of solute
component k at steady state. Due to conservation of mass, at steady state, throughout the
system, dlw/d€ = 0 and each dlx«/d€ = 0. (Conservation of mass ensures that (dck/dt)e

= -(0lx/0%)t. Thus, when (dck/dt)s = 0, as it does at steady state, (d1x/0E): = 0.)
Furthermore, for membrane-confined components, (I)mc = 0 and each (Ixe)me = 0, where
(Io)mc is the total mass flow of all membrane-confined solute components at steady state,
and (Ixe)mc is the mass flow of membrane-confined solute component k at steady state.
Nevertheless, as a consequence of their concentration dependence, each Dy, ok, ux and E can,

and most likely will, be &-dependent at steady state, except for the zero-field case where

each dck/d€ =0 atall €.

Although the mass flow of each solute component is ¢-independent at steady state, the mass
flows of individual species of a solute component may be ¢-dependent at steady state. In
general, throughout the system, the mass flows of the species of a solute component sum to
a £-independent constant at steady state, and if all those species are membrane-confined,
that constant is equal to zero. (The dependence of species concentrations on the
concentration of the component comprising those species, versus the independence of the
concentration of one component from the concentrations of other components, accounts for
the difference in expectations for the mass flow of a species versus the mass flow of a

component at steady state.)

In the limit as steady state, or infinite time, is approached, I approaches l» in general, and
zero for membrane-confined components. Applying this limit to a re-arrangement of
Equation A31 results in

I Euw—l' (alnC) N I _dlnc+ I
tow Dy tow |\ 0E ), cDg|  dE | cDg’

(A34)
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Applying the steady-state condition, in which each Ix = Ik« generally, to Equation A28

(expressed in terms of ox and Dx) shows that, for each solute component, k,

. dcy
fim [ecPi = D (5 ) | = he

(A35)
Dividing this equation by Dk yields

. ack Ik,oo
fim v = (5¢) | = B

Taking the sum over all k results in

n n n n
y l (ack) l i Z Z (ack) . yn L CrOk <6ck)
1im C,O0, — | — = |lIm C,0, — —_— = lim |c ————— — -
t—00 kCk af . t—00 kY%K aé’ . t—oo 71;1:1 Ck : I, a,’i’ .

(A36)

(A37)

When Equations A34 and A37 are applied solely to all membrane-confined components at
steady state, I« is replaced with (Iw)mc = 0 in the former equation, and each I is replaced
with (Ixw)mec = 0 in the latter equation. Division of Equation A37 by ¢, and inclusion of the

membrane-confined components only, yields

b [~ () | 23 e

(A38)
Thus,
lim o, = lim <alnc) Z (1 koo)mc _ dlnc Z ( koo)mc _ dlnc.
t—00 t—00 i
(A39)

Combining the results of Equations A34 and A39 shows that

lim E — = lim g, .
t—oo G t—oo

(A40)

20



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Equation A40 only applies to the membrane-confined components at steady state. Solving
Equation A40 for D¢ shows that, at steady state, D¢ = Euw/ow for the membrane-confined
components. Furthermore, Equation A30 shows that, in general, Euw = (6D)w. Thus, for
membrane-confined components at steady state, D¢ = (6D)w/ow. Neither of these
expressions for D¢ is especially well defined for the case of steady state at zero field,
however. Nevertheless, information about that system state can be gained from Equation
A40 via Equation A39. As both dinc/d§ = 0 and I = 0 at zero field at steady state, Equation
A39 shows that, at zero field at steady state, ow = 0. Applying this result to Equation A40
shows that Euw/D¢ = 0 at zero field at steady state. For all of this to hold, for the membrane-
confined components, as the field approaches zero and the system approaches steady state
at zero field, Euw must approach zero faster than D¢. Expressed as limits applied to Dg =

(0D)w/0w,

w

lim (1im Dg ) = lim

(aD)y _ owDy _
E—-0 \t-o E-0 -

lim

t-oo 0y, Ow

(A41)

is obtained for membrane-confined components at steady state at zero field. (As the system
approaches steady state at zero field, each ok approaches zero, as does ow, so that (¢D)w can

be equated to owDw as E approaches zero and t approaches infinity.)
Plateau regions

Plateau regions are defined as parts of the system where all (dck/9%): = 0. In the limit as all

(0ck/0%)t approach 0, Equation A28 simplifies to

n

agirn I = Z cxDyoy = c(oD),,
(G~ =

or
n
(ﬁr)nﬁol = Z cxurE = cEu,,
9 ), k=1
(A42)
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Thus, I = c¢(oD)w = cEuw in plateau regions.
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Section B: Steps taken to solve the t- and &-dependent continuity equation for MCE

The following finite-element method for solving the t- and ¢-dependent continuity equation
requires a resort to discrete spatial elements and a finite time increment. The method
further requires the flow of each solute component to be zero at the system boundaries, &m
and &. Thus, except for the implicitly treated and presumably membrane-permeant solvent
component, the finite-element solution shown is applied to membrane-confined solute
components only. However, it is always possible to contrive a virtually infinite system that
includes the membrane-bound system, and extends well beyond both membranes. For the
virtually infinite system, at some appropriately distant points far from the membranes, the
zero-flow boundary conditions can be imposed on membrane-permeant components, so
that the same finite-element method can be used to solve the continuity equation for both
membrane-confined and membrane-permeant components, albeit with different systems,
which have different boundary positions, applied to the different types of components. (For
simplicity, except for its much longer length, the virtually infinite system can be treated as
having the same geometry as the membrane-bound system.) For each partially-confined
component, both the membrane-bound and the virtually infinite system can be applied,
with the proportion of time increments for which the virtually infinite system is applied set
equal to the proportion of the partially-confined component that exhibits membrane-
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permeant behaviour. For both the membrane-bound and the virtually infinite systems, as
usual, the solute components are treated explicitly, while the solvent component is treated

implicitly.

The solution begins with an integration that takes advantage of the boundary conditions to
eliminate the partial derivatives with respect to €. To that end, the continuity equation
(Equation A26) is first multiplied by H, which is an arbitrary function of ¢, and then
integrated over the entire range of €. (Ultimately, H will be replaced by a set of N functions

of § indexed by i, where 1 <i <N.) Thus,

Zﬁba& de— ijb Ol de

(B1)
Integrating the right hand side of this equation by parts results in

fob I de = Z[H(fb)lk(fb) H(&m) 1 (§n)] — zn:ffb< ) Ikd.f]
k= m

=1
(B2)
where Ik(§) is Ik at £ and H(&) is H at €. As the boundary conditions in MCE are Ix(§m) = 0 and

Ik(&) = 0, where &n is the location of the upper boundary and & is the location of the lower

boundary, the preceding equation reduces to

(G =Y [ (28 et

k=1 >m k=1

(B3)
Furthermore, as H is independent of t, (0H/0¢): = dH/d¢. Thus,

ngb Ikdf ngb 1,d¢,

(B4)
and Equation B1 becomes
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T b S
,Z:lfm (%)é HdE = ;fm C;—I;Ikdf.

(B5)
Next, ck is approximated as the sum of N products, each of which consists of a &-dependent
function, Py, multiplied by a corresponding &-independent coefficient, ckn, which

nevertheless remains a function of t. With both P, and ckh indexed by h, where 1 <h <N,

n N
C:ZCk = ch,hph'

n
k=1 k=1h=1

(B6)

Each element, h, corresponds to a point, &.. By convention, £ = &, and &y = &,. Despite the
association of h with spatial parameters such as &, ckn is independent of €, so that (dckn/9%)¢
= dckn/d€ = 0 at all €. (Each ckn is €-independent, and at all € is equal to the value of ci at &.)
Figures B1 through B6 show, for the case of equal spacing between adjacent &y, the
consequences of using the hat function (also known as the triangular function) for each Py,
along with the corresponding set of &-independent solute component concentration

coefficients, ckh.
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Figure B1. An example of ck versus § at a single time, t. Specific points, &, are shown, where

1 <h <N, and the points are equally spaced. A value of N = 11 was chosen for this example.
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Figure B2. An example, corresponding to that shown in Figure B1, of Py versus &. Each Py

function is independent of t. The same &, values shown in Figure B1 are those applied here
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to the Py functions. (See Equations B58 to B63 for a more general description of the Py

functions in the form of hat functions.)
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Figure B3. A detail of Figure B2, showing just three of the Py functions versus €. The system
boundaries are §1 = & = 0 cm and &y = £11 = &, = 0.4 cm. In this example, where the points
are equally spaced, each A&, is the same, and is described by Equation B38. (Equations B53
to B57 describe each Agy in general.) Calculation of & is given by Equation B36 in general,
and by Equation B37 for the case of each A¢, being equal. Equations B58 to B63 describe

each Py function and its derivative.
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Figure B4. The ¢-independent concentrations, ckn, that describe ck at time t. (Compare this
figure with Figure B1, which shows ci as a function of € at time t.) Though each ckp is &-
independent, this figure shows that the value of each cxn at all € is equal to the value of cx at

&h. (As cx depends on both € and t, each cxn remains t-dependent, however.)
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Figure B5. Phckn versus §, where each Phcyn is obtained by multiplying each P, shown in

Figure B2 by the corresponding cxn shown in Figure B4.
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Figure B6. The sum, Y.3_; Pycy 5, versus & Each Phcih used in the sum is shown individually

in Figure B5.

For equally spaced points, &, = €1 + [h - 1]AE, where Ag is the spatial increment between any
two adjacent points. Equations B54 to B57 describe Ag for the general case, in which Ag can
be different for different pairs of adjacent spatial points. Equations B58 to B63 describe Py,
and dPp/dg for Py, in the form of the hat function, and the case of potentially variable A&,

As ckh is independent of §, (dcin/0t): = dekn/dt, so that

n

N
dcin ) $v
Z - j P,Hd¢ = Z f & e,

k=1h=1

(B7)
Expanding Ik (Equation A24) as
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I, = c; Dy [Gk _ <alan;k)tl = [JkaCk — Dy (%_?)tl )

and re-writing Ix in terms of the &-independent component concentration coefficients and

corresponding &-dependent functions results in

N

N
dp,
oy Dy z Ci,nPn — Dy z Ci,h |

h=1 h=1

h::

(B8)
Substituting this for Ik in Equation B7 and rearranging slightly yields

=1

The dependence of Dx (Equation A21) and ox (Equation A23) on the concentration, cq, of
each explicitly included solute component, q, renders Dk and ok §-dependent in all but
special cases, such as t = 0, when all (dcq/0¢): = 0 at all €. (Where the solvent is
compressible, it is remotely possible that, once |E| exceeds zero, (dpo/d¢): # 0, in which
case, in all likelihood, (dcq/0%): will not equal zero at any position at any subsequent time.)
A previously described [Cox and Dale, 1981], first approximate solution to a &- and t-
dependent continuity equation for an MCE-like system was derived by treating Dk and the
equivalent to Eux as &-independent. To obtain a second approximate solution to the
continuity equation for MCE, Dy and o are expressed in terms of ¢-independent coefficients
that are separable from &-dependent functions. A first approximate solution that pertains to
the case of (0Dx/0%): = 0 and (dok/0%): = 0 at all & will then be derived from the second
approximate solution later in this section (The case of (dok/9%): = 0 and (dDx/d%): = 0 at all
¢). In Section ] (Form of the general solution from Equation C32), a general solution based on

the second approximate solution will be presented.

First approximate solutions to the continuity equation for MCE have been, and in its initial
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application here, the second approximate solution will be, incorrectly applied to cases in
which Dy, ok and Euk are §-dependent. Due to the typically weak &-dependence of Dk, ok and
Euy, such first and second approximate solutions are likely to yield satisfactorily accurate
results when applied to systems in which large and rapid concentration changes (as might
arise from concentration gradients that are both high and steep) are absent. Sets of results
obtained using the first approximate and second approximate solutions to the ¢- and t-
dependent continuity equation for MCE are compared in Section F (§-dependent functions to

approximate Dge and oOke).

As it temporarily becomes more convenient to work with Eux and Dy instead of ok and D,
Euk is approximated as the sum of N products, each of which consists of a £&-dependent
function, Pj, multiplied by a corresponding &-independent coefficient, Euk;j, which

nevertheless remains a function of t. With both Pj and Euk; indexed by j, where 1 <j <N,

N
Euk = ZEuk,ij )
j=1

(B10)

where each Euy; at all € is equal to Euk at §;. The result expresses Euk as separable &-
independent and &-dependent terms. Here, E and uk, each of which is t- and §-dependent,
are combined to implicitly form a single, t- and ¢-dependent parameter, Eux = vk, where vk
is the t- and &-dependent electrophoretic velocity of component k. (The total velocity is
equal to that due to diffusion plus that due to electrophoresis, which includes the effect of
solvent flow.) Thus, Eukj = vkj, where vk is approximated as the sum of N products, each
consisting of a &-dependent function, P;, multiplied by a §-independent coefficient, vk which

nevertheless remains a function of t.

To express Dk as separable &-independent and §-dependent terms, this transport coefficient
is also approximated as the sum of N products, each of which consists of a §-dependent
function, Pj, multiplied by a corresponding £-independent coefficient, Dxj, which

nevertheless remains a function of t. With both Pj and Dk; indexed by j, where 1 <j <N,
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N
Dk = Z Dk,jpj )
j=1

(B11)

where each Dy at all € is equal to Dk at &;.

Equations A23a, B10 and B11 are combined to express ok in terms of previously defined
(Equations B10 and B11), separable ¢-independent and §-dependent terms. Thus,

N
Euk _ j=1 Euk'ij
= N .
Dy j=1Dk,jPj

Oy =

(B12)

While the same approach has been used to express ck, Dk and Euk in terms of &-independent
coefficients of £-dependent functions, those &-independent coefficients and §-dependent
functions are indexed by h in the case of ck, but indexed by j in the case of Dx or Euk. At any
given time, then, the §-dependent functions used in the description of cx are expressed in
terms of &, while the §-dependent functions used in the descriptions of Dx and Euk are
expressed in terms of . To use these parameters together in the same solution of the

continuity equation, at each time point, the set of all §; is made equivalent to the set of all &p.

Using Eug in place of oxDx (from a re-arrangement of Equation A23a) results in

Replacing Euk with the expression in terms of Eukj, and replacing Dk with the expression in

terms of Dy, yields
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and permits the &-independent parameters, Dx;j and Euyj, to be factored out of the integrals.

Thus,

N
$ dP,dH
Ckthk] U P; d{h g fl

h=1 j=1
(B14)
Letting
Euk']
0] ’
(B15)

where ok, is §-independent by virtue of Dxj and Eukj being €-independent, the solution can

now be expressed, after some re-arrangement, as
jijé d%ﬁj%PHd ESD j%PP d Jfb dby dH
dt . nHdé — ¢y k,j O-kjg hdé— §— de df dg

(B16)

At all §, each of the N scalar coefficients, ok (defined in Equation B15) is equal to ok at ;.

As a result of using Equation B15 in Equation B16, the product, Dxok, has been expressed as
the sum of N products, each consisting of a £-dependent function, P;, multiplied by a &-
independent coefficient, Dxjoxj, which nevertheless remains a function of t. Additionally, the

coefficient Dyjoy; is itself the product of the previously defined coefficients, Dxj and ox;.

Dividing Equation B16 by 2, and expressing dckn/dt as Ackn/At, where Ackn and At are finite

increments, yields
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1 LN Ack,h $b N $b $b dPh dH
WAL L P’l”df_c"’hzl’)"'f ""J’L AP 46 - f b ag®
m j=

k=1h=1

(B17)
The difference between the unknown concentration, cknh+ = ckn at [t + At], and the known
concentration, cxh- = Ckh at t, is the change in concentration, Ackh, during the time

increment, At = [t + At] - t. Using Ackgh = Cih+ - Ckh-, and multiplying by At, yields

Zn:i [Ckh+—Ckh] Pthf
=1h=1
_C"hZD'”la'”beP’l a4 - fgb rr dfdfl )

NlH

(B18)

The remaining cxh term can be replaced with either cin-, which would yield the less stable
explicit solution, or cxn+, which would yield the more stable implicit solution. In the Crank-
Nicholson approach [Schuck et al., 1998] used here, both substitutions are made, resulting
in two forms of Equation 18. Additionally, oxj+ and D+, which, respectively, represent ok
and Dy, at time [t + At], are used in conjunction with the explicit form of Equation B18,
where ci is expressed in terms of ckxh+. Finally, okj- and Dk, which, respectively, represent
ok;j and Dy; at time t, are used in conjunction with the implicit form of Equation B18, where
Ckh is expressed in terms of ckh-. The two resulting versions of Equation B18 are summed to
yield, by virtue of the previous division by 2, their average. The average, like any sum of the
two solutions, is considered stable, and is expected to permit the use of larger At values

than either the explicit or implicit solution alone would.

Applying the Crank-Nicholson approach yields, after some rearrangement,
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(B19)

As oy and Dy are functions of all ck (see Equations A21 to A23), and as each ck is time
dependent (see Equation A26), ok and Dk are also time dependent. Thus, for the purpose of
obtaining a general solution, ok and Dkj- must be expressed as functions of parameters
equal to all ckh- for which h = j, while okj+ and Dxj+ must be expressed as functions of
parameters equal to all cxn+ for which h = j. General expressions of this sort are presented

shortly. (See Evaluating the -independent coefficients of the basis functions indexed by j.)

At this point, there are n equations and nN unknown values of ckn+. To obtain the nN

equations needed to solve for all values of cxn+, H is replaced by N functions,

N
H:ZPL',
i=1

(B20)
where each Pj has the same functional form as each corresponding Py. (Fori=h, P; = Py.)

Applying Equation B20, the set of equations describing the solution is given by

i b N b b
Ck,h+ j Py P d¢ — Z Dy j+ [Uk,j+j P; Ph df j P; dfl
= £ as df as

k=1h=1i=1 m

n N N fb
Z Z Z Ck,nh— f Py Pd¢
k=1h=1i=1 m
N

& $ dP,dP;
Dk,j— lak'j__L PPh df d{: .f ] dfh df dfl )

35



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

(B21)

The result is solved for ckh+ using the process described below. (See Solving for cin+.)
Interactions between solute components and within each solute component (involving its
species) are handled separately between time steps. (See Section C: A solution to the t- and

¢-dependent continuity equation for MCE in terms of species.)

Evaluating the &-independent coefficients of the basis functions indexed by j

Truncated virial expansions are used to approximate the dependence of Dkj., D+, ok and
okj+ on the concentration of each explicitly included solute component. To evaluate the &-
independent coefficients of the §-dependent functions indexed by j (see Equations B10 and

B11), prior to each time increment, Dj., Dkj+, oxj- and okj+ are, to the extent possible,

approximated by
d _b
/Zb 1Zq=13’b,k,q dc \
ij_ = D k,j— dC )
Zb 1Zq 1hbkq dC
(B22-)
dc, i,
/Zb 1Zq 1Yb,k,q quH \
o Jj+
Dy j+ = D% j+ d b |’
YO TR by 4Cqj+_
b=14q=1 q dcq,j+
(B22+)
w dc, ;_P
Yb=124q=1Pb kg #
dc, ; b
0 L) ~-4,)- . qu'j_
Ewg ;- Eu®j- Zb_lz:q_l A dc j_/ o Zb:lzg:lpb'k'qdc—'
O-k,j_ = = p = O- k,]_
Dk, . D K j— dc dc
g Xy X1 Ybka dc] Yhe12g=1Ybkaq dcq] /
dcq.j—b

(o) n
Yih=12q=1"bkq e o

(B23-)
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and
b
Zoo Zn dcqij+
b=1 q=1Pb,k,q—quj+
deg i? b
0 non q,]t o n qu'j_l_
Eu, : Eu°, : Zb:qu:l b.k.q qu'j_l_ Zb=12q=1pb,k.QdC—.
o . kj+ k,j+ — 5° q,]+
kit = "p . De, . by T T kgt LN
Dy j+ D®j+ Yoy dcq,]+ Yo yn dcq.1+
b=12:q=1Ybk,q dcg s b=12iq=1Ybk,q dcg j+
. b
Zoo Zn h dcqr]+
b=14q=1""b,k,q dcqj+
(B23+)

respectively, where n is the number of solute components, D°;. at all € equals Dk at §; at time
t in the limit as c approaches 0, D%+ at all § equals D at §j at time [t 4+ At] in the limit as

c approaches 0, 6°%;- at all € equals ok at §; at time t in the limit as c approaches 0, 6°j+ at all
¢ equals oy at §j at time [t + At] in the limit as c approaches 0, Eu®;. at all § equals Euk at §; at
time t in the limit as c approaches 0, Eu®j+ at all § equals Euy at §; at time [t + At] in the limit
as c approaches 0, cqj- is the €-independent concentration coefficient of solute component q
at time t (at time t, cqj,, at all §, equals cq at §j, just as ckh, at all §, equals ck at &, in Equation
B6), cq+ is the §-independent concentration coefficient of solute component q at time [t +
At] (attime [t + At], cqj+, at all §, equals cq at &}, just as cxp, at all §, equals ck at &, in Equation
B6), and where pukq, Ybkq and hyxq are the bth of up to an infinite number of coefficients of
proportionality for the electrophoretic/asymmetry, thermodynamic nonideality, and
viscosity effects, respectively. By definition, Y¢_1 P1,x,q, Xg=1Y1,kq and Xg=1 hy x4 are each
equal to 1. Each of the py kg, Ybxq and hyxq coefficients couples the concentration of
component q to an effect on the transport of component k. (See Section D for more details

regarding these component-based virial expansions.)

With + representing either - or +, the component-equivalents of Equations N23+ and
N24+ can be used in place of Equations B22+ and B23+, respectively. Henceforth, cq is
used to denote the concentration of solute component q at either time t or time [t + At], and

some unspecified position, ;.
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Individually, the product of b(cq)? -1 with the corresponding coefficient of proportionality
Pbkq yields the bth term for the contribution of cq to the electrophoretic/asymmetry effect of
the system as it affects the transport of component k, the product of b(cq)? -1 with the
corresponding coefficient of proportionality ybxq yields the bth term for the contribution of
Cq to the thermodynamic nonideality of the system as it affects the transport of component
k, and the product of b(cq)?-1 with the corresponding coefficient of proportionality hpxq
yields the bth term for the contribution of cq to the viscosity of the system as it affects the

transport of component k, where b(cq)?-1 = d(cq)?/dcq.

Collectively, the sum of products given by ;" pb,k,qbcqb_1 is a measure of the total
contribution of cq to the electrophoretic/asymmetry effect of the system as it affects the
transport of component k, the sum of products given by Y:,~, yb,k,qbcqb_1 is a measure of
the total contribution of cq to the thermodynamic nonideality of the system as it affects the
transport of component k, and the sum of products given by Y., hb,k,qbcqb_1 is a measure
of the total contribution of cq to the viscosity of the system as it affects the transport of

component k.

Henceforth, okj, Dxj and Eukj are used to denote the &-independent transport coefficients at
either time t or time [t + At], and 0°k;j, D°kj and Eu°x; are used to denote the &-independent

transport coefficients at either time t or time [t + At] in the limit at c approaches zero.

By definition, 6°kj, D°%; and Eu°kj, are &-independent, and for a given t-independent
electrical current, may also be t-independent. In the case of solvent compressibility
however, the expectation is that Ac°kj/Aj # 0 and AD®x;/Aj # 0, from which it follows that
AEu®k;/Aj # 0. The condition that, for all solute components, Ac®°kj/Aj = 0 and AD%;/Aj = 0,
from which it would follow that AEu®x;/Aj = 0, can only apply to a system with an
incompressible solvent, in which case, 6°j, D°kj and Eu®k; can be replaced with their
respective, system-wide constants, 6%, D°x and Eu®k. (In writing Equations B22 and B23, it
was assumed that Apypkq/Aj = 0, Aybxqe/Aj = 0 and Ahpkq/Aj = 0 for any given pair of

components k and g, even in the case of solvent compressibility. If required to deal
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adequately with the case of solvent compressibility, pv kg, Ybkq and hpxq can be replaced
with their respective j- and t-dependent coefficients, which would be pykq,- ybxqj- and
hpkq,- at time t, and would be pbkqj+ Ybkqj+ and hp g+ at time [t + At], where, denoting a
coefficient at either time by dropping the - or + suffix, Apbxq;/Aj # 0, Aybkgi/Aj # 0 and
Ahpxqj/Aj # 0 for any given pair of components k and q.)

(As Eu®gj and 0°; only apply in the limit as c approaches zero, and thus, where E is &-
independent, it would be incorrect to incorporate the &-dependence of E into the j-
dependence of Eu°k; or 6°%;. Practically speaking, however, it may be useful to do just that,
especially for the analysis of systems at steady state, when the &-dependence of E is time-
invariant. When applied to experimental results, such analysis would best be attempted
only after acquiring steady-state data at multiple current strengths for multiple systems
that differ solely with respect to the total, net concentration of membrane-confined solute
components. Extrapolation of ow (see Equation A39) to zero current and zero solute
concentration should yield ow = 0. The dependence of ow on current and solute
concentration could then be used to find functions describing the §-dependence of such

apparent Eu®k; or 6%;.)

To avoid quadratic and higher-order terms in cq;- or cqj+, along with other complicated
terms arising from the presence of a truncated virial expansion in the denominators of ok
and Dy; in Equations B22 and B23, no effort is made, initially, to solve Equation B21 as
written. Instead, Equation B21 is solved as if okj+ and Dgj+ were independent of all cq;+, and
as if ox;- and Dy;. were independent of all cq;-. Furthermore, because cq;+ values are not
known prior to their use in okj+ and Dkj+, okj- and D;- are used in place of okj+ and Dyj+,
respectively. The resulting solution is that referred to as the second approximate solution.
(As previously mentioned, the first approximate solution that pertains to the case of
(0Dk/0&)t = 0 and (dok/0¢): = 0 at all € will be derived from the second approximate

solution.) The discussion of this issue is continued following Equation B24.

Equations B22 and B23 use a set of power series of each solute component concentration to
describe the thermodynamic nonideality, viscosity and electrophoretic/asymmetry effects
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of the solution. For solutions that are too concentrated to permit the use of highly truncated
virial expansions in the description of parameters such as Dy, ox and Euy, additional terms
from the infinite series can be retained. (See Section D: Expressions for the deviation from
van 't Hoff behaviour and other virial expansions.) It is, however, incorrect to treat oy, Dk
and Euy; as if they were functions of any terms involving solute concentrations in the
second approximate solution, unless that solution is applied iteratively within each time
increment. The general solution presented in Section ] (Form of the general solution from
Equation C32) does apply the second approximate solution iteratively, and thus permits the

concentration dependence of okj, Dxj and Euk;j at times t and [t + At] to be treated correctly.
Solving for ckh+

There are now three sets of space-dependent, time-independent basis functions (the set of
all Py, Pi and Pj), and there are N functions per set of such basis functions (1 <h<N,1<i<
N, and 1 <j < N). For each solute component, k, at either time t or [t + At]: there are N
space-independent, time-dependent, concentration coefficients, ckn; there are N space-
independent, time-dependent, diffusion coefficients, Dxj; and there are N space-
independent, time-dependent, electrophoretic mobility coefficients, ukj, which are related
to the N space-independent, time-dependent, reduced valence coefficients through Euy; =
Dijox;. For the case of each Py, P; and Pj being a hat function (as described by Equations B58
to B63), for each solute component, k, at either time t or [t + At]: each product, cknPs, is
maximal at spatial element h, and is zero below spatial element [h - 1] or above spatial
element [h + 1]; while each of the products, Dk;Pj and Dxjox;Pj, is maximal at spatial element

j, and is zero below spatial element [j - 1] or above spatial element [j + 1].
Let

F fbp P,dé¢ ZN:D [ beP dPidf jfbp dPthidElAt
khi+ = hfiads — kj+ |Ok,j+ jrh 7 as — J gz gz
Z e 1 MaE ) Tag ag

m m

and
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F -_=j P,P.d +ZD -_[a -_j PP 4k, j dlAt
k,h,i hti Sz < k,j K,j 5 h df ‘f J df df ‘f

m
(B24)

Equations B22 and B23 are used to calculate Dyj and okj, respectively. Despite their
dependence on all cqj+, for each iteration (see Section |) of the second approximate solution,
okj+ and Dgj+ are treated as if they were independent of all cx;j+, and in the first iteration of
any given time increment, ox;j+ and Dy;+ are replaced with ox;. and Dyj., respectively, all of

which permits the set of solutions to be written as

n n N N
Z Z Cin+Froniv = Z Z z Ce,n—Fieni-

k=1h=1i=1 k=1h=1i=1
(B25)
where each Fip i+ is treated as independent of all ckj+. In the second approximate solution, it
is permissible to treat Fi ., okj- and Dkj- as dependent of all cqj-. In the general solution
(Section]), the dependence of Fxhn,i+, Okj+ and Dgj+ on all cqj+ is repeatedly approximated,

with the errors in those approximations approaching zero with a sufficient number of

iterations.
Letting
N
Zyi- = Z Cr,h—Fie ni—
h=1
then results in
n N n N N
k=11i=1 k=1h=1i=1

(B26)
As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Py
and P; results in most of the terms indexed by i and h being zero:
Fihi1+ = 0 and Fxp1- = 0 forh > 2;
Fxnn+ = 0 and Fgnn- = 0 for h < [N - 1]; and
Fihp<i<n+ =0and Fihpi<i<n-=0for[i-2] <h<[i+ 2].
Consequently,
41



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

n n
Z Zyi- = z(ck,1+Fk,1,1+ + Ck,2+Fk,2,1+) )
k=1 k=1

n

n
Z Zyi- = Z(ck,[i—1]+Fk,[i—1],i+ + Cri Friiv + Ck,[i+1]+Fk,[i+1],i+)
k=1 k=1

for1 <i< N, and

n

n
z Zgn- = Z(ck,[N—1]+Fk,[N—1],N+ + Ck,N+Fk,N,N+) .
k=1 k=1

(B27)

Equation B27 is derived from Equation A26, according to which, (dc/dt)s = -(31/9%).
Equation A26 does not state that each (dck/dt)s = -(01x/0%)t, but where this condition holds,
each Zy;. will equal the sum over all h of ckh+Fipn,i+. As each k refers to a solute component,
conservation of mass ensures that each (dck/dt)s does equal -(01x/9%).. Thus, equating

corresponding terms indexed by k in Equation B27 is permissible, and results in

Zii- = Cra+Fri1+ + CoarFrz 1+

Zii- = Cii-1)+Fili-1)i+ T Cri+ Froiir + Choiv1)+ Ficfiv1),i+
for1<i<N, and
Zn— = CiN—1]+Friv-1 8+ F Cone Fron v -
(B28)
(Mass is conserved, but molarity is not, in general. Consequently, in the case of a species, e,
of a solute component, k, it is possible for (dcke/0dt): and -(0lke/0%): to differ, where cke is
the concentration and Ix. is the mass flow, respectively, of species e of solute component k.

Section C deals with the transport of species in detail.)

Equations C74 to C75 show the fully expanded forms of Equation C39, which is the species-

by-species equivalent of Equation B28.
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Equation B28 permits the continuity equation to be solved component-by-component. For
each component, the solution proceeds one concentration coefficient at a time. Solving first
for ci 1+ yields

Cii+r = Y1 — Xi1Cr2+

where
k,1-
Yk - .
't Fri1+
and
Fro1+
Xk = .
't Fr11+
(B29)
For i < N, the solution for each subsequent cg;+, in ascending order from 2 < i < N, takes the
form of
Crjiv = Yii = X,iCri+1]+
where
v - Zyi- — Yie[i-11Fk [i-1],i+
i =
Y Feiie — Xifi-Frofi-1g,i+
and
X, = Fk,[i+1],i+
ki = .
Y Feiie = Xifi-Frofi-11,i+
(B30)

Ati =N, the solution for cxn+ is obtained. In terms of ckn-1]+, the solution for ckn+ is

Cent = Yien — X NCr[N-1]+ »

where
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Viw = —
N Fie NN+
and
Fie [N—1],n+
Xk,N - F
Kk,N,N+
(B31)

The solution for ckn-1]+ can now be substituted into the solution for cxn+ to yield

Cint = Yien — Xk,N(Yk,[N—l] - Xk,[N—l]Ck,N+) )
(B32)

which, solved for ckn+, is

~ Yew = XinYiv-1)
Ce,N+ =

1 — Xy n Xk [v-1]
(B33a)

alternative expressions of which are

YinFin v+ — Fi[n—1) 8+ Yi [N—1]

C =
o+ Finn+ — Fin—1) 8+ Xk [N—1]
(B33b)
and
Zin- — YViein—11Fi [N—1) v+
Cr,N+ = .
Fienn+ — Xin-11Fk [n-118+
(B33c)

The above solution for cgn+ does not require knowledge of cy[n-1)+ or any other unknowns.
This solution for ckn+ can now be used, therefore, to solve the previously obtained
expression for ckn-1j+ in terms of cxn+ and other known parameters. Subsequently, using

Ck[N-1]+, the previously obtained expression for ckn-2j+ can be solved in terms of ckn-1j+ and
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other known parameters. Thus, once ckn+ is known, each preceding ck;+ is calculated in
descending order from i = [N - 1] to i = 2 using Equation B30 until, upon reachingi =1,
Ck1+ is calculated using Equation B29, at which point, the entire array of cxi+ values has
been determined. For i = h, cgi+ = cin+, So that the array of ck;i+ values obtained equals the

array of ckn+ values sought.

This process is carried out for each solute component, k, at each addition of a time
increment. These new cxh+ values are then used as the next cxh- values after the addition of
the next time increment, and the process is repeated until the desired time point is reached,
at least in a noniterative application of the second approximate solution. (The general
solution presented in Section ] (Form of the general solution from Equation C32) applies the
second approximate solution iteratively, with the result that cxn+ is repeatedly recalculated
within each time increment until a convergence criterion (Equation J6) is met, or a

maximum number of iterations is reached.)

It has been found that the process is made more robust by first calculating all ckn+ in the
forward direction starting from ck 1+, then recalculating all ckn+ in reverse order (starting
from ckn+), and averaging the results. The calculation of all cih+ in reverse order is
implemented by obtaining a solution to the t- and §-dependent continuity equation for MCE
with the set of all &, reversed, so that &1 = &, and &y = &m. The solution obtained is
backwards in the sense that ck 1+ at all § is equal to the value of ck at &, while ckn+ at all € is
equal to the value of ci at &n. In general, &, Ckh+, Ckh-, Dij+, Okj+, Dkj- and okj., of the
backwards solution are equal to §N-h+1], Ck[N-h+1]+, Ck [N-h+1]-y Dk [N-j+1]+, Ok [N-+1]+, Dk [N-+1]- and
Ok [N4+1]- respectively, of the forward solution, which is the solution described above for the
original orientation. Solving for ckn+ using the backwards solution then proceeds as
described for the forward solution. Averaging is weighted toward the starting point of each
solution, were artefacts appear to be minimal, so that, subscripting all concentration and
spatial parameters by h as that index applies to the forward solution, the average value of
Ckh+ 1S (Ckh+)avg = [(&n - &m) (Cixh+)rR + (&b - &n) (Ckh+)F] /(&b - Em), where (cin+)r and (Cxn+)r are

values of cgn+ obtained from the forward and backwards solutions, respectively.
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Time

In terms of an unvarying time increment, At, the time after () time increments is
tg = to + QAt,
(B34)
where t is the initial time. In general, for Q) time increments, where each time increment,

Ate, may be different from some or all the rest,

Q 9]
to = Z At, = Z(ts - ts—l) ’
£=0 =0

(B35)

where t.1 is defined as equal to zero, and to > t 1.
Space

Defining &o as equal to zero makes

& = i 8E, = i(fa ~Ea1)
a=1 a=1

(B36)
a general formula for calculating &, This equation does not require Ag to be the same for all

spatial increments between two adjacent points.

Where A¢ is the same for all spatial increments between two adjacent points,

$h =& +[h—1]AS,

(B37)
from which it follows, given &y = &, and &1 = §m, that
fb - Em
A = ——.
d N-1
(B38)
Reactions
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As discussed in Section C (A solution to the t- and §-dependent continuity equation for MCE
in terms of species), it is more practical to explicitly include each solute species as if it were
a solute component. In such implementations, prior to each addition of a time increment
and the subsequent determination of the new cxn+, each solute component’s current species
concentrations (the sum of which equals ckh-) are adjusted to account for the effects of any
chemical reactions in the system, including any mass-action associations or dissociations
between the species of an individual solute component. Thus, at each time point, the re-
calculation of concentration takes place in two distinct steps: first, the effects of reaction
flows are determined; second, the effects of mass transport flows are determined.
Calculating concentration changes due to reaction flows is discussed in Section G (The
dissipation function and the Curie-Prigogine principle). Calculating concentration changes
due to transport flows is described in this section (Equations B24 to B33) for the second
approximate solution in terms of components, in Sections C (Equations C35 to C44) for the
second approximate solution in terms of species, and in Section ] (Form of the general
solution from Equation C32) for the general solution to the second approximate solution in

terms of species.

The solutions to the §-dependent integrals

In the notation used for the solutions to the §-dependent integrals that follow, a spatial
increment from &1 to &y is indicated by appending a subscripted minus sign to Ag, a spatial
increment from & to &+1 is indicated by appending a subscripted plus sign to Ag, &, denotes
¢ at the top of the system, and &, denotes € at the base of the system. (In open systems, such
as those encountered in MCE, both the top and the base of the system are in contact with
dialysate. In closed systems, such as those encountered in AUC, the top of the system would
coincide with its meniscus, hence the subscript of n.) The integrals are solved for the

forward solution, in which &n.1 < &, < &n1.

A minus sign, a letter x, or a plus sign is appended to a single equation number for each
member of any set of two or three equations that reduces to a single equation in the case of
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(0ok/0%): = 0 and (dDx/0¢): = 0 at all &. Where one exists, an equation with a subscripted
minus sign precedes one with a subscripted x, and, where one exists, an equation with a

subscripted plus sign follows one with a subscripted x, for a given equation number.

With the hat functions (see Figure B3, above, and Equations B58 to B63, below) used for Py,

P; and Pj, the only nonzero solutions of the integrals in Equation B21 are:

$b $141 A
j P1P1df= P1P1df= iH;
m &
(B39)
3 ¢n &
[ Pamds = [ Papds =22
fm Eh—l
(B40)
b Eh+1 b b
[ Puds = [ papaas = 2( [ Paag + | Ph+1Phdf>;
sm sh—l m m
(B41)
¢p Ehe1 A’Eh
f Ppy1Ppdé = Py Ppdé = 6+ ;
‘fm fh
(B42)
3 én A&y _
f PNPNdfzf PyPydé = 3 ;
Em En-1
(B43)
fgbp p dPl d{ ff1+1p p dPl d{ 1
11—+ = 11— 7 = -5
£m d$ & d¢ 3
(B44)
fgbp P dphdf fghp P dphdf !
h—-1Th-1 757 = h—-1Th-1 57 =5
fm dg Eh—l df 3
(B45y)
]EbPP dphdf JEhPP dphdf ! 1fbp P dphdf
hfh-1—7 = hlCh-1—7 =Z=3 h-1Ch—-1 "7 ’
£m d¢ Enos d§ 6 2/, d§
(B454)
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$b apy, $h apry, 1 $b dpy,
Lm Py Pp—+ az dé = - Pp_ P — az df_g:Lm PhPh—ld_EdE;
(B46.)
f% Pd dé = %depﬁ+f%1w”wdfo
fm h df fh_l hth df hih f
—j&p P d&ﬂ+jﬁﬂp P M%@-
- h-1Th-1"3z7 h+1Th+1 57 )
Enes d¢ £ d¢
(B465)
h+1 b
j P z)dﬂwﬁ js P P(H%df 1—FPP dhdf
s h+1fh df h+1fh d{_— 6 gm hf h+1 dé—
(B464+)
) ap, $htt apy, 1 1 [$p apy,
LmPhPh+1 dfdg Lh PpPpyq dg‘df _g=§LmPh+1Ph+1 dfdf.
(B47))
ffbp p dPh dé’ ffhﬂp p dPh dé’ 1
h+1Th+1 —5 ¢ = h+1Th+1 57 = -3
Em d¢ & d¢ 3
(B47x)
fEbPNPNﬁdf—ng PuPy N e = L.
Em d¢ Enoa d¢ 3
(B48)
ffb dpP, dPy Py e _ ffmp dpP, dP; d{ 1
£ 1dg de Y'd d 204
(B49)
$p dP,_, dP Sh dP,_, dP 1 v dp,_, dP
f h*_fiﬂid:if P ;1E£ T 24 :f P dhldhdSz
£ ¢ d¢ Eht & d¢ $n- £ § d¢
(B50x)
S dpP,_, dP Sh dP,_, dP 1 $b dP, dP
[ R el I W (e
¢ dé  dé Ens dé  dé 208, _ ¢ dé dé
(B504+)
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f%P d&d&d _fﬁlj dmdmd 1
e, L dE dE G, L dE dE 208,
(B51))
§  dp,dP $nt1 dp, dP 1 1
fphhhdf Phhhf_( )
g, 4 dg g,  d¢ d& Ay A€h+
% dP,dP, %  dP,dP,
= (Lm Ph‘ld_fd_fdg +Lm Ph+1d_€d_€d€> ;
(B51x)
jsbp ﬁﬁdgzjghﬂp dphdphd(g: r
L dE dE gL dE dE T 208,
(B514+)
& dp,,,dP $ntr dp, ., dP 1 &b dpP, dP
[ S Shas= [T R ST - —— [P ST
£ a¢ d¢ £, a¢ d¢ 208, g d¢ d§
(B52.)
b dPy.,, dPy, St dPpy1 dPy 1 (% dPy, dP,
h+1™ ;7 3¢ Sz Ph+1 - - Ph d‘f
£ ¢ d¢ £ dé dé 208, g ¢ d¢
(B52y)
and
& dPy dPy o dPydPy 1
Tl vz g X T 2,
. § d¢ Eno1 § d¢ $n-
(B53)
where
Aé1y =841 — 1,
(B54)
Aép_ =8p —&h-1,
(B55)
Aépy = Spe1 — S
(B56)
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and

ASy_ =¢éy —Sn-1-
(B57)

The hat functions and their derivatives can be described as follows:

For § < &h.10r § > &ht1,

P, =0
(B58)
and
dP
@
(B59)
for&h-1 < E< &,
p~ G
(B60)
and
ap, 1
dE T A&,
(B61)
and for &, < & < &1,
(B62)
and
dp, 1
A& Mgy
(B63)

Replacing the subscript, h, with i or j in Equations B58 to B63 yields the equations that

describe Py, Pj and their derivatives with respect to &.
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Each integral in Equations B39 to B53 need only be evaluated within the domain where its

integrand is not equal to zero.

Where the integrand is P1P1, P1P1(dP1/dg), or P1(dP1/d%)(dP1/dg), the integral is evaluated
from &: to §1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dg, respectively.

Where the integrand is Ph-1Ph, Ph-1Ph-1(dPn/dg), Pn-1(dPn-1/d€) (dPn/dg), PnPh-1(dPn/dg)
(identical to Ph-1Pn(dPn/dg)), Pn(dPh-1/d€) (dPn/dE), or Ph.1(dPn/d&)(dPn/dE), the integral is

evaluated from &p.1 to &p.

Where the integrand is PnPh, PnPn(dPn/d€), or Pn(dPn/d€)(dPn/dE), and where 1 < h < N, the
integral is split in two, with one integral evaluated from &-1 to &, and the other integral

evaluated from &, to &h+1. The two integrals are then summed.

Where the integrand is Ph+1Ph, Pr+1Pn(dPr/d8) (identical to PnPn+1(dPn/d)),
Ph+1(dPn/d%) (dPn/dE), Pn(dPh+1/dE) (dPn/dE), Ph+1Pr+1(dPn/dE), or Pry1(dPh+1/dE) (dPn/dE),

the integral is evaluated from &, to &nt1.

Where the integrand is PnPn, PNPn(dPn/dE), or Pn(dPn/dE) (dPn/dE), the integral is
evaluated from &n.1 to &n. Equations B60 and B61, with h = N, describe Py and dPn/dg,

respectively.

Equations B60 and B61 give the functions used for P, and dPn/dg, respectively, in integrals
evaluated from &1 to &.. Equations B62 and B63 give the functions used for P, and dPy/dg,

respectively, in integrals evaluated from &, to &n+1.

Of the 23 types (within 15 groups) of integrals in Equations B39 to B53, 17 (Equations B40
to B42, B45x to B475, and B50x to B52x) apply to 1 <h <N, so that each one is evaluated for
[N - 2] different values of h. Of the remaining 6 types of integrals in Equations B39 to B53, 3
(Equations B39, B44, and B49) apply to h = 1, and 3 (Equations B43, B48, and B53) apply
to h = N, so that each one is evaluated for just one value of h.
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Of the solutions to the 23 types (within 15 groups) of integrals in Equations B39 to B53, 9
(Equations B44 to B48, each of which is a multiple of 1/6) are independent of &, 5
(Equations B39 to B43) are multiples of A&,./6 and A&,+/6, and 9 (B49 to B53) are
multiples of 1/2A&, and 1/2A&y+. For equally spaced points, A§1+ = A8n. = Aéh+ = Agh- = AT
for all h, in which case, the solutions to all 23 of the integrals in Equations B39 to B53
become independent of & Where Equations B40 to B42, B45x to B47y, and B50x to B52x are
independent of &, each one can be evaluated just one time, and the result applied to all

values of h.

The number, N, and therefore the spacing, of spatial elements, &, (Equations B54 to B57)
can be changed between time increments. Doing so, however, requires recalculating the
basis functions (Pn, Pi and Pj) and their derivatives (Equations B58 to B63), as a
consequence of which, the solutions to the integrals (Equations B39 to B53) must also be
recalculated. Furthermore, whenever changes in the number or spacing of spatial elements
requires the creation of a new, §-independent concentration coefficient, that coefficient’s
value must be interpolated from the values of its most closely related prior concentration
coefficients. Exploiting mass conservation can help to ensure that minimal error is
introduced in the process of interpolation, but also requires that mass conservation is
always enforced between time increments. (As the finite-element method does not
inherently ensure mass conservation, other methods must be employed for that purpose.)
Despite how all this may appear, changing the number or spacing of spatial elements does
not alter the time-independent nature of the basis functions. Instead, the map of the system
is altered. Thus, changing the number or spacing of spatial elements requires the

application of a wholly new solution of the continuity equation.

The case of (dox/0%): = 0 and (dDx/0d%): =0 atall §

In the case of (dok/0&): = 0 and (dDx/0¢): = 0 at all §, each ok is equal to the &-invariant
value of ox and each Dy; is equal to the &-invariant value Dx, which permits ok; and Dy to be
factored out of the summations indexed by j in Equations B16 to B24. The consequences to
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Equations B39 to B53 are described below. The numbering system for the equations of this
special case (where ok and Di are constant with &) follows that used for the more general
case (where ok and Dk can vary with &) above, with an asterisk appended to the number of

each equation that applies to the special case.

Equations B39* to B43* are unchanged from Equations B39 to B43, but can now be

expressed in terms of four of the other integrals:

bePd = mePd _ Ay .
j 115_s 115_ 3 3J‘fde1dP1
m 1 aE i f
(B39%)
ffb $h A&, 1
Py_1Ppdé :f Py_1Ppdé = =
6 fb dPh 1dPh
fm fh—l 6ffm dé— dé— df
(B40%)
b Sh+1 b b
[ Pads = [ papads = 2( | Paag + | Ph+1Phde> ;
sm sh—l m m
(B41%)
) She1 A§ 1
j Py Prdé =J Py Prdé = L
m £ 6 o [P Py
&n dE dE
(B42%)
$b SN Aéy— 1
Lm Pubude = )~ FuPnds=—3 3ffb dPy dPy 4; °
d¢ dé
(B43%)
zN:UbeP dP, dfl jfbp apr, " f1+1P apr, df 1
ir1 37 = 1 37 = 1_
Sl A8 o 48 & dg 2
(B44%)

replaces Equation B44;

54



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

zN:UbePh T dszl jfbph 1 df _J:h Ph_lc;—?ldf:%

h—1
(B45%)

replaces the sum of Equations B45x and B45+;

N ¢p ¢p Eh+1
P; Ph df Ph—df Ph df =0
Y[ an |- [ n e[

j=1
(B46%*)
replaces the sum of Equations B46., B46x and B46+;

YT én dp, $b dp, $he1 dp, 1
Z L PJ'Ph+1d_€d€ =L Ph+1d_€d€:L Ph+1d_€d€:_§
j=11em m

h
(B47%)
replaces the sum of Equations B47. and B47y;

N
Z PP P e = ]fb” dﬁdf gy B e 1
< JN - gE N s N aqg 2

(B48%)
replaces Equation B48;

il f% dpydP; l ffdeldPl f”ldpldpldg: 1
b dg d& d¢ dé g 4§ dg Ay,

j=1

(B49%)
replaces Equation B49;

iUbe. dPyy dPy l ffb dPy-y Py | fs‘h dPradbr 1
2\) PTag @ g & ®7), Tar @ Y
j=1

(B50%)
replaces the sum of Equations B50x and B50+;
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S p 4PadPy | Ebdphdph Shi1 dpy, dPy,
ZU baga l f @’ L a

=_<J5bdph 1 dPy i+ jf dPh+1dPh >
;o dE dE dé dé

replaces the sum of Equations B51., B51xand B514;

i ffb p P10y ffdehﬂdPh 2 fthdPhﬂﬂ gL
L), VA ag a7 ), A & T M

(B51%)

h
(B52%)
replaces the sum of Equations B52., B52y; and

iUfb dPydPy | l ffdeN dPy | fffv apydpy 1
UirTarT 2 az ° ¢ dE dE Ay

j=1 N

(B53%)
replaces Equation B53.

Each integral in Equations B39* to B53* need only be evaluated within the domain where

its integrand is not equal to zero.

Where the integrand is P1P1, P1(dP1/d%), or (dP1/d€)(dP1/df), the integral is evaluated from
€1to &1+1. Equations B62 and B63, with h = 1, describe P1 and dP1/dg, respectively.

Where the integrand is Ph-1Py, Ph-1(dPn/dg), or (dPn.1/d§)(dPn/d%), the integral is evaluated

from &n-1 to &p.

Where the integrand is PnPy, Pn(dPn/dg), or (dPn/d€)(dPn/df), and where 1 <h <N, the
integral is split in two, with one integral evaluated from &1 to &, and the other integral
evaluated from &, to &n+1. The two integrals are then summed.
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Where the integrand is Ph+1Ph, Ph+1(dPh/dE), or (dPn+1/d€)(dPn/df), the integral is

evaluated from & to &h41.

Where the integrand is PnPn, Pn(dPn/dE), or (dPn/d8)(dPn/dE), the integral is evaluated
from &n-1 to &n. Equations B60 and B61, with h = N, describe Py and dPn/dg, respectively.

Equations B60 and B61 give the functions used for P, and dPn/dg, respectively, in integrals
evaluated from &1 to &, Equations B62 and B63 give the functions used for P, and dPy/dg,

respectively, in integrals evaluated from & to &n+1.

Of the fifteen types of integrals in Equations B39* to B53*, nine (Equations B40* to B42%*,
B45* to B47*, and B50* to B52*) apply to 1 < h <N, so that each one is evaluated for [N - 2]
different values of h. Of the remaining six types of integrals in Equations B39* to B53*, three
(Equations B39*, B44*, and B49*) apply to h = 1, and three (Equations B43*, B48*, and

B53*) apply to h = N, so that each one is evaluated for just one value of h.

Of the solutions to the fifteen types of integrals in Equations B39* to B53*, five (Equations
B44* to B48*, each of which is a multiple of 1/2) are independent of &, and six (Equations
B39* to B43* and Equation B51*) can be defined in terms of one or two of the remaining
four (Equations B49*, B50*, B52* and B53%*). For equally spaced points, AS1+ = Aén. = Ah+
= A&y = AE for all h, in which case, the solutions to all 15 of the integrals in Equations B39*
to B53* become independent of §& Where Equations B40* to B42*, B45* to B47*, and B50*
to B52* are independent of §, each one can be evaluated just one time, and the result

applied to all values of h.

Equations B39* to B53* are equivalent to the integrals obtained by treating Dk and the
equivalent to Euk as §-independent in a previously obtained solution to an MCE-like
continuity equation [Cox and Dale, 1981]. That equivalence is further evidence that the first

approximate solution can be derived from the second.
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Tests of different solutions

The integrals in the solution to the t- and §-dependent continuity equation for MCE
(Equation B21) have been replaced with their evaluations shown in Equations B39 to B53
or Equations B39* to B53*, and those expanded forms of the solution to the continuity
equation for MCE have been used in finite-element simulations. Simulations of MCE based
on the second approximate solution (using Equations B39 to B53) have been found to
perform at least as well as simulations based on the first approximate solution (using
Equations B39* to B53*). (Highly contrived results for comparison can be found in Section

F: €&-dependent functions to approximate Dke and oke.)

First approximate solution

To express ok and Dk in terms of pseudo-§-independent parameters, each one is initially
approximated as a set of N scalar coefficients that can be a function of t but must be
invariant with & For oy, at all &, where 1 <h <N, those coefficients are

Ok,n = O at Sy,
(B64)
and for Dy, at all &, where 1 <h <N, those coefficients are

Dy n = Dy at &p.
(B65)

When it temporarily becomes more convenient to work with Eux and Dk instead of ox and
Dy, Euk is also initially approximated as a set of N scalar coefficients that can be a function of

t but must be invariant with &. At all &, where 1 <h <N, those coefficients are

Euk,h = Euk at Eh'

(B66)

Equations B64 to B66 define okn, Dxh and Eugn as constants with respect to §, and in the first
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approximate solution, are used in place of Equations B10 to B12. The resulting first

approximate solution to the continuity equation for MCE can be written as

EbPPd D fbP Ebdp"dpal
chh+<j nPidé — kh+lakh+J h gz f f . A& de $|A >

5 $b dPp; Ebdph ap;
+ Dy p- [Uk,h—J @ d¢ — . E dE fl )

(B67)

As usual, a minus or plus subscript refers to time t or [t + At], respectively. Equation B67 of
the first approximate solution is obtained by applying Equations B64 and B65 to Equation
B21 of the second approximate solution in the case of (dox/d¢): = 0 and (dDx/dE): = 0 at all
€. Thus, when oxn and D are used as they are in Equation B67, each ok should equal &-
independent oy, each Dk should equal é-independent Dk and, given that (0Eux/d8): = 0
when (dok/0%): = 0 and (dDk/0%): = 0, each Euxh should equal &-independent Eux.
Furthermore, these conditions make it highly likely that (dDx/dt): = 0 in general, and that
(0Euk/0t)s = 0 and (dok/0dt)s = 0 at constant field. Therefore, Dk is likely to be t-
independent in general, and Eukh and ok are likely to be t-independent at constant field. All
such constraints are purposefully violated in the following treatment of the first

approximate solution.

As typically, but incorrectly, applied, the constants, okn, Dkh and Eugp, of the first
approximate solution are treated as if they were functions of solute concentration. Thus,
okh, Dxh and Eugh become pseudoconstants with respect to €. Truncated virial expansions
are used to approximate the dependence of oxn and Dxh on the concentration, cq, of each
explicitly included solute component, q. To evaluate these pseudo-¢-independent constants

indexed by h, prior to each time increment, Dxh and okn are approximated by
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. qu’hb\
/Zb=1 Ya=1Ybkgq o

(e} n )
Yib=12g=1Mb kg eon

Dk,h = D%

(B68)
and
- dc ,hb\
/Zb:l X4=1Pb kg quq,h
Okh = 0°k degn® |
g0 g GCqn_
b=12q=1Ybk,q dcg
(B69)

respectively, where n is the number of solute components, D% at all € equals Dk at &, at time
t in the limit as c approaches 0, 6°« at all § equals ox at &, at time t in the limit as

c approaches 0, cqn is the €-independent concentration coefficient of solute component q at
time t or [t + At] (cqh, at all §, equals cq at &, just as cxp, at all §, equals cx at &, in Equation
B6), and where pb,kq, Ybkq and hyiq are the bth of up to an infinite number of coefficients of
proportionality for the electrophoretic/asymmetry, thermodynamic nonideality, and
viscosity effects, respectively. By definition, }.¢_1 P1x,q Xq=1Y1,kq and Xg=1 hy x4 are each
equal to 1. (Each of the ppkq, Ybkq and hyxq coefficients couples the concentration of
component q to an effect on the transport of component k. See Section D for more details

regarding these component-based virial expansions.)

Both 0°k and Dk are &-independent by definition. Furthermore, the first approximate
solution cannot be applied to systems in which changes in solvent density cause (dpo/d%)t
to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied
to systems in which solute concentration gradients cause (dp/d¢): to differ from zero.) As
discussed in the definitions of D°; (Equation B22) and 0°k; (Equation B23), the condition
that AD°;/Aj = 0 and Ac®°k;/Aj = 0 for all solute components can only apply to a system

with an incompressible solvent, in which case, D°%; and 0°k; can be replaced with D°, and
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0°k, respectively. Hence, the use of D°% and ¢° in the first approximate solution.

As noted, when oxn and Dkh are used as they are in Equation B67, each oxn should equal §-
independent ok, and each Dkh should equal §-independent Dx. Thus, the use of Equations
B68 and B69 is incorrect, except where all coefficients of b(cq)P-1 for b > 1, which is to say
all pvkg, Yokqand hyrq for b > 1, equal zero, and where, as previously noted, the solvent is
incompressible and (dp/d%): = 0 at all € and t. (Compare the properties and uses of
Equations B68 and B69, with those of Equations B22 and B23, respectively.)
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Section C: A solution to the t- and &-dependent continuity equation for MCE in terms of

species

In a completely proper application of irreversible thermodynamics, the summations in the
equations for concentration, flow and continuity, and hence the summations in any solution
to the continuity equation for MCE, would be over solute components rather than solute
species, and at a given spatial position (expressed as ) and time, it might be expected that
the transport coefficients needed for each solute component, k, would be its weight-average
(over all species of component k) electrophoretic mobility coefficient multiplied by E,
E(ux)w, and its gradient-average (over all species of component k) diffusion coefficient
[Johnson et al., 1973], (Dx)c, the expectation being that E(ux)w = Euk and (Dx)c = Dx. To
account for the t- and €-dependent changes in the concentrations of the individual species
that sum to ck, in addition to the aforementioned transport coefficients, E(ux)w and (Dk)g,
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the chemical equations that describe mass-action associations, dissociations or other
reaction flows linking any of the species of a solute component would be needed. (See

Section G: The dissipation function and the Curie-Prigogine principle.)

If the diffusion and electrophoretic mobility coefficients of a solute component’s individual
species could be defined, (Dx)c and E(uk)w could be calculated. (The diffusion coefficients
and concentration gradients of a solute component’s individual species would be used to
calculate (Dx)g, and the electrophoretic mobility coefficients and concentrations of a solute
component’s individual species would be used to calculate (ux)w.) The reduced valence
coefficients of a solute component’s individual species could then be defined in terms of the
diffusion and electrophoretic mobility coefficients of a solute component’s individual
species. Finally, on the basis of the above expectations and Equation A23a, the relationship
of ok to the reduced valence coefficients of a solute component’s individual species could be
determined using ox = E(ux)w/(Dx)c. What follows is an approach to defining these
transport coefficients for each solute component’s individual species. The transport
coefficients obtained are then applied to the solution of the continuity equation expressed

in terms of species.

Letting nk represent the number of species that constitute solute component k, and indexing

the species by e,

dc
2221 Dk,e( a%e)
Dy = (D) = FE :
an ( k,e)
e=1 az .
(C1)
and
nk Nk
XUy oC “ Dy 0y C
Dko-k = Euk = E(uk)w = Eze_;k ke ke = Ze—l n,’:'e ke~ke = (Uka)W )
Ze:l Ck,e Ze=1 Ck,e
(C2)
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where cke is the concentration of species e of solute component k, Di is the diffusion
coefficient of species e of solute component k, ok is the reduced valence coefficient of
species e of solute component k, uke is the electrophoretic mobility coefficient of species e
of solute component k, oxeDke is defined (by analogy with Equation A23a) as equal to Euyeg,
and (oxDx)w is the weight average of the product, okeDke, for all species of solute component
k. The concentration of component k is equal to the sum of the concentrations of all species

of solute component k. Thus,

(€3)

The definitions above permit Equation A24 to be rewritten as

s & dlncy o dincy,
I = Z Lie = Z CieDie |Oke — ( 9¢ ) = ¢ [E(uidw — (Didg < ¢ )
e=1 e=1 t t

= ¢, Dy, lO'k - (%)tl ,

where Ik is the mass flow of species e of solute component k. A comparison of Equations

(C4)

A24 and C4 shows that, if Equation C4 is valid, (Dx)c = Dx and (ux)w = ux, and thus,

G = Euk _ E(uk)w _ (alnck> 2221Dk,e0-k,eck,e
K =
t

D. (D “\ 9 dc '
K (Dr)g § 2:§1Dk,e <6—k§e>t

(C5)

Note that (Dx)c and (ux)w are averages for all species of a single solute component, k, while
D¢ and uw (described in Section A) are averages for all solute components. (Equations A30
and C1 describe D¢ and (Dk)g, respectively. Equations A31 and C3 describe uw and (ux)w,

respectively.) There is no simple relationship between ow and any average of the oie
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coefficients. (See Equations A36 to A40, which show the relationships between ow, the ox

coefficients, and the steady-state value of Euw/Dg.)

The diffusion coefficients and concentration gradients of all solute species can now be used

to calculate the overall gradient-average diffusion coefficient,

)

(o) e

() e 3 (%) 000 |, (e

dc
t

dc
e Xk (T

(Co)

(see Equations A29 and C1). The electrophoretic mobility coefficients and concentrations of
all solute species can now be used to calculate the overall weight-average electrophoretic

mobility coefficient, which, multiplied by E, is

[ Ze 1uk eCk, el
n
EZk 1 Cr Uk EZk 1Ce(Udw X Che EZ};l Yes1 UkeChe

k=1Ck k=1 Ck Zk:l Ck k=1 ZZil Cre

Eu,, =

(C7)
(see Equations A30 and C2).

The reduced valence coefficients, concentrations and concentration gradients of all

membrane-confined solute species are related to Euw/D¢ through
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Yk (0D)w TR X0k, OkeDyeCre 1 X0k 0Dy eCre
Eu,, _ (aD)y _ k=1 Ck _ D=1 Ck _ Dik=1Ck
D D D D dc
¢ ¢ ¢ G f=1 et Dice (6_%6)
¢

)

_ <alnC) ;cl=1 Zgi1o-k,eDk ecke
~\ 9 dc

e |mn e b (%62)

t

(C8)
(see Equations A30, A32 and A40).

A comparison of Equations A32 and C8 shows that

n n ng
Yk=10kDiCre _ k=101 OkeDieCre

ock\ dc '
eaDi(GE), b et e (%58),

(C9)
Using Equation C5, Equation A40, which describes the concentration distribution of
membrane-confined solute components at steady state in MCE, can be rewritten in terms of

solute species as

n I 6Ck e 1Dk eOkeCre I -
l € p <6ck,e) n [Zezl Dk,eak,eck,el
k=
o, Zk 10kCr _ e\ 9% _ ' Dy
v Dk=1Ck 2k=1 Ck Dk=1Ck '

(C10)

where, as in Equation C5, use has been made of the equivalence, assuming Equation C4 is
valid, of Dk and (Dx)¢. As a comparison of Equations A39 and C10 shows, at steady state, the
numerator in each expression on the right-hand side of Equation C10 is equal to dcmc/dg,

where cmc is the total membrane-confined solute concentration.
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Transport and reaction flows

If a mass flow changes the concentration of a component that chemically reacts with other
components, a reaction flow may further change the concentrations of all participating
components. (See reference to the Curie-Prigogine principle, below.) Thus, reaction flows
describe how the local concentration of each component depends on the local
concentrations of any reactively linked components. (The change in the concentration of a
component, in turn, will tend to be the main factor determining how the concentrations of
that component’s solute species change, at least in the absence of a mass flow.) The
irreversible thermodynamic expressions for Dy, uk, and ok (Equations A21 to A23a)
describe how the transport coefficients change as local properties of the system (mainly
solute component concentrations) change. These transport coefficients, then, pertain to the
transport flows. If these transport coefficients were sufficiently sophisticated, they could be
used to adequately treat any system on a component-by-component basis, so that the
values of Dk and ux calculated for each solute component would be the appropriate average
values, (Dx)c and (ux)w, respectively, again assuming Equation C4 is valid. Such an approach
would accurately reflect the underlying irreversible thermodynamic theory, but at a cost of

much effort to determine and evaluate the required functions.

In the actual application of the finite-element method described here, the transport of each
species of a multi-species solute component is, in fact, treated as if it were the transport of a
single-species solute component. Thus, the transport of a solute component is handled
species-by-species, and any reactive interaction (typically mass-action
association/dissociation) between species is implemented as a distinct operation
conducted prior to, and separately from, the set of transport operations for all species for a
given, finite time increment. (See Section B: Steps taken to solve the t- and -dependent
continuity equation for MCE.) The reaction forces and flows are scalars (tensorial order 0),
while transport forces and flows are vectors (tensorial order 1), and the Curie-Prigogine
principle states that there is no coupling between flows and forces of different tensorial
order [de Groot and Mazur, 1962; Katchalsky and Curran, 1965]. As such, reaction flows are
not expected to drive transport flows when the system is isotropic, and there are no

phenomenological coefficients linking reaction forces to transport flows, or transport forces
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to reaction flows. (See Section G: The dissipation function and the Curie-Prigogine principle.)
Thus, treating the transport and reaction flows separately is theoretically sound.
Furthermore, much that applies to solving the continuity equation in terms of components
(Section B) can be applied to solving the continuity equation in terms of species (this

section).

Using the above parameters described in terms of solute species (Equations C1 to C10), the
solution to the continuity equation for MCE in terms of solute components, which is derived
in Section B (Equations B1 to B33), can be revised to obtain a solution to the continuity
equation for MCE in terms of solute species. Near the end of this section (Consequences for
average parameters), evidence will be presented in support of the hypothesis that the finite-
element solution to the t- and &-dependent continuity equation in terms of solute
components can be obtained from the finite-element solution to the t- and §-dependent
continuity equation in terms of solute species. To the extent that this hypothesis is valid, the
practicality that led to the following solution in terms of species can be said to yield a

solution that can be properly cast in terms of components.

Steps taken to solve the t- and §-dependent continuity equation for MCE in terms of solute

species

As in Section B (Steps taken to solve the t- and §-dependent continuity equation for MCE), the
following finite-element method for solving the t- and §-dependent continuity equation in
terms of species requires a resort to discrete spatial elements and a finite time increment.
Here, too, this method for solving the continuity equation further requires the flow of each
solute species to be zero at the system boundaries, &y and &,. Thus, except for the implicitly
treated and presumably membrane-permeant solvent component, the finite-element
solution shown is applied to membrane-confined species only. Also as in Section B, a
virtually infinite system that includes the membrane-bound system, and extends well
beyond both membranes, can be defined. For the virtually infinite system, at some
appropriately distant points far from the membranes, the zero-flow boundary conditions
can be imposed on membrane-permeant species, so that the same finite-element method

can be used to solve the continuity equation for both membrane-confined and membrane-
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permeant species, albeit with different systems, which have different boundary positions,
applied to the different types of species. (For simplicity, except for its much longer length,
the virtually infinite system can be treated as having the same geometry as the membrane-
bound system.) For each partially-confined species, both the membrane-bound and the
virtually infinite system can be applied, with the proportion of time increments for which
the virtually infinite system is applied set equal to the proportion of the partially-confined
species that exhibits membrane-permeant behaviour. For both the membrane-bound and
the virtually infinite systems, the solute species are treated explicitly, while the solvent

component is treated implicitly.

Using Equations C3 and C4, the continuity equation (Equation A26) is re-written in terms of

species to yield

>3 (Coe) 225
k=1e=1 k=1e=1
(C11)
The solution begins with an integration that takes advantage of the boundary conditions to
eliminate the partial derivatives with respect to &. To that end, the above form of the
continuity equation is multiplied by H, which is an arbitrary function of §, and then

integrated over the entire range of €. (Ultimately, H will be replaced by a set of N functions

of € indexed by i, where 1 <i<N.) Thus,

) n K b
ZZJ ac"e de : —;;Lm (aé’ge)tde.

k=1e=1

(C12)
Integrating the right hand side of this equation by parts results in

OMINCRT

- ZZ[H(fb)Ik,e(fb)—H(fm)lk,e(fm)]_sz < ) fiedS ],
k=1e=1 k=1e=1
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(C13)

where Ixe(§) is Ixe at £ and H(E) is H at €. As the boundary conditions in MCE are Ixe(§m) = 0

and Ixe(Ep) = 0, the preceding equation reduces to

szb a"“’ de szb ag Ieds

k=1e=

(C14)
Furthermore, as H is independent of t, (0H/0¢): = dH/d¢. Thus,

ZZFJ I"edf ZZdefI"edf

k=1e=

(C15)

and Equation C12 becomes

a . S (i dH
ZZJ C" de:kz;;Lm 7 ledt

(C16)
Next, cke is approximated as the sum of N products, each of which consists of a &-dependent
function, Py, multiplied by a corresponding £-independent coefficient, cken, which

nevertheless remains a function of t. With both Py and cken indexed by h, where 1 <h <N,

nk

k=1 k=1le=

=
&
1l
[N
4]
1l
[N
>
1l
=

(C17)

Each element, h, corresponds to a point, &. By convention, & = &n and & = &,. Despite the
association of h with spatial parameters such as &, cken is independent of §, so that
(Ocken/08)t = dcken/dE = 0 at all & (Each cken is £-independent, and at all € is equal to the
value of cie at &h.) See Figures B1 through B6, which, for the case of equal spacing between

adjacent &, show the consequences of using the hat function (also known as the triangular
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function) for each Py, along with the corresponding set of £-independent solute species
concentration coefficients, cken. (Equations B54 to B57 describe Ag for the general case, in
which Ag can be different for different pairs of adjacent points. Equations B58 to B63
describe Py and dPy/dg for Py in the form of the hat function, and the case of potentially
variable A¢.)

As cken is independent of &, (dcken/0t)s = dcken/dt, so that
n Mg N

zzzd kehf’pmg zzﬁ ol

=1le=1h= m k=1e=

(C18)
Expanding Ix (Equation C4) as

ng ng
6lnck e OCk e
Iy = Z Iye = Z CkeDie |Tke — Z Ok,eCk,eDke — Die (y) ,
e=1 t

and re-writing each Ixe in terms of the -independent species concentration coefficients and

corresponding ¢-dependent functions results in

Nng Nk
Iy = Z Iye = Z
e=1

N N

dp,
Ok,eDe Z CkenPn — Die Z Ck.en d_f .

(C19)
Using Equation C19 to substituting for Ixe in Equation C18 yields

N N

dp,

Ok,eDie CkenPn — Die Ckeh _df
h=1

n MNg

>yt [y Y [4

le=1h= k=1le=

ds,

which expands to
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n Ng N de &
k,eh
Z Z dt f PrHdS
k=1e=1h=1 m
n n - N
$b dH
=;Zf d_f UkeDkeZCkehPh d¢
e=1 °>m L h=1
n Nk - N
22 e ]
- -7 | Yk Ckeh )
k=1e=1"Sm dg i h=1 dg
and rearranges to
n nNng
55 e [
&m
=le=1h=
z":nkz'v: jfb D PdeE B fbD dP"deE
= Ck.en Okelkeln _Z chehj ke -
k=1e=1h=1 $m df k=1e=1h=1 ém df dé—
(C20)

The dependence of Dx (Equation A21) and ox (Equation A23) on the concentration, cq, of
each explicitly included solute component, g, renders Dke and oke dependent on the
concentration, cq,,, of each species, a, of each explicitly included solute component, g. This
concentration dependence, in turn, makes Dk and oke §-dependent in all but special cases,
such as t = 0, when all (dcqa/08): = 0 at all & (Where the solvent is compressible, it is
remotely possible that, once |E| exceeds zero, (0po/d%): # 0, in which case, in all likelihood,
(0cqa/08)t will not equal zero at any position at any subsequent time.) To obtain a second
approximate solution to the continuity equation for MCE, Dk and ok are expressed in
terms of £-independent coefficients that are separable from §-dependent functions. In
Section F (§-dependent functions to approximate Dye and oke), the second approximate
solution is compared with a first approximate solution that pertains to the case of
(0Dke/0%): = 0 and (doke/dE): = 0 at all & The solutions of the integrals of first approximate
solution were derived from those of the second approximate solution in Section B (The case

of (90k/9E): = 0 and (8Dy/dE): = 0 at all ¥).
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As it temporarily becomes more convenient to work with Euke and Dye instead of oxe and
Dk, Euke is approximated as the sum of N products, each of which consists of a §-dependent
function, Pj, multiplied by a corresponding &-independent coefficient, Eukej, which

nevertheless remains a function of t. With both Pj and Euk.j indexed by j, where 1 <j <N,

N
Euk,e = z Euk'e'ij ,
j=1

(C21)

where each Eugej at all € is equal to Euge at §j. The result expresses Euk.e as separable &-
independent and &-dependent terms. Here, E and uke, each of which is t- and §-dependent,
are combined to implicitly form a single, t- and ¢-dependent parameter, Eugxe = vke, where
Uke is the t- and &-dependent electrophoretic velocity of species e of component k. (The total
velocity is equal to that due to diffusion plus that due to electrophoresis, which includes the
effect of solvent flow.) Thus, Eukej = Ukej, Where vk is approximated as the sum of N
products, each consisting of a £-dependent function, P;, multiplied by a ¢-independent

coefficient, vkej, which nevertheless remains a function of t.

To express Dk as separable &-independent and §-dependent terms, this transport
coefficient is also approximated as the sum of N products, each of which consists of a &-
dependent function, P;, multiplied by a corresponding ¢-independent coefficient, Dkej, which

nevertheless remains a function of t. With both P; and Dk indexed by j, where 1 <j <N,

N
Die = ) DicesP,
j=1

(C22)

where each Dke; at all € is equal to Die at ;.

Equations C21 and C22 are combined to define ok in terms of separable £-independent and
¢-dependent terms, which results in the species analogue of Equation A23a,

N
P Euy e _ Zj=1Euk,e,ij
ke — - N .
Dk,e 2j=1 Dk,e,jpj
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(C23)

While the same approach has been used to express cke, Dke and Euke in terms of -
independent coefficients of &-dependent functions, those &-independent coefficients and &-
dependent functions are indexed by h in the case of cke, but indexed by j in the case of Dke
or Euke. At any given time, then, the §-dependent functions used in the description of cke are
expressed in terms of &, while the &-dependent functions used in the descriptions of Die
and Eug. are expressed in terms of §. To use these parameters together in the same solution
of the continuity equation, at each time point, the set of all §; is made equivalent to the set of

all &,

Using Euk_e in place of oxeDke (from a re-arrangement of Equation C23) results in

n Nk
dckeh &
ZZ dt j PrHdg
k=1e=1h=1
n Ng N n Ng N
DIDXIEEN TEPRRSYIES + &
Cken Ugeln—F Ckeh Dy e —7—7d¢.
k=1e=1h=1 §m df k=1e=1h=1 $m g dg
(C24)

Replacing Euke with the expression in terms of Eukej, and replacing Dk with the expression

in terms of Dy, yields

n Nk

zzzdckeh fbthdg

=le=1h=1
3
Ck h.f
3

nk

INGE

dH
Euke]P Ph df df

el iMz

n

k2=1e=1 m j=1

Zn:nk fs‘biD dPhdeg‘
Ck,e,n ke,j ]

k=1e=1h=1 $m j=1 df df

and permits the §-independent parameters, Dkej and Eukej, to be factored out of the

integrals. Thus,
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n Nk N
degen (50
Z Z dt jPthf
k=1e=1h=1 m
n Nk N & dH
=Z chethuk,e,jU P]Phdgdsel
k=1e=1h=1 j=1 $m
555 S8
— Ck.en k.e,j J
k=1e=1h=1 j=1 df dE
(C25)
Letting
_Euk'e,]-
O-k,e'j—Tej;
(C26)

where okej is §-independent by virtue of Dkej and Euke;j being &-independent, the solution

can now be expressed, after some rearrangement, as

zn: z: deehj PyHd¢ — ED l jbeP dé — jfb il dfl
Cc 0
h k,eh k.e,j|Yk.e,j 5 hdf ] df df

k=1e=1h=1

ng

(C27)

At all €, each of the N scalar coefficients, oke;j (defined in Equation C26) is equal to oke at ;.
As a result of using Equation C26 in Equation C27, the product, Dxc0oke, has been expressed
as the sum of N products, each consisting of a §-dependent function, Pj, multiplied by a &-
independent coefficient, Dxejokej, which nevertheless remains a function of t. Additionally,
the coefficient Diejokejis itself the product of the previously defined coefficients, Dke; and

Gk,e,]'.

Dividing Equation C27 by 2, and expressing dcken/dt as Acken/At, where Acken and At are

finite increments, yields
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ngk

1 n N Ac Cien $b &b dPhdH
EZ Z f P Hd¢ — Ckethkej akelL PPh a& dE f b dE d¢ el

k=1e=1h=1 j=1

(C28)
The difference between the unknown concentration, cken+ = Cken at [t + At], and the known
concentration, Cxen- = Ckeh at t, is the change in concentration, Acken, during the time

increment, At = [t + At] - t. Using Ackeh = Ckeh+ - Ckeh-, and multiplying by At, yields

n k N
Z Z Ckeh+ — Ckeh] Pthf

=le=1h=1
E D I fEbPP df' ffb -t dfl
—C g,
k,e,h ke, j |Yk.e,j - h 5z lf ] lf lf

n

[\)Ib—\

(C29)

The remaining cxen term can be replaced with either cken-, which would yield the less
stable explicit solution, or cken+, which would yield the more stable implicit solution. In the
Crank-Nicholson approach [Schuck et al., 1998] used here, both substitutions are made,
resulting in two forms of Equation C29. Additionally, oke;j+ and Dkej+, which, respectively,
represent okejand Diej at time [t + At], are used in conjunction with the explicit form of
Equation C29, where cieh is expressed in terms of cken+. Finally, okej- and Dyej., which,
respectively, represent okej and Diej at time t, are used in conjunction with the implicit
form of Equation C29, where cken is expressed in terms of ckeh-. The two resulting versions
of Equation C29 are summed to yield, by virtue of the previous division by 2, their average.
The average, like any sum of the two solutions, is considered stable, and is expected to

permit the use of larger At values than either the explicit or implicit solution alone would.

Applying the Crank-Nicholson approach yields, after some rearrangement,
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ng
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= ém ém
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(C30)

As oy and Dy are functions of all ck (see Equations A21 to A23), and as each ck is time
dependent (see Equation A26), ok and Dk are also time dependent. Thus, for the purpose of
obtaining a general solution, oke;- and Diej- must be expressed as functions of parameters
equal to all cken- for which h = j, while oxej+ and Dkej+ must be expressed as functions of
parameters equal to all cxen+ for which h = j. General expressions of this sort are presented

shortly. (See Evaluating the &-independent coefficients of the basis functions indexed by j.)

At this point, there are n equations and nN unknown values of cgen+. To obtain the nN

equations needed to solve for all values of cken+, H is replaced by N functions,

N
H:ZPL',
i=1

(C31)
where each Pj has the same functional form as each corresponding Py. (Fori=h, P; = Py.)

Applying Equation C31, the set of equations describing the solution is given by
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(C32)
The result is solved for cken+ using the process described below. (See Solving for cken+.)
Interactions between solute components are handled separately between time steps. (Also

see Solving for cien+.)
Evaluating the &-independent coefficients of the basis functions indexed by j

Truncated virial expansions are used to approximate the dependence of Dxe-, Dkejj+,
Okej- and okej+ on the concentration of each explicitly included species of each explicitly
included solute component. To evaluate the &-independent coefficients of §&-dependent
functions indexed by j (see Equations C21 and C22), prior to each time increment, Dy,

Die,j+, Okej- and okej+ are, to the extent possible, approximated by

b
dcgq,j-

/Zf,o:lZ 12 1kaeqadc—\

a,j—
dc b
q.a,j—
Zzozlzf;:lz hbkeqa dcqa]—

—_— o
Dk,e,j— =D ke j—

)

(C33-)
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respectively, where n is the number of solute components, nq is the number of species that
constitute solute component q, D°gj- at all € equals Dke at j at time t in the limit as
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c approaches 0, D°%ej+ at all £ equals Dke at §j at time [t + At] in the limit as ¢ approaches 0,
0°ke,j- at all § equals oke at & at time t in the limit as c approaches 0, 6°e;j+ at all § equals ok
at §j at time [t + At] in the limit as c approaches 0, Eu°kej- at all § equals Euke at & at time t in
the limit as c approaches 0, Eu®ke;+ at all § equals Euxke at §; at time [t + At] in the limit as

c approaches 0, cq,aj- is the &-independent concentration coefficient of species a of solute
component q at time t (at time t, cqaj., at all §, equals cq,a at §j, just as cxen, at all §, equals cke
at & in Equation C17), cq,aj+ is the §-independent concentration coefficient of species a of
solute component q at time [t + At] (at time [t + At], cqaj+, at all §, equals cq.a at §j, just as
Ckeh, at all §, equals cke at &n in Equation C17), and where pukegqa Ybkeqa and hpkeqa are the
bth of up to an infinite number of coefficients of proportionality for the

electrophoretic/asymmetry, thermodynamic nonideality, and viscosity effects, respectively.

. g n n n
By definition, ZZ=1 Zail Pikeqa ZZ:l Zail Yikeaqa and ZZ:l Zail hl,k,e,q,a are each equal
to 1. Each of the pykeqa Ybkeqa and hpkeqa coefficients couples the concentration of species
a of component q to an effect on the transport of species e of component k. (See Section D

for the component-based equivalents of these virial expansions.)

With + representing either - or 4+, Equations N23+ and N24+ can be used in place of
Equations C33+ and C34+, respectively. Henceforth, cq. is used to denote the concentration
of species a of solute component q at either time t or time [t + At], and some unspecified

position, ;.

Individually, the product of b(cga)? -1 with the corresponding coefficient of proportionality
Pbkeqa yields the bth term for the contribution of cq. to the electrophoretic/asymmetry
effect of the system as it affects the transport of species e of component k, the product of
b(cqa)P -1 with the corresponding coefficient of proportionality yb,ke,qa yields the bth term for
the contribution of cq,. to the thermodynamic nonideality of the system as it affects the
transport of species e of component k, and the product of b(cga)? -1 with the corresponding
coefficient of proportionality hpxeq.a yields the bth term for the contribution of cq,a to the
viscosity of the system as it affects the transport of species e of component k, where

b(cqa)® 1 = d(cqa)"/dcqa.
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Collectively, the sum of products given by ;" quzl ;9,,,,(,6,,"“1bcq,ab_1 is a measure of the
total contribution of cqa to the electrophoretic/asymmetry effect of the system as it affects

the transport of species e of component k, the sum of products given by

Yihes ZZil yb,k'e,q'abcq‘ab_1 is a measure of the total contribution of cqa to the
thermodynamic nonideality of the system as it affects the transport of species e of
component k, and the sum of products given by Y5, quzl hb,k,e,q,abcq,ab_1 is a measure of

the total contribution of cq,. to the viscosity of the system as it affects the transport of

species e of component k.

Henceforth, okej, Dkej and Euke;j are used to denote the §-independent transport coefficients
at either time t or time [t + At], and 6°kej, D°kej and Eu®kej are used to denote the &-
independent transport coefficients at either time t or time [t + At] in the limit at c

approaches zero.

By definition, 6°ej, D°ejand Eu®kej, are &-independent, and for a given t-independent
electrical current, may also be t-independent. In the case of solvent compressibility
however, the expectation is that Ac®kej/Aj # 0 and AD°;/Aj # 0, from which it follows that
AEu®kej/Aj # 0. The condition that, for all solute species, Ac®kej/Aj = 0 and ADke;/Aj = 0,
from which it would follow that AEu®ke;j/Aj = 0, can only apply to a system with an
incompressible solvent, in which case, 6°ke,j, D°kej and Eu®kej can be replaced with their
respective, system-wide constants, 6°e, D°ke and Eu®ke. (In writing Equations C33 and C34,
it was assumed that Appkeqa/Aj = 0, Aybkeqa/Aj = 0 and Ahpkeqa/Aj = 0 for any given pair
of species e and a of their respective components k and g, even in the case of solvent
compressibility. If required to deal adequately with the case of solvent compressibility,
Pbkegqa Ybkega and hpkeqa can be replaced with their respective j- and t-dependent
coefficients, which would be pubxe,qaj- Ybkeqaj- and hpkeqaj- at time t, and would be ppxe,qaj+
Vbkeaqaj+ and hpkegqaj+ at time [t + At], where, denoting a coefficient at either time by
dropping the - or + suffix, Appkeqaj/Aj # 0, Aybkeqaj/Aj # 0 and Ahpkeqaj/Aj # 0 for any

given pair of species e and a of their respective components k and q.)
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(As Eu®kej and 0°kej only apply in the limit as c approaches zero, and thus, where E is &-
independent, it would be incorrect to incorporate the §-dependence of E into the j-
dependence of Eu®ke; or 6°e;. Practically speaking, however, it may be useful to do just that,
especially for the analysis of systems at steady state, when the &-dependence of E is time-
invariant. When applied to experimental results, such analysis would best be attempted
only after acquiring steady-state data at multiple current strengths for multiple systems
that differ solely with respect to the total, net concentration of membrane-confined solute
components. Extrapolation of ow (see Equation A39) to zero current and zero solute
concentration should yield ow = 0. The dependence of ow on current and solute
concentration could then be used to find functions describing the §-dependence of such

apparent Eu®kej or 6%e,.)

To avoid quadratic and higher-order terms in cqaj- Or cqaj+, along with other complicated
terms arising from the presence of a truncated virial expansion in the denominators of ok,
and Dx.;j in Equations C33 and C34, no effort is made, initially, to solve Equation C32 as
written. Instead, Equation C32 is solved as if okej+ and Dkej+ were independent of all cqaj+,
and as if okej- and Dgej- were independent of all cqaj.. Furthermore, because cg.j+ values are
not known prior to their use in okej+ and Diej+, Okej- and Diej- are used in place of okej+ and
Dke,j+, respectively. The resulting solution is that referred to as the second approximate
solution. (As previously mentioned, the first approximate solution that pertains to the case
of (0Dke/0%): = 0 and (doke/0%): = 0 at all € will be derived from the second approximate

solution.) The discussion of this issue is continued following Equation C35.

Equations C33 and C34 use a set of power series of each solute species concentration to
describe the thermodynamic nonideality, viscosity and electrophoretic/asymmetry effects
of the solution. For solutions that are too concentrated to permit the use of highly truncated
virial expansions in the description of parameters such as Dk, oxe and Euke, additional
terms from the infinite series can be retained. (See Section D: Expressions for the deviation
from van 't Hoff behaviour and other virial expansions. The expressions shown in Section D
are based on a component-by-component description of the system, but by extension,
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corresponding expressions based on a species-by-species description of the system can be
obtained.) It is, however, incorrect to treat okej, Dkej and Eukej as if they were functions of
any terms involving solute concentrations in the second approximate solution, unless that
solution is applied iteratively within each time increment. The general solution presented in
Section ] (Form of the general solution from Equation C32) does apply the second
approximate solution iteratively, and thus permits the concentration dependence of oke,,

Diejand Euke;j at times t and [t + At] to be treated correctly.

Solving for ckeh+

There are now three sets of space-dependent, time-independent basis functions (the set of
all Py, Pi and Pj), and there are N functions per set of such basis functions (1 <h<N,1<i<
N, and 1 <j < N). For each species e of solute componentk, at either time t or [t + At]: there
are N space-independent, time-dependent, concentration coefficients, cken; there are N
space-independent, time-dependent, diffusion coefficients, Diej; and there are N space-
independent, time-dependent, electrophoretic mobility coefficients, uke; which are related
to the N space-independent, time-dependent, reduced valence coefficients through Eukej =
Dkejokej. For the case of each Py, P; and Pj being a hat function (as described by Equations
B58 to B63), for each species e of solute component k, at either time t or [t + At]: each
product, ckenPn, is maximal at spatial element h, and is zero below spatial element [h - 1] or
above spatial element [h + 1]; while each of the products, De;Pj and Dkejok.e,;Pj, is maximal
at spatial element j, and is zero below spatial element [j - 1] or above spatial element

[j +1].

Let
F e ni+ =j€bPhPid€_kaej+ [Ukej+f§bpjphﬁdf—ffbpjﬁﬁdflm
ehit = ) £y heds [Therr | BTnag @) Vg dg
and
erhi_=fbphpidf+§:0kej_ [gkej_jfbpjphﬁdg_jfbpjﬂﬁdglm
- = e d§ g, 4§ dS
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(C35)

Equations B33 and B34 are used to calculate Dyej and ok, respectively. Despite their
dependence on all cqaj+, for each iteration (see Section ]) of the second approximate
solution, okej+ and Diej+ are treated as if they were independent of all ckej+, and in the first
iteration of any given time increment, oxej+ and Diej+ are replaced with okej- and Diej-,

respectively, all of which permits the set of solutions to be written as

n Nk

n Mg N
Zzzzckeh+erhl+ _Zzzzckeh Fren,i-»
k=1e=1h=1

i=1 =le=1h=1i=1

(C36)

where each Fiepni+ is treated as independent of all cke;j+. In the second approximate solution,
it is permissible to treat Fieh,i, Okej- and Diej- as dependent of all cgaj-. In the general
solution (Section ]), the dependence of Fieh,i+, Okej+ and Diej+ on all cqaj+ is repeatedly
approximated, with the errors in those approximations approaching zero with a sufficient

number of iterations.

Letting
N
Zyei- = Z Creh—L'ken,i—
h=1
then results in
n Ng N n Ng N N
Z Z Zyei- = Z Z Z Cren+Freni+
k=1e=1i=1 k=1e=1h=1i=1

(C37)

As can be seen from Figure B3 and Equations B39 to B53, the use of the hat function for Py
and P; results in most of the terms indexed by i and h being zero:

Fren1+ = 0and Fien1- = 0 for h > 2;

FxenN+ = 0 and Fxenn- = 0 for h < [N - 1]; and

Fieh1<i<nj+ = 0 and Fxeh1<i<n-= 0 for [i - 2] <h <[i+ 2].

Consequently,
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n nNg n nNg
Z Z Zie1- = Z Z(Ck,e,1+Fk,e,1,1+ + Ck,e,2+Fk,e,2,1+) ,
k=1e=1 k=1e=1
n nNg n nNg
Z Z Ziei- = Z Z(Ck,e,[i—1]+Fk,e,[i—1],i+ + CreitFreiiv T Crefiv1]+ Freit1]it)
k=1e=1 k=1e=1
for1 <i< N, and
n nNg n Nk
Z Z Zien— = Z Z(Ck,e,[N—1]+Fk,e,[N—1],N+ + Ck,e,N+Fk,e,N,N+) .
k=1e=1 k=1e=1

(C38)
Equating corresponding terms indexed by e results in
Zke1- = Chei+Fre11+ T Che2+Frez1+
Zei- = Creli-1]+Frefi-11i+ T Ckei+Freiiv T Crefi+1]+Freli+1],i+
for1<i< N, and
ZxenN- = Ce[N-1]+Fke[N-11N+ T Chen+Frenn+ -

(C39)

The equalities in Equation C39 are permissible by virtue of the Curie-Prigogine principle.
(See Section G: The dissipation function and the Curie-Prigogine principle.) In the case here,
where e is a solute species, it is possible for (dcke/0dt)s and -(0lke/08): to differ. This would
appear to invalidate the step of equating each Zi.;- to the sum over all h of ckeh+Fken,i+. As
mentioned with respect to Equations B26 to B28, for the case of a solute component, k,
(0ck/0t)e does equal -(01k/0%)t, which makes each Zxi- equal the sum over all h of cih+Fighi+

in those equations. Therefore,

ng ng
Zg1- = E Zke1- = E (Ck,e,1+Fk,e,1,1+ + Ck,e,2+Fk,e,2,1+)»
e=1 e=1
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ng ng
Zyi- = Z Ziei- = Z(Ck,e,[i—1]+Fk,e,[i—1],i+ + CreitFreiiv T Crefiv1]+ Frefit1]it)
e=1 e=1

for1 <i< N, and

ng ng
ZgN- = Z ZkeN— = Z(Ck,e,[N—1]+Fk,e,[N—1],N+ + Ck,e,N+Fk,e,N,N+)
e=1 e=1

(C40)

are valid equations. The fact that there are no phenomenological coefficients linking
reaction forces to transport flows, or transport forces to reaction flows, permits the
transport and reaction flows to be dealt with separately, however. Furthermore, the
reaction flow is the sole source of the potential inequality between (dcke/0t):

and -(0lke/0%)t. Thus, when the reaction flow is handled separately, the transport flow can
be handled as it would be for a solute component. As reaction flows are, in fact, handled
separately from transport flows in this method, it is valid to equate each Zie;. to the sum
over all h of cxei+Freni+ (@as shown in Equation C39), which is the approach taken to obtain

a solution here.
Equations C74 to C75 show the fully expanded forms of Equation C39.

Equation C39 permits the continuity equation to be solved species-by-species and
component-by-component. For each species of a given component, the solution proceeds
one concentration coefficient at a time. Solving first for cke,1+ yields

Cke1+ = Yie1 — Xie1Cke2+ »

where

Y _ Zkﬁl—
k,e,l - F
ke 1,1+

and
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Xk ol = Fk,e,2,1+ .
7T Freii+
(C41)
Fori < N, the solution for each subsequent cke,+, in ascending order from 2 <i < N, takes
the form of
Crei+ — Yk,e,i - Xk,e,ick,e,[i+1]+ ’
where
V., = Ziei- — Yieli-11Fkei-1],i+
T Freiiv = Xkeli-11Fke li-11,i+
and
Fk,e,[i+1],i+
Kies = keiit — Xieli-11Feli-1]i+
(C42)

Ati =N, the solution for cken+ is obtained. In terms of cke,[n-1]+, the solution for cken+ is

Cren+ = YieN — XkeNChe[N-1]+

where
Y _ Zk,e,N—
ke, N —
k,e,N,N +
and
_ Fren-11n+
Xk,e,N - F
k,e,N,N +
(C43)

The solution for cke,n-1]+ can now be substituted into the solution for cken+ to obtain
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Cren+ = YieN — Xk,e,N(Yk,e,[N—l] — Xie[N-1] Ck,e,N+) )
(C44)

which, solved for cken+, is

Yk,e,N - Xk,e,N Yk,e,[N— 1]

)

CreN+ =
1- Xk,e,NXk,e,[N—l]

(C45a)

alternative expressions of which are

Yk,e,NFk,e,N,N+ - Fk,e,[N—l],N+Yk,e,[N—1]

Chent = Frenn+ = Fren-18+Xk.e,[N-1]
(C45b)
and
Chons = Zk,e,N— - Yk,e,[N—l]Fk,e,[N—l],N+ .
w Frenn+ — Xie[N-11Fke [N-1]N+
(C45¢)

The above solution for cken+ does not require knowledge of cke,n-1+ Or any other
unknowns. This solution for cken+ can now be used, therefore, to solve the previously
obtained expression for cke,n-1]+ in terms of cken+ and other known parameters.
Subsequently, using cxn-1]+, the previously obtained expression for cke,n-2)+ can be solved

in terms of cke,[N-1]+ and other known parameters. Thus, once cgen+ is known, each
preceding cie,i+ is calculated in descending order from i = [N - 1] to i = 2 using Equation
C42 until, upon reaching i = 1, cke 1+ is calculated using Equation C41, at which point, the
entire array of ckei+ values has been determined. For i = h, ckei+ = Cken+, SO that the array of

Cke,i+ values obtained equals the array of cken+ values sought.

This process is carried out for each species, e, of each solute component, k, at each addition
of a time increment. These new ckenh+ values are then used as the next cken- values after the

addition of the next time increment, and the process is repeated until the desired time point
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is reached, at least in a noniterative application of the second approximate solution. (The
general solution presented in Section ] (Form of the general solution from Equation C32)
applies the second approximate solution iteratively, with the result that cken+ is repeatedly
recalculated within each time increment until a convergence criterion (Equation ]J6) is met,

or a maximum number of iterations is reached.)

It has been found that the process is made more robust by first calculating all cken+ in the
forward direction starting from cke,1+, then recalculating all cken+ in reverse order (starting
from cien+), and averaging the results. The calculation of all cien+ in reverse order is
implemented by obtaining a solution to the t- and §-dependent continuity equation for MCE
with the set of all &, reversed, so that £ = §, and & = &m. The solution obtained is
backwards in the sense that cke1+ at all € is equal to the value of cke at &, while cxen+ atall €
is equal to the value of cke at &m. In general, &, Cken+, Ckeh- Dkej+, Okej+, Diej- and Okej., of the
backwards solution are equal to §[N-h+1], Cke,[N-h+1]+, Cke,[N-h+1]-» Dike,[N+1]+, Oke,[N-j+1]+
Die,[Nj+1]- and Oke,[N+1]- respectively, of the forward solution, which is the solution
described above for the original orientation. Solving for cken+ using the backwards solution
then proceeds as described for the forward solution. Averaging is weighted toward the
starting point of each solution, were artefacts appear to be minimal, so that, subscripting all
concentration and spatial parameters by h as that index applies to the forward solution, the
average value of cien+ iS (Cken+)avg = [(En - &m) (Ckenr)R + (&b - &n) (Ckent)E]/ (Ep - Em), where
(Ckeh+)r and (Ckeh+)r are the values of cxen+ obtained from the forward and backwards

solutions, respectively.

For the remainder of the solution, Equations B34 to B63 apply as written, except that the
case of (dox/0&): = 0 and (dDx/d%): = 0 at all € is replaced with the case of (doke/0E): =0
and (0Dke/0€)t = 0 at all §, which is covered in Section F (§-dependent functions to

approximate Dxe and oke).

Consequences for average parameters

Examining whether (Fihi+)w = Fihi+ and (Fxhi-)w = Fichi-
88



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Given that
n N N 7Nk n Nk N N
Z Z Z Cke,n—Freni- = Z Z Z Cke,n—Frehi-
k=1h=1i=1e=1 k=1e=1h=1i=1
and
n N N Nk n Mk N N
Z Z Z Z Cken+Freniv = Z Z Z Z Cke,n+Freehit
k=1h=1i=1e=1 k=1e=1h=1i=1
(C46)

(see Equation C36), weight averages of Fieni+ and Fkeni- can be calculated for all species of

a given solute component. Averaging the terms indexed by e in Equation C46 results in

n N N ng n n N N ny
k Nk
Yiet1 Cient Frenit _ Yiels Cien—Freni-
Ck,e,h+ T = Ck,e,n— Y ¢ ’
k=1h=11=1 \e=1 e=1"keh+ k=1h=11=1 \e=1 e=1"keh=
(C47)
which yields
n N N n N N
PP RIACHBIED W IPNIECHBE
k=1h=1i=1 k=1h=1i=1
(C48)

where (Fini+)w and (Fini-)w are the weight-average values of Fxeni+ and Fien,i-, respectively,
for all species e of solute component k. Using Equation C35 to express Fken,i+ and Fieni- in

expanded form results, after some re-arrangement, in

Ckrh+(Fk,h,i+)W
= Ck,h+ jsbPhPldé
S L ) dPh
_;{([Dk,j+0k,j+]h)wL PPh e f_([Dk’ﬂ]h)w_L FTRPT: df} >
(C49)
and

89



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,

moodybiophysicalconsulting.blogspot.com

Ci,h— (Fk,h,i—)w

3
= Cyn— f Py P;d¢

m

N
$b dp;
+ Z{([Dk,j—ak,j—]h)WL PjPhd_gdf - ([Dk.f—]h)wf
]= m

(C50)
where

Zn£1ck£JP-Dk£J—Ok£J_

([Dk.j—Uk.j—]h) == YK Chen- '

(C51)

2221 Ck,e,n— Dk ej—

D, :_ = — — ’
([ e ]h)w Yok Clen—
(C52)
_ 2221 Ck.eh+ Dk,e,j+0k,e,j+
([DkJ+OkJ+]h)W - K Crent

(C53)
and

2221 Ck.eh+ Dk ej+

D . = il — .
([ kJ+]h)W Yok Cloen+

(C54)

be dP, dP; dg} AL
g, | d§ d¢ '

Equations C51 and C52, respectively, show that ([ok;-Dkj-]Jn)w and ([Dxj-]n)w are Cken--

weighted averages of all okej-Diej- and Dkej., respectively, of component k. Equations C53

and C54, respectively, show that ([okj+Dxj+|n)w and ([Dkj+]n)w are cixen+-weighted averages

of all ok ej+Dkej+ and Dkej+, respectively, of component k. Based on the gradient average,

(Dx)g, obtained in Equation C1, however, gradient averages of Dkej- and Dke;j+ might have

been expected in place of the weight averages obtained in Equations C52 and C54,

respectively. (Equation C1 yields one of the averages, (Dx)c, required to express Ik in terms

of component parameters in Equation C4. Equation C2 yields the othe

expressed as (okDk)w-.)
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In Equations C52 and C54, the occurrence of weight averages in place of gradient averages
is due to there being no derivatives of cken- and cken+ with respect to € in Equation C36 (as
expanded using Equation C35), because cyen- and cken+ are &-independent. Instead, the
partial derivatives of cxe and cx with respect to € in Equation C4 give rise to ordinary
derivatives of Py with respect to € in Equations C35, B24 and anyplace else where the
continuity equation has been solved by separation of variables and integration with respect
to & The situation is akin to Equations A40 and A41, where D¢ approaches Dy in the limit as
t approaches infinity at zero field, at which point, the concentration of each component

becomes ¢-independent and thus indistinguishable from ckh- and cin+.

As noted where Equation C38 is obtained from Equation C37, and as shown in the next
section, forj < [h - 1] orj > [h + 1], the integrals in the summations indexed by j are equal
to zero. As ([0k;j-Dkj-]n)w, ([Dkj-]n)w, ([Okj+Dxj+]n)w and ([Dkj+]n)w are multiplied by such
integrals, only ([ok;j-Dxj-Jn)w and ([Dkj-]n)w for which [h - 1] <j < [h + 1] contribute to
(Fxn,i-)w, and only ([oxj+Dxj+]n)w and ([Dkj+]n)w for which [h - 1] <j < [h + 1] contribute to
(Figh,i+)w-

The transport coefficients associated with the left-hand (Fieni+) side of Equation C47 are
Die,j+Okej+ and Dkej+, while the transport coefficients associated with the right-hand
(Fxen,i-) side of Equation C47 are Dygej-Okej- and Dkej-. Thus, as described by Equations C49 to
C54, Die,j+0kej+ and Diej+ are averaged with respect to cren+ on the left-hand side of
Equations C47 and C48, while Dxe;-Okej- and Diej- are averaged with respect to cken- on the
right-hand side of Equations C47 and C48. As discussed with respect to Equations C32, C33
and C34, in the second approximate solution used initially, Dkej+Okej+ and Diej+ are
replaced, respectively, with Dke;.Okej- and Diej-. Hence, in the initial iteration within a given
time increment, (Fxn,i+)w, the average obtained for the [t + At] part of the second
approximate solution, would be incorrect. Within a given time increment, the correct value
of (Fini+)w would be obtained by the iterative approach of the general solution (Section J),
but only after cken+ had ceased to change significantly with continued iterations of the
second approximate solution.
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Using Equations C49 and C50, Equation C48 can now be written as

N £ ' b ;
- Z {([Dk,f+0k.j+]h)w Lm ith ‘;_? “- ([Dk'j+]")w Lm "’ %"Z—? df} At)

n N N fb
Z Z Z Ch,h— f Py P;d¢
k=1h=11i=1 m
N

(C55)
This equation corresponds to Equation B21, which is the solution to the continuity equation

with respect to components. If

n N n N N ng Nk
F Zezl Coen+ Freni+
Ck h+( khl+ Ck,e,h+ an c
k=1h=11i= k=1h=11i=1 \e=1 e=1"keh+
n N N Ng n N N
= Z Z Z Cren+Freniv = Z Croh+ Fieniv
k=1h=1i=1e=1 k=1h=1i=1
(C56)
and if
n N N n N N Nk ng
Zezlckeh Freni-
F, = c
Ckh—( km—)w k,e,h— an -
k=1h=1i=1 k=1h=1i=1 \e=1 e=1"keh-
n N N Ng n N N
k=1h=1i=1e=1 k=1h=1i=1
(C57)

then Equations B21 and C55 are identical, in which case, (Fihi+)w = Fihit, (Fihi-)w =
Fin,i- and ok;-Dkj., Dkj-, okj+Dxj+ and Dkj+, respectively, of Equation B21 equal ([ok;-Dkj-]n)w,

([Dxj-Jn)w, ([oxj+Dij+]n)wand ([Dkj+]n)w, respectively, of Equation C55. The equivalence of
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Equations B21 and C55 would indicate that the solution in terms of components can be
derived from the solution in terms of species. The question of whether Equations B21 and
C55 are identical is revisited after calculating the weight averages of Fip,i+ and Fipn,- for all

solute components.

Defining (Fh,i+)w = Fh,i+ and (Fhi-)w = Fn,-

Given that
N N n n N N
Z Z Z Ck,h—(Fk,h,i—)W = Z Z z Cion—(Fioni-
i=1 h=1k=1 k=1h=1i=1
and
N N n n N N
Z Z Z Ck h+(Fkh i+ Z Z Z Ck.n+ (Fk,h,i+)w
i=1 h=1k=1 k=1h=1i=1
(C58)

(see Equation C48), weight averages of Fih,i+ and Fkh,i- can be calculated for all solute
components. First, however, it is useful to define the total solute concentration before and
after the time increment as c+ and c,, respectively. Next, the sums of cin+ and ckp- over all

solute components are defined as cn+ and cn., respectively, through

Cy = Z Ch+Pn = chkh+Ph = chk}HPh

=1h=1
and
N N n n N
-= Z Ch—Pp = Z Z Cr,n-Pn = Z Z Cre,n-Pn »
h=1 h=1k=1 k=1h=1
(C59)

respectively. (Each cy, either as cu+ or ¢, is §-independent, and at all € is equal to the value
of c at &. Equation B6 describes ckh and Py.) Penultimately, Equation C58 and C59 are used

to obtain
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N N ,n N N ,n

Z Z Z Yi=1Cint (Finiv), Z Z Z Yoks cion-(Finiz),,
Ck,h = Ck,h—

: ¥ Dk=1Ckh+ =] k=1 Ckh— ’

i=1h=1

which, finally, yields

Z Z cns(Fniv) Z Z h—(Fh,i—)W

i=1 h=1 i=1 h=1
(C60)
where (Fhi+)w and (Fni-)w are the weight-average values of Fihi+ and Fipni., respectively, for

all solute components.

In the general solution (Section ]) in terms of components, Dxjokj+ and D+ are the
transport coefficients associated with the left-hand side of Equation C60 (expressed in
terms of Fihi+ on a component basis, or (Fni+)w on a weight-average basis), while

Dy;-okj- and Dy;- are the transport coefficients associated with the right-hand side of
Equation C60 (expressed in terms of Fkpi. on a component basis, or (Fpi.)w on a weight-
average basis). Thus, in the general solution in terms of components, Dkj+0k;j+ and Dy;+ are
averaged with respect to cxh+ on the left-hand side of Equation C60, while Dxj-ok;- and

Dy;- are averaged with respect to cin- on the right-hand side of Equation C60. As discussed
with respect to Equations B21, B22 and B23, in the second approximate solution used
initially, Dkj+0okj+ and Dkj+ are replaced, respectively, with Dyj.ok;- and Dk;.. Hence, in the
initial iteration within a given time increment, the average obtained for the [t + At] part of
the second approximate solution, (Fni+)w, would be incorrect. Within a given time
increment, the correct value of (Fni+)w would be obtained by the iterative approach of the
general solution (Section ]), but only after cxn+ had ceased to change significantly with

continued iterations of the second approximate solution.

Using Equation B24 to express Fini+ and Fkhi- in expanded form results, after some re-

arrangement, in

94



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

b
Chi (Fris),, = Cny j‘ Py P;d¢

m

N $b $b
> {(naia), [ rn e = (o)), [ ne o))

j=1

N
dp; dP, dP
+Z{([DJ—UJ—]h) j PJPhd_ng_ ([D]—]h) j ] dfh df df} )’
j=1
(C62)
where
ZZ 1 Ckoh— Di,j— Ok j—
([ ] ) an c ’
e=1"kh—
(C63)
Yok Cron— Dy j-
D;_ = . —
([] ]h)W ZZi1Chh—
(C64)
Znil Ckh+ Di,j+ Ok j+
(U%+QFJh) = Zﬁ1chh+
(C65)
and
sz1ckb+ij+
D; = .
([ ]+]h)w Ezklckh+
(C66)

Equations C63 and C64, respectively, show that ([0j-Dj-]n)w and ([Dj-]n)w are ckn--weighted
averages of all ok;-Dkj- and Dkj., respectively. Equations C65 and C66, respectively, show that

([0j+Dj+]n)w and ([Dj+]n)w are cxn+-weighted averages of all oxj+Dxj+ and D+, respectively.
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Using Equations C61 and C62, Equation C60 can now be written as

N N 3
;;cm LmPhPidf
N
(e, [ neas- 01, [ e ) o)

=1
N N &
= [ P.pde
;;Ch fm h
§ £ P, dP,
+Z{([Dj_aj_]h)wL PPh df ¢ ([p ]) L e df}At).
=1

(C67)
This equation corresponds to a solution of the continuity equation with respect to total
concentration and total mass flow. (See Equation A26.) Defining Fyi+ and Fy;i. as (Fn,i+)w and

(Fn,i-)w, respectively, results in

N N N N n n N n
F _ k=1 Ck,h+Fk,h,i+ F
Ch+( h,i+)W = Ck,h+ Y ¢ Cr.n+l'kni+
h=1i=1 h=1i=1 \k=1 k=1"kh+ h=1i=1 k=1
N N
= Z Z CheFniv
h=1i=1

(C68)

which is analogous to Equation C56, and

n

N N n n N
_ k=1 Ck,h—Fk,h,i—
Ch (Fhl = Ck,h— T Crh—Fr ni—
2k=1 Ck,h—

h=11i=1 k=1 h=1i=1 k=1

(C69)
which is analogous to Equation C57. Defining 0;.Dj., Dj, 0j+Dj+ and Dj+, respectively, as

([0j-Dj-]n)w, ([Dj-]n)ws ([0j+Dj+]n)wand ([Dj+]n)w, respectively, Equation C67 can be written as
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5éjé b z & qp, £ dp, dP,
Cre faﬁ&—ijgmﬁffmr—ﬁ—qJﬂg———d#m
m = tm X g A5 dE

h=1i=1
N N
chh ] Py P;d§
h=1i=1 $m
+ZN:{D ngpp dpidf D jfb Py dFy df}At)
j=9j- g 4 — Y- ’
& dé ¢ ) dE dE
(C70)
where
N
b=,
j=1
(C71)
N
(aD)w = Z 0;D;P;
j=1
(C72)

Dj and ojDj at time t are denoted as Dj. and 6j.Dj., respectively, and D; and o;D; at time [t + At]
are denoted as Dj+ and oj+Dj+, respectively. Rather than yielding Dg, as in Equation A29,
Equation C71 expresses the weight-average diffusion coefficient, Dw, as the sum of N
products, each of which consists of a £-dependent function, P;, multiplied by a
corresponding ¢-independent coefficient, D;, which nevertheless remains a function of t.
Each Djat all € is equal to Dw at §;. Similarly, Equation C72 expresses (6D)w of Equation A30
as the sum of N products, each of which consists of a §-dependent function, Pj, multiplied by
a corresponding ¢-independent coefficient, o;D;, which nevertheless remains a function of t.

Each ojD; at all € is equal to (oD)w at ;.

In Equation C70, Dj. and Dj+ are weight-average parameters for the same reason that
([Dxj-Jn)w and ([Dxkj+]n)w are weight-average parameters in Equation C55. It should be
expected that weight-average diffusion coefficients would be calculated from the solution of

the continuity equation obtained by separation of variables and integration with respect to
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¢, and it should be expected that gradient-average diffusion coefficients would be calculated

from the continuity equation itself.

In using the continuity equation, something akin to a frame-of-reference problem arises
when determining whether Dy, which is the diffusion coefficient of solute component k,
should be viewed as representing (Dx)g, which is the gradient average of the diffusion
coefficients of all the constituent species of component k (Equation C1), or whether Dy itself
represents the defining measure of the diffusion coefficient of solute component k. As the
implicit solvent and the explicit solutes are quantified component-by-component in an
irreversible thermodynamic context, all species-specific parameters can be considered
improper, which would mean that Dx represents a measure of the diffusion coefficient of
solute component k that is properly dependent on component concentrations (including
component k) only. At best, then, species-specific parameters such as cke, Dke, Oke, €tcetera,
are improper means to a proper end. The proper end being sought is a solution to the
continuity equation in terms of components. As developed here, that proper solution to the
continuity equation in terms of components can be derived from the improper solution to
the continuity equation in terms of species, but only to the extent that improper species-
specific parameters can be chosen so that ([ok;j-Dkj-]n)w, ([Dkj-]Jn)w, ([Okj+Dxj+]n)wand
([Dxj+]n)w of Equation C55 equal oy;-Dkj., Dkj-, 0kj+Dxj+ and D+, respectively, of Equation

B21, in which case, Equations C55 and B21 are identical.

As there is nothing improper about component-specific parameters in an irreversible
thermodynamic context, there should be no doubt that D¢, the gradient-average diffusion
coefficient for all solute components, is the correct average of all Dx to use in the continuity
equation expressed in terms of the total solute concentration, as is the case when Equation
A31 is used to expand the total-solute-concentration form of Equation A26. Nevertheless,
Dw would be the correct average to use in Equation C70 or any other form of the integral
solution to the continuity equation expressed in terms of the total solute concentration. The
fact that Equations C55 and C70 both yield analogous weight-average parameters is

evidence in support of the hypothesis that Equation C55 is identical to Equation B21.
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Expanded solution from Equation C32

The solution to the continuity equation for MCE can be written as

)

Nk

¢p
Ck.en+ j Py P d¢
=1

$m

k=1e=1h=11i
S [on 1
O
ke, j+ ke j+ 6 hdf ] df df
n Mg N N &
= Z Z Z Ck,e,h— f Py P d¢
k=1e=1h=11i=1 m
N $b $b dPh dP;
+2Dk,e,j_ [ak,e,j_ f PPh Pige — f P dEl
£ LT g dE
(See Equation C32.)

For species e of solute component k, at a specific value of index i (other than 1 or N), the

nonzero terms are
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3
Zyei- = Ckeli-1]- f Pji_qP;d¢

m
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+ Zle,e,j— Ok,e,j- L kP ["‘ﬂd_fdg _fs DTag d¢ df dE
]= " "

b
+ Cre,i- j P,Pd¢

ém
$b dp; $b
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+Ck€[l+1]— j P1+1Pd€
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+ Creli+1]+ f PipqPdE
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(C73)
as shown in Equations C37 to C40. Expanded fully, for species e of solute componentk, at a

specific value of index i (other than 1 or N), the nonzero terms of Z.;. are

¢p
Ziei- = Ckeli-1]- <j Pji_1Pid¢

m

+ {D l j P NL dé J ¥ p P dh
k.eli—1] ke li—1] ; [i-1]1[i-1] dé— [i—-1] df dé—

m

l $b dp; $b
+Dy.i_|O -_f PPy_1—d —f P- d l}At)
k.e,i k,e,i v i [i-1] df f . i df df E

3
+ Cre,i- (f P;P;d¢

$m

+ {D l f K P i dé f K pi,_ b d&
ke li—1] ke[i—1] . [i—-1]f7i df v [i—-1] df df

$b b dp;dP;
+ Dk,e,i— o-k,e,i—f PPL dE df f d
$m

f dé dg
[ 9 b dP; dP;

+ Dyoriatie |Gt _j P, df j ——df} )

ke li+1] ke i+1] - l+1 [i+1] df df
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+ Ckei+1]- (j Py Pid§
+ {D l j § PP, e - j p P P,
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¢p
Che [i-1]+ <f Ppi_qPd¢
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k,ei+ O'k,e,i+ {: l+1 dE {: I, df df
& dP
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ém
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- Py; —d& |t At

(C74)

Equation C74 shows that for a given i within 1 <i < N, there are 17 integrals to evaluate.

Expanded fully, for species e of solute componentk, at i = 1, the nonzero terms of Zxe.,- are

102



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

3
Zrei- = Cie1- (f PPy d¢

m

+ {D l ffb P, P, — df ffb 2 dfl
_ |0 _
k,e,1 k,e,1 - 111 lf 1 lf lf

$b b 4P, d
+ Dye2- lak,e,z—L P2P1 az df f P, dfl ac dfl} )

¢p
+ Cre2- (f P,Pd¢

m

&b dP, dPy
#{Buea [o1e- L Py g - | »EE 4

¢ dP,dP
D [ohes- L PP, St - | P o ae]fae)

b
= Cre1+ (J PPy d¢

m

¢ dP dP
+ Dk,e,1+ O-k,e,1+L P1 d{: dE j 1 d{_— d{_— f
& f  dP dP,
+ Dye2+ Uk,e,2+J; P2P1 az df f P, T @ —dé& |t At

¢p
T Cre2+ (f P,P,d¢

‘fm
{ l ffb ffb sz dP1 l
+4D o, P, P. d«f dé
kel+ |Oke1+ . 12 T Py lf lf

I Dk,e,2+ 0k,e,2+ - 121 2 lf dé 2 lf lf dé A .
(C75)

Equation C75 shows that for i = 1, there are 10 integrals to evaluate.

Expanded fully, for species e of solute componentk, at i = N, the nonzero terms of Zg.,- are
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Equation C76 shows that for i = N, there are 10 integrals to evaluate.

)

(C76)
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Section D: Expressions for the deviation from van 't Hoff behaviour and other virial

expansions

A minimally restrictive expression of the deviation from van 't Hoff behaviour can be

written as

(o] e} n
dc,?
1+ Z b Z )’b,k,chb_1 = Z Z Yb,kq ﬁ ,
- q

(D1)

where b is the index of the virial expansion, cq is the concentration of component q, ybxq is
the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq, which makes
Vbkq the bth of an infinite number of coefficients accounting for the thermodynamic

nonideality effect of component q on the transport of component k, and

Zn: deg? - )
Yokag 5. | — Zyl,k, = 1.
q qu q

(00}
lim
b=1 \gq=1 q=1

c—-0

(D2)
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A truncated, linear equation is restricted to solutions that are sufficiently dilute to permit

use of an approximation, such as,

> [+ dc,? = =
. q - _
dilutehsrgllutionz Vbl qu =1+2 Z Y2,kqCq = 1+ z YiqCq

b=1 \g=1 q=1 q=1
(D3)
where

YVikqg = 2y2,k,q .

(D4)

As with the van ‘t Hoff expression, electrophoretic/asymmetry and viscosity expressions
can be expanded as infinite series, so that ox (the reduced valence coefficient of component

k) and Dk (the diffusion coefficient of component k) can be described, respectively, by

- dc,®
b1 [Zg‘:l Pb,k,q d_cqql
O = O'Ok
- dc,?
Zb=1 [Zgﬂ Yb,k,q d_gql/
(D5)
and
- dc,b
b1 [EZ=1 Ybk,q ﬁl
Dy = D° dc qb )
ZZO=1 [ZZ=1 hb,k,q d_cqql/
(D6)
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where ybkq is the component-k affecting thermodynamic nonideality coefficient of dcqb/dcq
defined as for Equation D1; hpkq is the component-k affecting viscosity coefficient of
dcqP/dcg, which makes hp,kq the bth of an infinite number of coefficients accounting for the
viscosity effect of component q on the transport of component k; and pp kq is the
component-k affecting electrophoretic/asymmetry coefficient of dcq®/dcq, which makes
Pbkq the bth of an infinite number of coefficients accounting for the

electrophoretic/asymmetry effect of component q on the transport of component k.

From the above equations, it follows that

Yhe 1[2(1 1Pvkq 7~ dc

Zb lqu 1hbkq dC /

— O o
Euk—Uka

(D7)
where
[ee) n dcqb n
pat Z Pbkage | = Z Pieq =1
b=1 \gq=1 a q=1
(D8)
and
2 [ dcg” -
i ) | 0 toka g | = D haka =1
b=1 \ g=1 q=1
(D9)

Truncated, linear equations are restricted to solutions that are sufficiently dilute to permit

use of approximations, such as,
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oo n n n
dllutel solutlonz z Pblea™g.— qu =1+2 Z P2kqCq = 1+ z PkqCq -

b=1 \q=1 q=1 q=1
(D10)

where

Pig = 2D2k,q »
(D11)
and

i Zn:h dc_qb z1+22n:h c=1+zn:h C
dllute olution L\ & bk.q deg |~ & 2katq Z kqCq

(D12)
where

hrg = 2haq -

(D13)

Equations D3, D10 and D12 are virial expressions that are truncated at b = 2. Equations D4,
D11 and D13 are the second virial coefficients that apply to Equations D3, D10 and D12,

respectively.

In some cases [Johnson et al., 1981], the deviation from van 't Hoff behaviour can be
described by a virial expansion in terms of ¢, Mw, and an infinite series of global nonideality
coefficients, each denoted by By, where b is the index of the summation. That virial

expansion can be written as

m (o] (o]
b1 dc?
1+Zyk'ch:1+szbBbc :szBbE'
q=1 b=2 b=1
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(D14)
where
_ > dch
LI_I’)%MW BbﬁzMwBlzl
b=1
(D15)
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Section E: Presenting concentration data from calculations as optical density data

To present results that are comparable to the optical density data observed experimentally,
at each time t, at each point &, the concentration, cxe (in g/ml) of each species, e, of each
solute component, k, is multiplied by L and kj ke, where L is the optical pathlength (in cm),
and ky ke is an estimate of the specific optical density for species e of solute component k at
wavelength A. For species e of solute component k at a concentration of cke in an MCE
experiment using an optical pathlength of L and a wavelength of A, the specific optical

density (in [optical density]cm?2/g) is

OD/Lk,e
LCk,e )

k/’l,k,e = (E/l,k,e,M)OD =

(E1)

where €)xe, is the apparent mass extinction coefficient (in cm?/g) at wavelength A for a
solution of species e of solute component k at dialysis equilibrium with the solvent, and
ODa ke is the observed optical density for species e of solute component k at wavelength A.
As ODy ke = LKakeCke, the total optical density, which is equal to the sum of all ODj kg, is

dependent on the concentration of each species of each solute component.
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For the fringe-displacement analogue to the preceding description of experimentally

observable signal as a function of solute concentrations, see Gray et al. [1995].
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Section F: §-dependent functions to approximate Dxe and oke

Tests of different solutions

The integrals in the solution to the t- and §-dependent continuity equation for MCE
(Equation B21) have been replaced with their evaluations shown in Equations B39 to B53
or Equations B39* to B53*, and those expanded forms of the solution to the continuity
equation for MCE have been used in finite-element simulations. Simulations of MCE based
on the second approximate solution (using Equations B39 to B53) have been found to
perform at least as well as simulations based on the first approximate solution (using

Equations B39* to B53*).

First approximate solution

To express oke and Dk in terms of pseudo-§-independent parameters, each one is
approximated as a set of N scalar coefficients that can be a function of t but must be
invariant with &. For oke, at all &, where 1 <h <N, those coefficients are
Oken = Ok,e At $p)
(F1)
and for Dke, at all &, where 1 <h <N, those coefficients are
Dyen = Dy at &p.
(F2)
(Compare Equations F1 and F2 with Equations C22 and C23, which describe the functions
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that express Dk and oke in terms of sums of products of £-independent coefficients (Dye;
and oyej, respectively) and §-dependent basis functions (Pj). It is the &-independence of the
coefficients that permits their being factored out of the summations indexed by j in

Equations C25 to C35.)

When it temporarily becomes more convenient to work with Euke and D instead of oxe
and Dke, Euke is also approximated as a set of N scalar coefficients that can be a function of t

but must be invariant with &. At all &, where 1 <h <N, those coefficients are

Eugen = Euge at &p.

(F3)
(Compare Equation F3 with Equation C21.)

Equations F1 to F3 define oken, Dkenh and Euken as constants with respect to &, and in the
first approximate solution, are used in place of Equations C21 to C23. The resulting first

approximate solution to the continuity equation for MCE can be written as

n & & dP, &b dP, dP;
Z Cie,h+ f PpPid$ — Dy e n+ Uk,e,h+_L iy dé -dg ~ £ dé dé a

k=1e=1h=1i=1 m

D ffbp dP; " &b dPy dP; dfl >
_|o _ —_ -
k,e,h k,e,h &'m h dE {: df df

(F4)

As usual, a minus or plus subscript refers to time t or [t + At], respectively. Equation F4 of
the first approximate solution is obtained by applying Equations F1 and F2 to Equation C32
of the second approximate solution in the case of (doke/d%): = 0 and (dDk.e/08)c = 0 atall &.
Thus, when oken and Dken are used as they are in Equation F4, each oxen should equal &-
independent ok, each Dien should equal é-independent Dy and, given that (0Euke/d8)c = 0
when (doke/08): = 0 and (0Dke/08)t = 0, each Eugen should equal §-independent Euke.
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Furthermore, these conditions make it highly likely that (dDxe/0dt): = 0 in general, and that
(0Euke/0t)s = 0 and (doke/dt)s = 0 at constant field. Therefore, Dk is likely to be t-
independent in general, and Euken and oken are likely to be t-independent at constant field.
All such constraints are purposefully violated in the following treatment of the first

approximate solution.

As typically, but incorrectly, applied, the constants, oken, Dkenh and Euken, of the first
approximate solution are treated as if they were functions of solute concentration. Thus,
Okeh, Dkenh and Euken become pseudoconstants with respect to & Truncated virial
expansions are used to approximate the dependence of oken and Dgen on the concentration,
Cq,a, Of each explicitly included species, a, of each explicitly included solute component, q. To
evaluate these pseudo-§-independent constants indexed by h, prior to each time increment,

Dieh and oken are approximated by

nq quah

Zb—lzq—lz = ybkeqa —
",eY,

a=1 d( , ,’

j— [e]
Dk,e,h =D k,e dcqahb

o n Ng h
Zb=1 Zq:lzazl b,k.e,q,a dcq,a,h

(F5)
and
b
/Z;;lzgzlzzilpa&a%a%é%&%:\
Oen = 0°ke , dc q:;lb '
25;123=1Za11yhh&%a75%;;:
(F6)

respectively, where n is the number of solute components, nq is the number of species that
constitute solute component q, D°ke at all § equals Dke at &, at time t or [t + At] in the limit
as c approaches 0, 6% at all § equals oke at &, at time t or [t + At] in the limit as

c approaches 0, cqan is the €-independent concentration coefficient of species a of solute
component q at time t or [t + At] (cqan, at all §, equals cqa at &, just as cken, at all §, equals cke
at &y in Equation C17), and where pu,keqa Ybkegqa and hpxeqa are the bth of up to an infinite

number of coefficients of proportionality for the electrophoretic/asymmetry,
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thermodynamic nonideality, and viscosity effects, respectively. By definition,

n n n
Z=1 Zaqzl pl,k,e,q,a: ZZ:l Zaqzl yl,k,e,q,a and ZZ:l Zaqzl hl,k,e,q,a are each equal to 1. (EaCh of
the pokeqa Ybkeqga and hpkeqa coefficients couples the concentration of species a of
component q to an effect on the transport of species e of component k. See Section D for the

component-based equivalents of these virial expansions.)

Both 0°.e and D% are &-independent by definition. Furthermore, the first approximate
solution cannot be applied to systems in which changes in solvent density cause (dpo/d%¢)t
to differ from zero. (Strictly speaking, the first approximate solution cannot even be applied
to systems in which solute concentration gradients cause (dp/d%): to differ from zero.) As
discussed in the definitions of D°ej, (Equation C33) and 06°ke; (Equation C34), the condition
that AD®ej/Aj = 0 and Ac®kej/Aj = 0 for all species of all solute components can only apply
to a system with an incompressible solvent, in which case, D°e; and 0°ke; can be replaced
with D°e, and 0°ke, respectively. Hence, the use of D% and 0°e in the first approximate

solution.

As noted, when oken and Dken are used as they are in Equation F4, each oken should equal &-
independent oke, and each Dyen should equal &-independent Dxe. Thus, the use of Equations
F5 and F6 is incorrect, except where all coefficients of b(cga)? -1 for b > 1, which is to say all
Pbkeaqa Ybkega and hpkeqa for b > 1, equal zero, and where, as previously noted, the solvent
is incompressible and (dp/0d¢): = 0 atall € and t. (Compare the properties and uses of
Equations F5 and F6, with those of Equations C33 and C34, respectively.)

Results of the first approximate solution compared with those of the second approximate

solution
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Coin= 0.1 g/ml,
A 10 cm'1,
D11h =10 cm’/s,

C41h- Jde = 461 1 h/(émax “ &)
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@ o2 1 R h+1/dé D, R h/(‘tﬂmax ~ Enin)-
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----- /de = 0.05/0.002 glem™

1 ,1.h
0.0001 4

11h/d§ -0.05/0.002 g/cm™
----- /dz = 0

1 1,h
d .
2" approxmate solution:
0.0000 —

——— 1 11h/d§ 0.05/0.002 g/cm™*
6.50 6.51 6.52 6.53 6.54 6.55 6.56

/dé =-0.05/0.002 g/cm
& (cm) ——dc,, /de=0

11h

Figure F1. Results, as Zye,i- = Z1,1,i- versus &, from the first approximate and second
approximate solutions, compared after a 1 s time increment for 87 three-element, single
solute component (k = 1), single solute species (e= 1) systems. (Each system consists of 3
adjacent spatial elements, [h - 1], hand [h + 1], where 1 <h < 31, &min = &1 = 6.500 cm, Emax
=831 = 6.560 cm, Agh- = Aéh+ = AE = 0.002 cm, and each system is characterised by one of
three concentration gradients, dci,1,n/d§, in which (c1,1,n-1] + c1,10 + c1,1,m+1]) /3 = 0.1 g/ml.)
The central values of, and gradients in c1,1,h, 61,1,n and D1,1,» are given to the right of the
graph. At the scale shown, Z1,1;- from the first approximate and second approximate
solutions for the case of dci,1,n/d€ = 0 are nearly indistinguishable. (See Section C in general,

and Equations C39 and C74 in particular, for details regarding Zxe,-.)
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0.0000030 — c,,, =0.1g/ml,
,"’-— h T Syan 100m'1,
0.0000025 - /'/ N D1 = 10° cm2/s,
. \ Y 2 -5 2
K4 \ c11h=100m,D11h=10 cm?/s,
, . A, A,
___ 0.0000020 s \,\ dc1’1yh_1/da = 40111’h/(2_‘max =€ ),
NE J "\_ d01,1,h/dE-‘ =0,
% 0.0000015 /'/ \.\ d61,1,h+1/dE—‘ = '401,1,h/(E—‘max ~ i)
\/; ’/' \ dD1,1,h-1/dé = 4D1,1,h/(E-’max - E-’min)’
ﬁé 0.0000010 /'/ \ 381'”‘“/2_9’ 4D
/ \ 1,1,h+1 £=- 1,10 (E;max - E;min)’
/ \-\ dc,, /dg=0.
0.0000005- /' A -
| /.’ v e AZ . =
0.0000000 4, : i : : : \'. Z1 . from 1% approximate solution -

v T v v v
6.50 6.51 6.52 6.53 6.54 6.55 6.56 Z1 . from 2nd approximate solution

Figure F2. Results, as AZxei- = AZ1,1,- versus &, from Z1,1;- of the first approximate solution
minus Z1,1,i- of the second approximate solution after a 1 s time increment for the 29
dc1,1,n/d€ = 0 systems shown in Figure F1. The central values of, and gradients in c1,1,n, 61,1,n
and D1,1,n are given to the right of the graph. This figure shows that Z1,1i- from the first

approximate and second approximate solutions differ, even for the case of dci,1,n/d = 0.
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Section G: The dissipation function and the Curie-Prigogine principle

The formalism of irreversible thermodynamics applies when flows can be expressed as
linear functions of the forces present [de Groot and Mazur, 1962; Tanford, 1961]. The forces
that give rise to flows in the MCE instrument are assumed to be small enough that this

formalism is applicable. Given this assumption, and denoting the solvent as component 0,

115



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

—_

the equation for ],f, the molar flow of component k in the solvent frame of reference, can be

written as

n
— N - Ck MOA N Cr -
S = E L. X =], ———]. =], ——7
]k . k,qq ]k Mk Co ]0 ]k Mk 0
q:

(G1)
where Liq is the phenomenological coefficient linking the transport of component k to )?q
[Tanford, 1961], and )?q is the conjugate molar force (Equations A2, A14 and 116) offq,

which is the molar flow of component q in the system frame of reference [Katchalsky and
Curran, 1965]. (See the dissipation function, Equation G2, which shows how a conjugate

force is assigned to each flow through the system [Katchalsky and Curran, 1965]. Also see
Equations I6 to 114 for further discussion offq.) The sum over all q is taken over all linearly
independent forces [Katchalsky and Curran, 1965]. Each conjugate molar force is a vector,

)?q = -VUq, where Uy is the total molar potential of solute component q. In the MCE
instrument, however, )?q has no component along the x- or y-axis of the system, so that

Xq = (Xq)z which is the z-component of )?q, can be used in place of the vector. In total, there
are n + 1 conjugate molar forces, but Xo, that of the solvent, has been expressed in terms of
the others in Equation G1. The bulk fluid velocity in the system frame of reference is
described by vy, the nonvector representation of v,, which is the velocity of the solvent flow
through the system in the frame of reference of the system. In the absence of any forces
other than that associated with solvent flow, Xqz0 = 0, and the system-frame-of-reference
velocity of solute component q, vq, equals vo, from which it follows, in such cases, that

Jk = (ci/Mi)vo.

The phenomenological coefficients are functions of system properties, such as temperature,
pressure, and the concentrations of solute components, but are independent of the
magnitudes of any forces present, provided that those forces are sufficiently small [Tanford,
1961]. The phenomenological coefficients pertaining to coupled flows are the Liq terms for
which q # k. By a statistical mechanical treatment of microscopically reversible processes,

Onsager showed that these cross terms are symmetric in the absence of magnetic fields or

116



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Coriolis forces in the system, in which case, the reciprocal relations are Lxq = Lqx for all k
and q [Onsager, 1931a; Onsager, 1931b; de Groot and Mazur, 1962]. Denoting any magnetic
fields or Coriolis forces by G, the most general expression of the reciprocal relations is
Lk_q(é) = EquLq_k('é), where Lk_q(é) is Lkq in the presence of G, Lq,k('é) is Lgx in the
presence of -G, €q is the indicator of time parity for )?q and ek is the indicator of time parity

for )?k [Jou, Casas-Vazquez and Lebon, 2010; Jou, Casas-Vazquez and Criado-Sancho, 2011].
If a conjugate molar force, such as )?q or )?k, is even under time reversal, its indicator of time

parity, €q or €k, respectively, is equal to 1. If a conjugate molar force is odd under time

reversal, its indicator of time parity is equal to -1.

In the MCE instrument, under the usual operating conditions, G may well be negligible, but
as neither Ly q nor Lqk is likely to be known or experimentally determinable, data analysis
and simulations generally take place at the next highest level of abstraction, for which Dy

(Equation A21) and either ux (Equation A22) or ok (Equation A23) are the accessible

parameters. As such, details regarding the applicable forms of Lk,q(é) = EquLq_k('é) are not
explored here, except in the latter part of Section N (A simple coupled-flow equation for
MCE). Nevertheless, a large body of experimental evidence suggests that the applicability of
the reciprocal relations is broader than might be expected, given that their theoretical basis

deals only with processes that are close to equilibrium [Katchalsky and Curran, 1965].

The dissipation function,
n nr n nr n ngr
O = oKt Y JEAg=Jo Ko+ Y Jo- Kt ) JEAg= D JE Kk ) JiAg,
k=0 g=1 k=1 g=1 k=1 g=1

(G2)

measures the local rate of free energy dissipation per unit volume [Katchalsky and Curran,
1965]. This equation is used to determine the proper flows and forces to include in
Equation G1. In the MCE instrument, all significant flows are either those of transport (the

molar flows and mass flows discussed throughout this work) or those of chemical reactions.

117



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

The summation indexed by k gives the contribution of independent particle flows to ®. The
summation indexed by g gives the contribution of independent chemical reaction flows to

®. Each term in the summation indexed by g is the product of the molar reaction flow, ]5, of

reaction g, times the conjugate molar affinity, Ag, of reaction g.

The total number of all possible flows is 1 + n + ngr, where 1 + n is the number of possible
molar flows, and nr = n is the number of possible independent chemical reaction flows [de

Groot and Mazur, 1962]. The total number of all possible forces is also 1 + n + ng. As ]5 and

Ag are scalars, their tensorial order is 0. As fk and )?k are vectors, their tensorial order is 1.
Given that reaction flows are not expected to produce molar flows when the system is
isotropic, it is assumed that the Curie-Prigogine principle [de Groot and Mazur, 1962;
Katchalsky and Curran, 1965] applies in the MCE system. Accordingly, there is assumed to
be no coupling between flows and forces of different tensorial order, with the result that no
phenomenological coefficients link the molar affinities of any chemical reactions to the

conjugate molar forces in Equation G1.

Without the nr molar affinities to contend with in Equation G1, there remain n + 1
conjugate molar forces, one of which may be expressed in terms of the others, so that only n

linearly independent forces appear in Equation G1. The Gibbs-Duhem relation is used to

express )?0 in terms of the other conjugate molar forces, each of which is associated with

one solute component.
Conjugate molar forces

The rectangular coordinate system, where z is the vertical coordinate, and the planar
coordinates are x and y, is well suited to describing the geometry of an MCE system. It is
assumed that an MCE system develops gradients in the electrical potential and chemical

potentials mainly, and these potentials are expected to be invariant with respect to x and y
in most systems. In general, where gravitational potential gradients are negligible, )?q

= -FzqVW - Vg, where, as discussed with respect to Equation A2, yq is the chemical
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potential of solute component q, zq is the valence of solute component g, F is the cgs

Faraday, and W is the cgs electrical potential. In cases where V¥ and Vg4 vary with respect
to z only, (Olq/0Z)txy = (Olg/0Z)c and (0¥ /0Z)tyx = (0W/0z)s, as a result of which, )?q can be
described by Xq = - Fzq(0W/0z)¢ - (Opq/0Z)

In cases where the molar gravitational potential gradient, -MqVggh, is significant, a resort to
)?q = -MqVgeh - FzqVW - Vg may be necessary, but as Vgeh is directed vertically in a
properly levelled MCE instrument, )?q will still be expected to vary with respect to z only.

(As discussed with respect to Equation A2, Mg is the molar mass of solute component g, g is
the magnitude of the gravitational field at the Earth’s surface, and h is the height above the

Earth’s surface.) As z and h are oppositely directed, where the dimensionality of z and h is
the same, dz/dh = -1. Thus, (0geh/0z)txy = -(0gez/0z)t = -g, so that )?q can be described by
Xq = Mgqge - Fzq(0W/0z): - (Olq/0z)t. For definitions of g, Zqg and Mg, see Section I (Calculating

molar mass, chemical potential and partial specific volume for a multi-species component).
Chemical reactions

The contribution of the chemical molar flows to the dissipation function (Equation G2) is
nR
CDR = Z ]gAg )
g=1

(G3)
where ngr = n is the number of possible independent chemical reaction flows [de Groot and
Mazur, 1962], which are indexed by g. Each term in the summation is the product of the

molar reaction flow, ]5, of reaction g, times the conjugate molar affinity, Ag, of reaction g.

Following Equation G20, the molar reaction flow and molar affinity are discussed further,
utilising some of the results that are obtained between here and there. What follows

immediately is the development of the equations that, in Section K (Reaction flow

119



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

algorithms), are applied to the practical problem of calculating the concentrations of solutes
that participate in a chemical reaction. The examples of the various types of reactions
presented in Section K painstakingly illustrate, and may thus help clarify, some of the

considerably tedious material that is covered next.

A chemical reaction involving components 1 < k < n can be cast in terms of Ske, where Ske
represents the formula notation of species e of component k. The sum over all of the

independent chemical reactions that are possible yields

n Nk n Nk
DI YTHACHES 33 YN
g=1k=1le=1 g=1lk=1le=1

(G4)

where Vrgke is the signed stoichiometry of reactant species e of component k in reaction g,
and vpgke is the signed stoichiometry of product species e of component k in reaction g. A
convention is employed where, by definition, vrgke < 0 and vpgxe = 0. Furthermore, by
definition, vrgke = 0 if species e of component k is not a reactant in reaction g, and vpgke = 0

if species e of component k is not a product in reaction g.

Throughout the equations and examples that follow, the activity of species e of solute
component k will be given by ykecke, where yke is the activity coefficient of that species, the
concentration of which is cke, as usual. Furthermore, if species e of solute component k is a
product or reactant of a chemical reaction, ¥, . and €, , will denote the activity coefficient
and the concentration, respectively, that the species would exhibit if the chemical reaction

were at equilibrium.

The association constant of independent chemical reaction g is given by

n

| ngel
k
KA,g fg 1_[k 1He 1(Yke ke) | || |(ykecke)(vpgke+Vnge)

k ~ |VR gk, el
ng k =1 Yk,eck,e)

k=1 e=1
(G5)
where, for independent chemical reaction g, ke is the forward rate constant and k. is the

reverse rate constant. Letting Y represent the unit solute concentration (with dimensions
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such as 1 g/cm3), the dimensions of kg are given by

1 n nk
_y1—2k=1 Ze=1|VR,g,k,e| ,

s

(G6)

and the dimensions of k¢ are given by
1

—_ Y1_21]}=1 ZZ£1|VP,g,k,e | .
S

(G7)

The net stoichiometry of species e of component k in independent chemical reaction g is

defined as vgke = VrRgke + Vpgke, SO that, due to conservation of mass,

n Nk

szgkeMke =0.

(G8)

The net rate of independent chemical reaction g, given by

kfgl_[n(ykecke)|Vngel krgl_[n(ykecke)lvpgk6|

=1 e=1
(G9)

is zero when the reaction is at equilibrium.

Explicitly including the forward and reverse reactions of each component, the continuity

equation for all components is

kZl (M) ; (alk) gZ 1—[ H(YRe ke)|Vnge|

n Nk | |
Vp,gke
- kT,g | | | |(Yk,eck,e) );
k=1 e=1

(G10)
where the sum of the net reaction rates,
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nr=n

|VR k, | |VP k, |
Z kfgl_[n(YkeCke e k,gnl_[(YkeCke one )
g=1 =1 e=1 =1 e=1

(G11)

is zero when all reactions are at equilibrium.

A convention is now adopted in which the simplest species of each component is assigned
the lowest number, 1, of the species index, e. Higher-order species of component k are thus
those for which 2 < e < nk. Furthermore, in view of the fact that there are as many
independent chemical reactions (nr) as there are components (n), the reaction index, g, can
be reused as an additional component index. Thus, the composition of each higher-order
species (e > 1) of component k is given by the set of vgxe for which 1 < g < n, where vgke is
defined as the stoichiometry of species 1 of component g, with the constraint that 1 < vg=kke

< oo for g =k, while 0 < vgzkke < o0 for g # k.

To describe the reactions that form each higher-order species (e > 1) of each component (1
< k <n), an additional species index, a, is applied to the association constant, forward rate
constant and reverse rate constant of these reactions. To describe reactions in which the
reactants or products include higher-order species (e > 1) of any components (1 < k < n),
the additional species index (a) is also applied to the stoichiometries of each species.

Henceforth, the reaction that produces species a of component g is referred to as reaction

a/g.

For components indexed by g, species are indexed by a. As ng is the number of species that
constitute solute component g, for g = k, ng = nx. After further indexing the stoichiometries

by a, Equation G4 is summed over all species to obtain

ng=n Mg n ng

ng=n Mg n ng
I NIITEVED 3533 I
a=1k=1e=1

g=1a g=1 a=1k=1e=1

(G12)

where VR gake is the signed stoichiometry of reactant species e of component k in reaction
a/g, and vpgake is the signed stoichiometry of product species e of component k in reaction
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a/g. By definition, Vrgake < 0 and vpgake = 0, where vrgake = 0 if species e of component k

is not a reactant in reaction a/g, and vpgake = 0 if species e of component k is not a product

in reaction a/g.

The association constant of reaction a/g is given by

n

|Pgake| Nk
kf g.a Hk 1 l_[e 1(Yk eck e) ~ o~ (VP,g,a,k,e‘I'VR,g,a,k,e)
(Yk eCk,e) )

(Yke ke)|VRgake|

Ky
,g,a khgﬂ n

(G13)
where Kgga is the forward rate constant and krga is the reverse rate constant of reaction a/g.

The dimensions of k¢ga are given by
1 n ng
§Y1‘2k=12e=1|VR.g,a.k,e ,

(G14)
and the dimensions of kg, are given by
1

n nk
- Y1‘2k=1 Ze=1|VP.g.a.k,e
S )

(G15)

where Y is the unit solute concentration.

The net stoichiometry of species e of component k in reaction a/g is defined as vgaxe =

VRgake + VPgake, SO that, due to conservation of mass,

n Nk

szgakeMke =0.

=1le=1
(G16)

The net rate of reaction a/g, given by

|VR akel |VP ake
kfganl_[(YkeCke 7 rgal_ll_[(Ykecke o ’

=1 e=1
(G17)

is zero when the reaction is at equilibrium.
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Explicitly including the forward and reverse reactions of each species, the continuity

equation for all species is

)

k=1e=1
n Nk p ng=n Mg
Ike |V k,
-3 (%) 3 b ][ JOwae e
k=1e=1 g=1 a=1 =1 e=1
lve k|
rgal_[n(YkeCke) e
=1 e=1
(G18)
where the sum of the net reaction rates,
ng=n Ng
|VR k, | |VP k,
Z z kfgal_ll_[(YkeCke gt rgal_ll_[(YkeCke gane )
g=1 a=

(G19)

is zero when all reactions are at equilibrium.

Equation G18 applies to simulations based on the solution to the continuity equation in
terms of species. Where the pressure in the system is §-dependent, Kaga, Kiga and krga may
be functions of §, and may be worth treating as such. A ¢-dependence in pressure may also
give rise to an additional §-dependence in yie, beyond that which may result from gradients
in the concentrations of any solute species. Following Equations ]2 to ]5, the topic of how to
model a pressure-induced &-dependence is discussed in connection with the species-e-of-
component-k affecting electrophoretic/asymmetry, thermodynamic nonideality, and

viscosity coefficients.

Equilibrium constant

Properly speaking, the association constant should be defined in such a way that it is
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dimensionless. It is convenient, however, to preserve the dimensionality of Kaga as defined
by Equation G13. To deal with situations where the numerically equivalent but
dimensionless constant is needed, the dimensionless equilibrium constant of reaction a/g is

defined as

|VPgake|
n Ykecke

— _ % +v
K _ k= e=1 1—[ 1—[ <Ykeck )( P,g,ake R,g,a,k,e)
eq,g,a |ngake| ,

11—[ (Ykecke) k=1 e=

(G20)

where Y is the unit solute concentration. The dimensionless aspect of the equilibrium
constant makes it suitable for calculations that require its logarithm, such as AG®

= -RTInKeqga, and is the parameter obtained from exponential operations, such as Keqga =

e-AG°/RT where AG® is the standard Gibbs free energy change of reaction a/g.
Obtaining conjugate molar affinities from the molar reaction flows
The molar reaction flow on an independent reaction is equal to the portion of the time-

derivative of molar concentration that is a direct result of a chemical reaction [Onsager,

1931a]. Thus, for reaction g/a, the molar reaction flow can be defined as

o v l—ln an |VR, ak, |
]R _ ( ;(,lzl He=1 Mk,e' R,g,a,k,el >k <y Cke> g.ake
g,a - n Nk f}g,a ke
k=1 Ze:l Mk,e|VR,g,a,k,e| k=1 e=1 Mke
n n Nk Vb gak,
N ([0
— n ng r,9,a kexr )
k=1 Ze:l Mk,e|VP,g,a,k,e| k=1 e=1 Mk,e

(G21)
which is the molar equivalent of Expression G17. Wherever and whenever reaction g/a is at
chemical equilibrium, ]g,a = 0 and each Yy ¢Ck ¢ = Yk eCk,, in which case, the association

constant of reaction a/g can be redefined as
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n Nk
;{lzl Heil Mk,el’VR'g’ayk'e' k ;{7':1 Ze=1 Mk'e |vp,g'a'k'e| k
n ng | f,g,a n ng f,g.a

k=1 Zezl Mk,e |VR,g,a,k,e k=1 Zezl Mk,e |VR,g,a,k,e |

Ka ga — =
Bald ]~ £ At n n
collig ] He£1 Mk,elvp"g'a'k'el k [Ti=1 Heil Mk.e|VP’g’a'k'e| K
g, g,a

ng
;clzl Ze:l Mk,e |VP,g,a,k,e | n—l HZil Mk,e |VR,g,a,k,e|

n

( k=12es1 Me |VP.g.a,k.e |> kfg.a
n

k=1 Ze§1 Mye |VR,g,a,k,e| krg.a

Hﬁ: 1 l—[nk 1 Mk,e (vp’g’a’k'e-l-erg,a,k,e)

(G22)
(compare with Equation G13), while the dimensionless equilibrium constant of reaction a/g

can be redefined as

)

| Vp,g,ak el
Y ¢
=1 l_[ ( ke ke ) ~ o~ )(VP,g,a,k,e"'VR,g,a,k,e)

Yk,eck,e
Keq,g,a = | | | | _
collig ¢ | Rgakel YMk,e

(G23)

where Y is now the molar unit solute concentration. (Compare this result with Equation

G20.) The addition of "collig" in their subscripts indicates that these association and
equilibrium constants are defined colligatively, and distinguishes them from their
respective counterparts of Equations G13 and G20, which are defined using mass

concentrations.

As calculated from the colligative equilibrium constant (Equation G23), the standard Gibbs

free energy change of reaction a/g is thus

o Yke k,e
AG = —RTIn (K g, )= —RTIn | | | |
igi‘z]i;l YMy e
n Nk

Yk,eCk,
= —RT Z Z(Vp g.ak.e + VR,g,ak e)ln ( Y‘l\e/Ikee>

)(VP,g,a,k,e+VR,g,a,k,e)

(G24)

For values of y; . ¢ . that differ from their corresponding values of ¥ oC e,
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Yke k.e
AG = AG’ + RTI 1_[1_[
+ n <YMke
n Nk

= AG’ +RTZZ(ng,ake+ngake)ln Yice Che
M,

n Nk

Yk,eCk,
_RTZZ(VPgake'l'VR,gake)ln( = e)
Ykecke

n Nk

= RTEZ(VPgake +VRgake)ln(xke)

=le=1

RTIn nnxk (VPgake‘H/Rgake)

=1 e=1

>(VP,g,a,k,e +VR,g,a,k,e)

(G25)
where

x _ Yk,eCk.e
ke T ~ «~
Yk,eck,e

(G26)
is the equilibrium-normalised activity of species e of component k. For irreversible
thermodynamics to be applicable, all points of the system must be near equilibrium at all
times. Thus, at any time and place in the system,

Xpe =1+ 8xppe,
(G27)
where |6xk,e| is not much greater than zero. Furthermore, it is assumed that |5xk,e| is

always near enough to zero that, to a good approximation,

AG = RTlIn nnxk (VPgake‘H/Rgake) ~ RT ank (Vpgake+ngake)_1

=1 e=1
(G28)
Thus,

n Nk
| | | | xk'e(VP,g,a,k,e+VR,g,a,k,e) ~ | | | | Xke (VPgake+VRgake) =1 _|_ __
k=1 e=1
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(G29)

More importantly for what follows, AG is divided into two parts,

AG = AG, + AGy,

(G30)
where
AGr: RTIln l_ll_lxk Vpgake| = RTIn Hl_[xk |VPgake
k= =1 e=1
(G31)
and
AGy = RTIn nnxk VRgake| = RTIn ank ~|[vrg.ake
=1 e=1 =1 e=1
= —RTlIn nl_[xk |Rgake ,
=1 e=1
(G32)
so that
n Nk AG
[T[ oot = xom T e =12
o RT
=1 e=1 k=1 e=1
(G33)
and
n ng n ng
g € RT
k=1 e=1 k=1 e=1
(G34)

Given the definition of x; ., the molar reaction flow of reaction g/a can be rewritten as
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R
Jg.a

(G35)

hanwm

Z:lz Mke R,g,

oy TT38, M oo

27{212 Mke|VPg,ake|

zzl l-[nk Mk |VRgake|

Z=1Z Mke|ng

szln My, [ve,g,akel

n ~ - |VR
— ,g,ak.e
k Yk,eck,exk,e
f.9.a 1 Mk
akel k=1 e=1 ©
T E <~ |VP,g,ake
k k,eck,exk,e
r.g,a M
A A A A k’e
k=1 e=1
I (B ™ P
€ ke VR.g.ake
kf g,a | < Mk > xk;e 9
a"e k=1 e=1 € k=1 e=1
U .3, Vk ¢ |VP.g.a,k,€| n_ Tk |
€ ke | | | | Vp.g.ake
| k rg.a | < Mk > xk,e 9
ak.e k=1 e=1 € k=1 e=1

Given the expected characteristics of x ., the molar reaction flow of reaction g/a can be

rewritten as

R
Jg.a

hHMNWM

le Mke

,g,ake|

|VPgake|

n
k=12 Mke Pgake

|VRgake|

~
~

(Z’;ﬁ;lz Mkelngake|

[1x-=

11_[ Mk |VPgake|

(
(

[1x-

Zﬁ:lz Mkelngake

|VRgake|

1 [1e5, M

<Z£=12 MkelvR,g,ake|

oy TT3E, M [Pree

|

n=12 Mkelngake

)
)
)
)
)
)

[

k=1

1+

n

1+1In

1+ In

AGf_
RT |

AG,
RT |

n Nk
| | |xk,e|VR.g,a.k.e
k=1 e=1
| | xk,e|VP,g,a,k.e
e=

n Nk
v
| | | |xk,e| Rg,ak.e
| k=1 e=1
| | | |xk |VPgake

=1 e=1
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(G36)

Multiplying this equation by % yields

1 4 l_[nk M |VR,g,a,k el "k |VR,g,a,k,e|
JR = — k=11le=1 Mk, k 1_[1_[ Yk,eCre [RT—AG ]
94 RT ;(1:1 Z:ﬁl Mk,e |VR,g,a,k e Ja.a d

=1 e=1
n v no o lve.g.akel
1 Z:l He£1 Mk,e| P'g'a'k'el Yk,eCk,e gaie
- ﬁ o M kr,g,a M [RT + AGT]
k=1 Zezl k,e|VP,g,a,k,e| k=1 e=1 ke

_ 19ayga | ;gayga
= LprXr" + LgpXp™ )

(G37)
where

Pg ,a — Lg an ,a
(G38)

is the molar reaction flow of the products (P) of reaction g/a,

ng
n Nk VR.g,ak, n Y [VR.gake
194 — 1 k=11_[e=1Mk,e| gakel k | || |<Yk,eck,e>
PR — n ng f.g.a
RT k=1 Ze:l Mk,e|VR,g,a,k,e| k=1 e=1 Mk,e

(G39)

is the coupled-flow-phenomenological coefficient linking /5 to X3,

Xga—RTI]IkaWMwM| RT1.+m,I][]kaMMm| = RT — AG,

=1 e=1 =1 e=1

(G40)
is the conjugate molar affinity of the reactants (R) of reaction g/a,

g.a g.a v g,a
94 = 17X

(G41)

is the molar reaction flow of the reactants (R) of reaction g/a,

n ng Vp,g.ak, |VP,g,a,k,e
194 _ 1 k=111eZq Mk,e| gake] <Ykecke>
RP — n nk Kr.g.a | | | |
RT k=1 Ze=1 Mk,e|VP,g,a,ke Mke

(G42)

is the coupled-flow-phenomenological coefficient linking J2** to X5“, and
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n Nk n nNg
Xg'a = RTl_[nxk‘elvP,g,a,k,el ~ RTI|1+4 In nl_[xk,elvp'g'a'k'el = RT + AGT

k=1 e=1 k=1 e=1

(G43)

is the conjugate molar affinity of the products (P) of reaction g/a.

Taking Equations G21 to G23 into consideration together with Equations G37 to G43, it can
be seen that

Lbk = Lip
(G44)
is a reciprocal relationship. Thus, the phenomenological coefficients (L‘g:g of Equation G39
and L}, of Equation G42) of the reaction flows (J7** of Equation G38 and Jz'“ of Equation
G41) included within ]5,‘1 (Equation 37) yield identical results upon evaluation. In part,
splitting jga into two reactions flows,

Joa =12+ I35

(G45)
was justified on the basis of L7z and L3 ; being reciprocal. The split was also motivated by
the search for the two molar reaction flows that, in the dissipation function (Equations G2
and G3), are needed to complement the conjugate molar affinities, Xg'a and Xg'a, that
Equation G37 was contrived to yield. Having split Equation G37 as shown, it is now possible
to write the dissipation function for reaction g/a as
Dg0 = JEKE + KT
(G46)

Equation G46 is a dissipation function for two directionally distinct reactions, which are the
forward reaction that produces species a of component g, and the corresponding reverse
reaction. The dissipation function that includes all such pairs of reactions for all species of

component g can thus be written as

Ng
P, = Z Dy
a=1
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(G47)

Likewise, the dissipation function that includes all such pairs of reactions for all species of

all components can be written as

nr=n
CDR = Z cbg.
g=1

(G48)
Thus, the right-hand sides of Equations G48 and G3 can be equated to obtain

nr=n nr=n

P = z JRA, = z D,
g=1 g=1

(G49)
Using first Equation 47 and then Equation 46, the right-most summation of this result can
be expanded to yield
nr=n nr=n ng=n Ng ng=n Ng
LEDRIEDIE AN IDI G )
g=1 g=1 a= g=1 a=
(G50)

Assuming that, by definition,

Ng g n ng n ng

— g.a g,.ay _ | | | | v | | | | v

= Z(XP + XR ) = RTZ xk,e' P,g,a,k,el + xk,e' R,g,ak.e
a=1 a=1 \ k=1 e=1 k=1 e=1

(G51)
then
e Yol U9 X3 + ]2 X3
g~ n ,
YL (X2 +X79)
(G52)

which would make ]5 the conjugate-molar-affinity-average of the species-level molar

reaction flows of component g.

Dimensionality and tensorial order
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The dimensions of Ag are those of chemical potential, and Ag (Equation G51), the conjugate
molar affinity of component g, can be considered a measure of the chemical potential of
component g. (To be liberally flippant, one could say that the conjugate molar affinity
quantifies how reactionary a component is at any given place and time.) As would be
expected of a chemical potential, Ag is a scalar, as are the species-level conjugate molar
affinities denoted as X5 (Equation G40) or X7"* (Equation G43). Hence, although Onsager
referred to Ag as a force, he tended to put quotation marks about the word when doing so
[Onsager, 1931a]. In contrast, as noted in the discussion of Equation G1, )?q, the conjugate
molar force (Equations A2, A14 and 116) of solute component g, is a vector equal to -VU,,
where U is the total molar potential of solute component q. Thus, Agand Uq are

dimensionally and tensorially equivalent, as are -VAg and )?q.

Similarly, despite their being referred to as flows, reaction flows, such as J§ at the
component level or]g'a (Equation G38) and ]g'a (Equation G41) at the species level, are
scalars, and are dimensionally distinct from the molar flows of components, such as fk
(Equation G2), which are vectors. The reaction flows have the dimensions that would be
obtained from a divergence of a molar flow. Thus, V -fk and ]5 are dimensionally and
tensorially equivalent, as are fk and (V -)‘1]5, where (V -)71 is the inverse divergence

operator (Sahoo, 2008).

In the dissipation function (Equation G2), products of pairs of vectors, fk and )?k, are added

to products of pairs of scalars, ]5 and Ag, to obtain a scalar, ®. Dimensionally, the product of

anyfk and any )?k is the same as the product ofanng and any Ag. However, while the
product of two scalars yields a scalar, the product of two vectors can yield a scalar
(tensorial order 0), a vector (tensorial order 1) or a dyad (tensorial order 2), depending on
how the two vectors are multiplied (Kolecki, 2005). Thus, to ensure that each product in the
dissipation function yields a scalar, each such product that involves two vectors must be an
inner product. (As it happens, the inner product between two vectors will not yield a result

of the standard form unless one of the vectors is represented covariantly and the other
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vector is represented contravariantly (Kolecki, 2005).)

Given the above, it can be stated that the following products between scalars, ]SAg, ]5 Ug,
(V -fk)Ag, and (V -fk)Uq, are dimensionally and tensorially equivalent, both to each other,
and to the following inner products between vectors, [(V -)_1]5] - (-VAy), [(V -)_1]5] . )?q,
fk - (-VAg), and fk . )?q. It would seem, then, that the divergence of a molar flow might be a
molar reaction flow, and the inverse divergence of a molar reaction flow might be a molar
flow. It seems clear, though, that V -fk does not equaljg, andfk does not equal (V -)_1]5.
Likewise, in general, Ag cannot be equated to Ug, and -VAg cannot be equated to )?q. It may,

however, be alright to say that, in general, Ag is part of Uq and thus -VAg is part of)?q.
(See Moody and Shepard, 2004, for a previous version of the material in this section.)
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Section H: Factors affecting the electrical field in MCE

It is convenient to describe an MCE system in rectangular coordinates, where the previously

defined spatial vector, g, equals z. As such, the plane cross-sectional area, A, of the system is
perpendicular to the downwardly directed z-axis of the MCE system, and independent of
the vertical position, § = z. As A is also time-independent, the ordinary derivative, dA/dz =

0, can be used to describe this geometric characteristic of the system.

The current density can be written as

n Nk

. F R

] = 62 Z Zk,e]k,e ,
k=1e=1

(H1)

where zg, is the valence of species e of componentk, J; . is the molar flow vector of species
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e of componentk, F is the Faraday, and 0 is a conversion constant. As J is assumed to be
invariant with position over any horizontal cross-section, and as dA/dz = 0, J should be
independent of position in the system. That is, everywhere in the system, at all times,

V-j =0, and in particular, (dj,/9z)xy = 0, where j, is the z-component of . During the
normal operation of the MCE instrument, for j not equal to zero, j, is expected to be the only

nonzero component of .

(For detailed descriptions of system geometry and construction, plus methods to detect
solute concentration as a function of vertical position, see the first three references listed at

the end of this section.)

A flow of electrical current through the system in the MCE instrument results in a flow of
mass (that of the membrane-permeant ions) into and out of the system. Furthermore, as an
electrical current passes through the system, power is dissipated, and in the process of
maintaining a constant system temperature (by such means as a re-circulating water bath
or a Peltier system), heat flows from the system to the surroundings. (At the currents and
ionic strengths used in MCE experiments, the resistive heating of the system is unlikely to
tax the capacity of a surrounding heat sink to maintain a stable system temperature
[Ridgeway et al., 1998; Godfrey, 1989; Laue et al., 1989].) Due to the current flowing
through it, a system in the MCE instrument can never achieve equilibrium, but it can reach
steady state. The appropriate thermodynamic description of such a system is one based on
irreversible thermodynamics, the theoretical basis of which was greatly advanced by

Onsager [1931a; 1931b].

The MCE system is composed of an implicitly treated solvent component, plus n solute
components. Each solute component, k, is composed of nk solute species. Applying the

irreversible thermodynamic framework to this system, the net transport of matter within it

can be described in terms of the total molar flow vector, f which, in turn, is described by

n n MNg n Nk - n MNg R
-— k —_— k e -_— )
’ M M
k=1 k=1e=1 k= ke ke



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

(H2)
where Mke is the molar mass, cke is the mass concentration, [, . is the mass flow vector, and

Uy ¢ is the transport velocity vector of species e of solute component k.

It is assumed that the electrical fields present in the system are weak enough, and the
thermal motion of each species is great enough, that, on average, all species of all
components are randomly oriented. As a result, no net transport along the y- or x-axis is
expected to result from forces directed along the z-axis, so that, in the absence of turbulent
flow, fk,e and vy, , have no component along the y- or x-axis of the system. As no turbulent
flows are expected in the normal operation of the MCE instrument, only the z-components
of these vectors need to be considered. Thus, fk,e = €,(Jke)z Where €, is the unit vector in the
direction of the positive z-axis, and (Jke): is the z-component offk,e.This allows the vector
notation to be dropped, so that Jxe = (Jxe)- can be used in place offk,e. Similarly, [xe = (Ike)-

can be used in place of I o, and vie = (Vke)z can be used in place of vy .

Chemical potential gradients in any of the species, the electrical potential gradient acting on
the charge of any of the species, the gravitational potential gradient acting on the mass of
any of the species, and solvent flow determine fk,e. Chemical potential gradients in charged
species are constrained by the requirement of charge neutrality [Onsager and Fuoss, 1932],

which is described by

n Nk
Z Z Zk,eCk,e =0,
Mk e
(H3)
where zie is a signed parameter. Charge neutrality holds from macroscopic volumes down
to some minimum volume that includes some minimum number of charged particles. Such

minimum volumes can become electrostatically polarised by transport processes, however,

giving rise to the electrophoretic/asymmetry effect.

Other than A, the most easily controlled variable in an MCE experiment is i, which is equal
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to the sum of the currents of all species. During an experiment, i is typically held constant

with time.

Due to conservation of current, and because there are no sources or sinks of current within
the system,Vi = 0 everywhere at all times in the system. Although i is a not a vector, J, from
which i is obtained, is. (See Equations H1 and H4.) In the MCE instrument, j has no
component along the y- or x-axis of the system, so that j= &,j,. Thus, j can be used in place

of the vector.

Provided that, as should be the case in the MCE instrument, each fk,e is everywhere

perpendicular to, and invariant with position over, the horizontal cross-section,

n MNg

L. @"'3’0 sVA+xo AF I o
izf]-dSzjf f dxdyszz—z Zie
Yo %o SGag T M

(H4)

where dS is a vector equal to ndS. The magnitude, dS, is the differential element of cross-
sectional surface area. The direction, 7, is the unit normal vector that is outwardly directed
from dS. As 7 is everywhere equal to &, and as J is everywhere equal to &,j, = &,j, the
integrand of Equation H4 is everywhere equal to jdS = jdxdy. In the upper limits of
integration with respect to x and y, the cross-sectional scaling factor, g, must be greater than
0 and less than infinity. The lower limits of integration with respect to x and y, xo and y,

respectively, can be equated to zero.

(With L, defined as the width of the system, and with L, defined as the depth of the system,

A = LyL,. With ¢ defined as \/%, ¢VA =L, and g = Ly. When, as is often the case in

practice, Ly is equal to L,, ¢ = 1. Given that L,, is equal to the optical pathlength of Equation
E1, it would be useful to have access to systems that are identical in all respects except L,,.

Thus, there is some motivation to construct systems for which ¢ # 1.)

The sum on the right-hand side of Equation H4 is taken over all species of all components.
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The current carried by species e of component k is ixe = (AF/0)zkelke/Mke. As each product,
Zielke, 1S signed, each ixe is a signed parameter. In the absence of overwhelming, opposing
chemical potential gradients, species that differ with respect to the sign of zke will differ
with respect to the sign of Ixe. Consequently, when no such chemical potential gradients are

present, the sign of ix. is the same for all charged species.

The conductivity of the solution is described by

n Nk
Zkeckeuke
G) M,
=le=1 ke

(H5)
where uge is the electrophoretic mobility of species e of solute component k. Provided that

E is everywhere perpendicular to A, and does not vary across A,

Z z Zk eDk e <ack e)
G)K My . ’

t

(H6)
which result is obtained by substituting the expression for Ixe from Equation C4 into
Equation H4, using Euke in place of oxeDxke, solving for E, and using Equation H5 to simplify

the denominators on the right-hand side. Equation H6 holds even if k varies with &.

In the MCE instrument, A, i and k are exploited to control the electrical field, E.In general,

—

E = —-—wVY¥,
(H7)
where W is the electrical potential, and @ is a conversion constant. Both ¥ and E can be
functions of spatial position and time. The design of the MCE instrument, however, results

in V¥ having no component along the y- or x-axis of the system. Consequently,

(0¥/0z)tyx = VW and E = E; can be used in place of V¥ and E, respectively.

As A is fixed and i can be held constant, E varies with € as a function of k, concentration
gradients, and solute properties. (See Equation H6.) As k is a function of the ionic strength
of the solution, I', x can be controlled to the extent that I" can be controlled. In general, k
increases as I' increases, but k is not linearly proportional to I [Castellan, 1983]. For
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example, in a sufficiently dilute, aqueous solution of a uni-univalent salt at a fixed
temperature, x can be estimated by k = o1 - 02I'3/2, which is a rearrangement of the
Onsager equation. The coefficients 01 and o2 can be calculated [Castellan, 1983], or can be
obtained by fitting experimentally determined conductivity data. As dk/dI' = o1 -
302(I'Y/2) /2, dk/dr is diminished from o1 by 302(I'*/2) /2. The source of this diminution is
thought to be an increase in flow effects, and thus a decrease in the electrophoretic mobility

of each ion, as I" increases.

In the presence of membrane-confined components, when i # 0, I is likely to vary with &
and t, resulting in variations of k and E with € and t. Neglecting the second term on the right-
hand side of Equation H6, E can be estimated by Ererkrer/k, Where k is a function of § and t,
such that krer = k at reference position &rer and reference time trer. For steady-state
experiments, infinite time, t., is a practical reference time, in which case, at § = §..rand

t =t,, E = Erer. (When the system is at steady state, the time elapsed since the start of the
experiment can be considered to be t,..) For moving boundary experiments, the time at
which current flow is started, to = 0, is the most practical reference time, in which case, at

& = &rerand t = to, E = Erer. In either case, Erer = i/Axrer, and any convenient reference position
can be chosen for &rer. In the simplest systems, I is not expected to vary significantly with §

or t, with the result that, for all practical purposes, k = kref, and E = Eref, at all  and all t.

Along gradients in I', liquid junction (diffusion) potentials can arise from local polarisation
[Castellan, 1983]. The development of diffusion potentials would cause E to vary with § and
t. In the case of a uni-univalent electrolyte, PX, for which the cation, P+, and anion, X-, have
closely matched transference numbers, vexp+ (the velocity of the cation) is approximately
equal to -vpxx., (-1 times the velocity of the anion). (Representing the transference number
of current-carrying species e of component k by Tke, Vke = iTieMie®/FAzZkeCke.) For such an
electrolyte, little, if any, polarisation is expected to occur in the system [Castellan, 1983].
Also, for any electrolyte, such polarisation is minimised if the system is designed so that
gradients in the mean ionic activity (the geometric mean of the individual ion activities) are

negligible [Castellan, 1983].
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(See Moody and Shepard, 2004, for a previous version of the material in this section).

References

[H1] Ridgeway, T. M., Hayes, D. B., Moody, T. P., Wilson, T. ]., Anderson, A. L., Levasseur, ]. H,,
Demaine, P. D., Kenty, B. E. and Laue, T. M. (1998) An apparatus for membrane-confined
analytical electrophoresis, Electrophoresis19 1611-1619.

[H2] Godfrey, ]. E. (1989) Steady-state electrophoresis: A technique for measuring physical
properties of macro-ions, Proc. Natl. Acad. Sci. USA 86 4479-4483.

[H3] Laue, T. M., Hazard, A. L., Ridgeway, T. M. and Yphantis, D. A. (1989) Direct
determination of macromolecular charge by equilibrium electrophoresis, Anal. Biochem.

182 377-382.

[H4] Onsager, L. (1931a) Reciprocal relations in irreversible processes, . Phys. Rev. USA 37
405-426.

[H5] Onsager, L. (1931b) Reciprocal relations in irreversible processes, Il. Phys. Rev. USA
38 2265-2279.

[H6] Onsager, L. and Fuoss, R. (1932) Irreversible processes in electrolytes. Diffusion,
conductance, and viscous flow in arbitrary mixtures of strong electrolytes, /. Phys. Chem. 36

2689-2778.

[H7] Castellan, G. W. (1983) Electrical Conduction. /n Physical Chemistry, Third Edition.
Addison-Wesley Publishing Co., Reading, MA, 765-797.

[H8] Moody, T. P., and Shepard, H. K. (2004) Nonequilibrium thermodynamics of
membrane-confined electrophoresis. Biophys. Chem. 108 51-76.
141



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Section I: Calculating valence, molar mass, chemical potential and partial specific volume for a

multi-species component

The molar mass of species e of component k is represented by Mye, the valence of species e
of component k is represented by zxe, the chemical potential of species e of component k is
represented by pike, and the number of molecules of species e of component k is represented
by Nie. The number of moles of species e of component k is equal to Nxe/Na, where Nj is
Avogadro’s number. Defining V as the volume within which the Nxe molecules are found,
and representing the molar concentration of species e of component k by mye, the
relationship,

_ Nk,e

m =
ke T N,V

(11)
is obtained. The mass concentration of species e of component k is thus given by

Cre = Mk,emk,e .

(12)

Letting nk represent the number of species that constitute solute component k, and indexing

the species by e, the number of molecules of all species of component k is given by

ng
N, = Z Nk,e»
e=1

(I3)

the total molar concentration of all species of component k is given by

ng
(mk)total = Z Mge,
e=1

(14)
and the mass concentration of all species of component k is given by
Nk
Cx = Z Ck,e-
e=1
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(15)

The total molar flow of all species of solute component k is given by

ng

Z kevke Ze 1NAVvke
(]k)total ]k e mk eVke = M) totar —ane——— = (M) tota N,

Z 1 mk ng ke

- Ze=1N,V

Znil Nk,eﬁk,e N
= (mk)totalenk— = (M) totar (Vi »
Ze:l Nk,e

(16)

where vy . is the velocity of species e of component k in the system frame of reference,
(74 )y is the number-average velocity for all species of component k in the system frame of
reference, and use has been made of the definition of a component’s molar flow as the
product of its molar concentration and its velocity in the system frame of reference, which

for component k is denoted as vy,.

The total molar concentration of all species of component k can be expressed as

Nk ng DN Ck.e
(my) Z e I Mie __Ck
My )total = My e = = Ck o = )
e=1 e=1 Mk,e Z:e=1 Ck,e (Mk)N
a7)
where (M) is the number-average molar mass for all species of component k, so that
7 - ck (V)N
(]k)total = (M) totar(ViIn = m

(I18)
Similarly, the mass flow of solute component k can be related to the mass and molar flows
of all species of component k by

N § N Sn¥ e

T — 7T _ T _ - e=1"ke"ke _ -

Iy = Z Iye = Z My eJke = Z CreVke = Ck = (VR w
e=1 e=1

n
Zeil Ck,e

(19)
where (vi)w is the weight-average velocity for all species of component k, and use has been

made of the definition of a component’s mass flow as the product of its mass concentration
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and its velocity in the system frame of reference. (fk) is now defined as fk, the molar

total

flow of component k, and from the previous two equations, the relationship between fk and
fk is given by
( k)w ( k)w

&=mau=%@@w = MIn 55k = (M) xJx »

Vi) N
(110)

where (My)x is the coefficient needed to convert from the molar flow of component k to the
mass flow of component k. Solving Equation 110 for (Mk)x in terms of the mass and molar

flows of component k yields

-

I
(Mk)X =]T:-

(111)

Using Equation 19 to express fk as the sum of all Mk,efk,e of component k results in

M _ Ik _ 2221 Mk,e]k,e _ 2221 Mk,e]k,e
(My)y = = = Zestuerhe  Zei—h,
Tk Jk DIy P

= (Mk)],

(112)

where (My)j is the molar-flow-average molar mass of solute component k. This equation is
undefined for the case offk = 0, but the limit as fk approaches zero, the limit as all fk,e
approach zero, or the limit as all v, . approach zero, can be used to evaluate (My); in these

zero-flow-in-component-k cases.

As

n n -
Z k ke]ke Zeile,emk,evk,e

ng - ]
Ze=1]k,e Ze=1mk,evk,e

(Mk)] =

(113)

the limit as the velocity of each species of solute component k approaches zero is

n = n
lim (M ) Zeile,emk,evk,e _ Zeile,emk,e _ (M )
all vk e—0 I au vke—>0 Z:ﬁlmk,eak,e Zgilmk,e e

(114)

which is the number-average molar mass of solute component k. As (My); is simpler to
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describe than its equivalent, (Mx)x, (Mx); is used in the definitions of Dy, ux and Ix in Section

A.

Equations A1, A2,110 and [12 can be combined to yield

n n
I = (M), Z LiqXq + ICW—’;ﬁO = (M), z Liq(=MygeVh — z,FVY — V) + Icw—iﬁo :
g=1 g=1
(115)
Using Equation A2, the gradient of the total molar potential of solute component q can be
written as
VU, = —X, = —(~=M,Vgph — z,FV¥Y —Vpu,),
(I16)

in which )?q is the conjugate molar force (Equations A2 and A14a) of component q.

As Uq is a molar quantity, it can be calculated from the number average of its species-

specific parts. Thus,

Ng Nq
U. = Za:l mq,aUq,a _ Za:]_ Nq,aUq,a
Ty RN
a=1Mqa a=1Nq.a
Nq Nq Nq
_Zaleq,a.uq,a+Flpza=1Nq,an,a+ Za=1Nq,an,a
ng ng E ng

Zaleq,a Zaleq,a Zaleq,a

= (‘“q)N + Flp(zq)N + gEh(Mq)N ,
(117)
where the nq species of component q are indexed by a, so that, for species a of component g,
Uga, Hqa Mga and zqa are, respectively, the total molar potential, the chemical potential, the
molar mass, and the valence; while for component q, Ug, (1g)n, (Mg)n and (zq)n are,
respectively, the number average of the total molar potential, the number average of the
chemical potential, the number average of the molar mass, and the number average of the
valence, with each number average being for all species of component q. (Equation M21

shows (zg)n.)

145



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

As noted with respect to Equation H3, charge neutrality holds from macroscopic volumes
down to some minimum volume that includes some minimum number of charged particles.
Based on an expectation of charge neutrality except at fairly small spatial scales, then, for
each charged species of component g, there must be one or more oppositely charged
species of component q such that (zg)n = 0 in Equation 117, and, it could be argued, in
general. As also noted with respect to Equation H3, however, the minimum volumes that
are charge-neutral in the absence of transport processes can become electrostatically
polarised in the presence of transport processes. Such polarisation gives rise to the
electrophoretic/asymmetry effect, and it argued here, without proof, that where the
electrophoretic/asymmetry effect is present, it is possible that |(zq)n| > 0. (Conditions in
which (zg)n can be nonzero examined more deeply in Section M: Effects of ionic strength on

(apparent) reduced valence and zeta potential.)

In what follows, (Vzg)n is the number-average gradient of the valence for all species of
component q (Equation M25), (VM) is the number-average gradient of the molar mass for
all species of component g, and (Vpq)n is the number-average gradient of the chemical

potential for all species of component q.

If each Nga were invariant with space, each VNg. would equal zero everywhere, in which
case, throughout the system, V(zq)n (Equation M24) would equal (Vzq)n = 0, V(Mg)n would
equal (VMg)n = 0, and V(uq)n would equal (Vpg)n. This result holds for any value of nq. For
the special case of ng = 1, at each point in space, there is only one VNg,, and regardless of
whether VNga equals zero, V(zg)n = (Vzg)n = 0, V(Mg)n = (VMg)n = 0, and V(pg)n = (Vg)n.

When nq = 1, charge neutrality also requires that zq = 0.

Without assuming that each VNg,, is equal to zero, the gradient of the total molar potential

of solute component q must be expressed in a more general form, such as

Nq Mg
VU, = Z VUgq = — Z Xya
a=1 a=1
=V(uq), + (29) ,FY¥ + F¥V(z,)  + (M,) Vgrh + gehV(M,)
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(118)
where )?q,adenotes the conjugate molar force of species a of component g. Defining a

gradient-modified-average molar mass for all species of component q as

(M ) (Mq) Vggh + gEhV(Mq)
a Vgrh ’

(I19a)
and defining a gradient-modified-average valence for all species of component q as

(24) FVY + F¥Y(z,),
(2a), = FVY ’

(I19b)
the gradient of the total molar potential of solute component q becomes
VU = V() + (24) FV¥ + (M) Vgeh.
(120)
A comparison of Equations A2 and 120 shows that Vg = V(pq)n, Zq = (2g)g and Mg = (Mg)g.
Equation 119a shows that

(Mq) = (M),

V(Mq)
(I21a)
and Equation 119b (of which Equation M23 is an alternative form) shows that

lim (Zq)g = (Zq)N

V(zq),,—0
(121b)
These results are a consequence of
Nq
T, = v (B Eegualtus
a=1''q.a a=1''q.a
(I22a)
and

hN na
% z Yati NgaVz
= ,a ,a . = ,a ,a
lim  V(z,), = v =Ee 222 ) = im a=1 92 1% -0,
allVNg a—0 allVNqa—>0 Za‘i Nq,a allVNg 4 —0 ZailN

(122b)

which, as described previously, are applicable for any value of nq. For the case ofng =1,
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V(zg)n and V(Mg)n are always equal to zero.

In contrast,

Nq Nq
Al V11\il£2—>0 V(,uq)N = Vll\ilg}l—»o \Y <W) = vll\i]g_)o Za;:;ivq,;\z’vﬂq.a = (Vv q)N )
a=1''q.a a=1''q.a
(123)
which reflects the fact that, even when each VNg. equals zero, under some conditions, some
or all Vyg,. may differ from zero, as a result of which, (Vyg)n may also differ from zero. (For
example, concentration gradients in components other than q may result in (Vpq)n being
nonzero despite all VNg. being equal to zero.) Equation 123 is applicable for any value of nq.

For the case of nq = 1, V(pq)n is always equal to (Vg)n.

In addition to its utility in Equation A2, the description of Vg as V(ug)n is directly
applicable to Equations A5 to A14, and thence, to every subsequent description of the

continuity equation. The derivation of Equation A5 from Vg begins with

0
V), = 0 = (32
t

3 (imq) (OT) N <6uq> (GP) N zn: <6,uq> (acw>
or t,P,c 0§ t oP t,T,c 0§ t w=1 Ocw t,T.P.Cqzw ¢ t
(124)
where gradients in dimensions other than & are assumed equal to zero. As (a—T) is assumed

g/,
i () i
t

o¢

2
to equal zero, the product, (ﬁ) (
t,P,c

9
Py ) = 0. Furthermore, as each (ﬁ)
t

0w/t 1p,cquw

adequately treated in terms of component concentrations and activity coefficients
(Equation A12), it is not necessary to expand these parts of Equation 124 in terms of all the
Nga and g2 parameters that comprise (ug)n. Thus, the only part of Equation 124 that must

be dealt with in fully expanded form is
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IZ Nq allq, al
Z

(), 0-(5), -5 ) 0

a.u a n aN, a
500 N (282) 50 g (252)
a=1""9a\ Jp t,T,c+ a=17q.a JoP tT.c

n n
Zaqleq,a z:ailN

[yma (aNq'a) 1
a=1 JoP tT.c (6_P)
n
Zaqleqra 0¢ t

{0, +160, - 60, (55)1(G).

- (n“q)N

(I25)
where:
Olga
N (—q) n i
o), = () | = < Rt s
qVqly = = n = —
N aP tTcly Zaiqu,a Zaqleq,a

(126)

is the number average of the product, M, .V, 4, for all species of component g, with 7, ,
being the partial specific volume of the system with respect to species a of solute

component q;

(ﬂq)P - ng (aNqa

(127)

is defined as the pressure-gradient average of pg;

), =)
<(’)lan> 3 dP tre a=1\ QP (re
= = = ;
opP T,c Nq Zaiqu,a
(128)
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and (uq)n is previously defined. Using (Mq)g to define

(Mqﬁq)N + [(/‘q) = (1q) ]<alnN )t,T,C

(r, = A} |

(129)

which is a pressure-and-gradient-modified-average partial specific volume of the system

] op .
with respect to component g, permits ( #q) (—) to be described as
op tT,c & t

) ) oo -0 (25) 1) - 00,00, ),

(130)

Section J: Form of the general solution from Equation C32

The solution to the continuity equation for MCE can be written as

EN [ D fbpp dP"df D ffbp dby dh d{l
ke j+~k.e,j+ - jith df k.e,j+ 6 Jj df df

le=1h=1i=1 m
+i[ D beP dPidf D fb by dF dfl )
Ok.e,j—Vk.e,j- jEh =7 as = Uke,j— .
4 6 | dE 6 | dE dE
(J1, from Equation C32)

General virial expansions of the transport coefficients can be defined as

/oo dcqa]_b\
DXAID WD Wi =1Pbkeda e, .~

dcgai?
ZZO=1Z 1Za 1ybkeqa%)

— (o]
Okej— = O ke,j—
a,j
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J2)
and
- degaj?
szlz 12 1kaeqaﬁ
Dk,e,j— = Dok,e,j— dC a _b )
ZZ°=12 12 hbkeqa dg(;:],_/
J3)

for time t, while for time [t + At], they can be defined as

- dcgqj+?
Yb=12q 1Za 1pbkeqam
Okej+ — Uok,e,j+ dc b
q,a,j+
a1 1Za 1ybkeqam/
J4)
and
dcga, i+
Zlc;ozlz 12(1 1kaeqaﬁ
Dk,e,j+ = Dok,e,j+ n dC b )
q q,a,j+
Z?)o:]_ ZZ=1 Zazl hb,k,e,q,a qu aj+ /
aJs)

where n is the number of solute components, nq is the number of species that constitute

solute component q, D%j- at all € equals Dke at §; at time t in the limit as c approaches 0,

D°kej+ at all § equals D at §j at time [t + At] in the limit as c approaches 0, 6°kej- at all §

equals ok at § at time t in the limit as c approaches 0, 6%+ at all § equals oke at §j at time [t

+ At] in the limit as c approaches 0, cq,j- is the §-independent concentration coefficient of

species a of solute component q at time t, cq,0j+ is the §-independent concentration

coefficient of species a of solute component q at time [t 4+ At], and where pyke,qa Ybkeqga and

hpkeqa are the bth of up to an infinite number of species-e-of-component-k affecting

electrophoretic/asymmetry, thermodynamic nonideality, and viscosity coefficients,
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. . e n n n
respectlvely. By definition, ZZ=1 Zaqzl Pikeqar ZZ:l Zail Yikeqa and ZZ:l Zail hl,k,e,q,a are
each equal to 1. (See Section D for the component-based equivalents of these virial

expansions.)

Henceforth, cq,. is used to denote the concentration of species a of solute component q at

either time t or time [t + At], and some unspecified position, §;.

Individually, the product of b(cga)? -1 with the corresponding coefficient of proportionality
Pbkeqa yields the bth term for the contribution of cq. to the electrophoretic/asymmetry
effect of the system as it affects the transport of species e of component k, the product of
b(cqa)P -1 with the corresponding coefficient of proportionality yb,ke,qa yields the bth term for
the contribution of cq, to the thermodynamic nonideality of the system as it affects the
transport of species e of component k, and the product of b(cga)? -1 with the corresponding
coefficient of proportionality hpxeq.a yields the bth term for the contribution of cq,a to the
viscosity of the system as it affects the transport of species e of component k, where

b(Cq_a)b 1= d(Cq,a)b/qu,a.

Collectively, the sum of products given by )7, quzl pb,k,e,q,abcq,ab_1 is a measure of the
total contribution of cq. to the electrophoretic/asymmetry effect of the system as it affects
the transport of species e of component k, the sum of products given by

Yhes 2211 yb,k,e,q,abcq,ab_1 is a measure of the total contribution of cqa to the
thermodynamic nonideality of the system as it affects the transport of species e of
component k, and the sum of products given by }';", quzl hb,k,e,q,abcq,ab_1 is a measure of
the total contribution of cq,a to the viscosity of the system as it affects the transport of

species e of component k.

In writing Equations ]2 to ]5, it was assumed that Appke,qa/Aj = 0, Aybkeqa/Aj = 0 and
Ahpkeqa/Aj = 0 for any given pair of species e and a of their respective components k and q,
even in the case of solvent compressibility. If required to deal adequately with the case of

solvent compressibility, pbkeqa Ybkeqa and hpkeqa can be replaced with their respective j-
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and t-dependent coefficients, which would be pp ke

H5,C,

q_a_j-, yb,k_e_q_a,j- and hb_k,e,q,a_j— at tlme t, and

would be pbxe

15, E)f

gaj+ Ybkegaj+ and hpkeqaj+ at time [t + At], where, denoting a coefficient at
either time by dropping the - or + suffix, Apvkeqaj/Aj # 0, Aybkeqaj/Aj # 0 and Ahpke,qaj/Aj

# 0 for any given pair of species e and a of their respective components k and q.

In the general solution, Equation J1 is solved iteratively as follows:

1. Using cken- for cgaj+ (where k = q, e = aand h =j) in Equations J4 and ]5, the second
approximate solution (Section C) is used to calculate all (cken+)o, which are the
initial approximations of the true cken+ values;

2. Using (ckeh+)o for cqaj+ (Where k = q, e =aand h =j) in Equations J4 and ]5, the
second approximate solution (Section C) is used to calculate all (cken+)1, Which are
the first approximations of the true ciej+ values that can be tested against an
acceptance criterion of convergence (see Equation ]6, below);

3. Step 2 is iterated until the acceptance criterion of convergence (Equation J6) is met,
so that, at iteration m, using (Ckeh+)m-1 for cqaj+ (wherek =q,e =aand h =j) in
Equations J4 and J5, the second approximate solution (Section C) is used to calculate
all (cken+)m, which are the mth approximations of the true cken+ values that can be

tested against an acceptance criterion of convergence (Equation J6).

An example of an acceptance criterion of convergence would be a chosen value of Enin,

which is repeatedly compared against

v, 2
_ Zies Zeta Tho {[ (cken) = (Coens), ] 7 _ (erss)m

v ? (c-)?
(Zp a2, SNy T o)

“-m

Je)

where (crss)m is the residual sum of squares for the final total solute concentration at
iteration m relative to iteration (m - 1), Vy is the volume of spatial element h, V is the total
solution volume, and (c.)? is the square of the initial (time t) total solute concentration.
(With the width of the system given by Ax, the depth of the spatial element given by Ay, and
the length of the spatial element given by A¢, = (A& + A&h+)/2 (see Equations B54 to B57,
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and let A%i. = Aén+ = 0), Vi = (Ax) (Ay)A&h, where & is the vertical coordinate, and x and y
are the planar coordinates of the system, which has the geometry of a rectangular cuboid.)
The squared raw sum of all initial solute mass values is identical to V(c.)2. Convergence is
considered to be adequate if Zm < Emin. Once this convergence criterion is met, (Ckeh+)m iS

considered to be equal to cken+-

Section K: Reaction flow algorithms

Notation and other common features

An iterative process is used to calculate the concentrations of solutes that participate in
each chemical reaction, a/g. As noted in the discussion preceding Equation G12, reaction
a/gis defined as the sole explicit reaction that produces species a of component g. In
addition to the restriction of just one product species per reaction, the algorithms

presented here are restricted to just 1 or 2 reactants per reaction.

The constraint of just one reaction per product could be cheated by giving identical
characteristics to multiple species of a component, and summing the concentrations of the
identical species, each of which is the product of a unique reaction. In principle, it should
also be possible to model more complicated reactions by linking multiple reactions. (For
example, if two reactions share one product, the shared product could be considered an
intermediate, and the reactants of the second reaction could be viewed as the ultimate
products of the first reaction.) The algorithms presented here are not well optimised for

linked reactions, however.

Throughout this section, the concentration, activity coefficient and molar mass of species e
of solute component k are denoted as ckge, Yxke and Mge, respectively. As with the definition of
reaction a/g, much of the reaction-specific notation here follows that of Section G. Thus, k¢ga
is the forward rate constant (hence the subscript f) and krga is the reverse rate constant
(hence the subscript r) of reaction a/g. Additionally, vxgake is the stoichiometry of species e
of component k in reaction a/g, where X = R if species e of component k is a reactant, and X
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= P if species e of component k is a product. As in Section G, the reactant stoichiometries
are negatively signed, and the product stoichiometries are positively signed. (See Equations

G13 and G16.)

As there is only one product per reaction, it must consist solely of species a of component g.
Thus, the stoichiometry of the product species is vpgaga, and vpgaga is the only nonzero
product stoichiometry of reaction a/g. By the convention adopted in Section G, the species
index is greater than 1 for any higher-order species, and as the product is a higher-order
species by definition, a > 1. (See the discussion preceding Equation G12, where the simplest
species of each component is assigned the lowest number, 1, of the species index.) The
concentration, activity coefficient and molar mass of the product are denoted as cga, Yga and

Mg, respectively.

A minimum of one reactant must be something other than species a of component g. Thus,
one reactant species is denoted as species rl of component g, where r1 may equal 1, but r1
cannot equal a. The stoichiometry of reactant species r1 of component g in reaction a/g is
VRgagrl. The concentration, activity coefficient and molar mass of species r1 of component g

are denoted as cgr1, Ygr1 and Mgr1, respectively.

There may be a second reactant species, which could be any species other than species a or
species rl1 of component g. If present, then, the second reactant species is denoted as
species r2 of component q. If q # g r2 may be any species of componentq.Ifq=g,
however, r2 cannot equal rl or a. The stoichiometry of reactant species r2 of component q
in reaction a/g is Vrgagqr2. The concentration, activity coefficient and molar mass of species

r2 of component q are denoted as cqr2, Yqr2 and Mgq,r2, respectively.

In typical usage, each stoichiometry is integral, but integral values are not required for the
algorithms. As currently implemented [Moody, 2012a; Moody, 2012b], yxe is always equal
to 1 in all reaction flow calculations. To show how to work with values of yke other than 1,
however, yke is retained in many of the expressions presented here. Similarly, to present

the most general case possible, some of the expressions shown are applicable to reactions
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in which more than 2 reactants form more than 1 product.

The minimum number of iterations is equal to the total number of reactant stoichiometries,
Viotal, for which vrgake # 0. (See Equation G12.) Thus, at each spatial element, &, (Equation
B36), for each time increment, At; (Equation B35), the flow of each reaction, a/g, is
calculated at least viotal times. In each of the viotal iterations, the reaction flow throughout the
system is calculated for all reactions. Additionally, in each of the viotal iterations, the flow of
reaction a/g at each & is calculated Ra/g times, where Ra/g is the total number of all reactant
species for reaction a/g. (With the algorithms restricted to a two-reactant maximum, Ra/g is

either 1 or 2.)

In general, Ra/g < Viotal. If there is more than one reaction, Ra/g < Viota. Where multiple
reactions are present, the order in which their reaction flows are calculated may affect the
outcome. The multiple iterations of the full sequence of reaction flow calculations within At
are meant to minimise such order-specific effects. Toward that end, where possible, species
indices are chosen to ensure that the R/g iterations of a given reaction are not consecutive.
(The Ra/g iterations will be consecutive if the species indices of the corresponding reactants
do not encompass the species index of a reactant from another reaction. Conventions

adopted for the species index, e, are described in the discussion preceding Equation G12.)

Mass conservation

The total concentration of all species of reaction a/g at a given &, within At is denoted as
Ca/g. At a given &y, within Ate, ca/g remains constant, but the concentration of each species of
reaction a/g may change over At.. Henceforth, a minus subscript is used to denote a
concentration at the start of Ate, and a plus subscript is used to denote a concentration at
the end of At.. Thus, in terms of the total concentration, in the case of a two-reactant, one-
product reaction, the mass conservation of all species of reaction a/g at a given &, within At
can be expressed as

Casg = Cga- T Cgr1- + Cqra— = Cga+ T Cgri+ T Cqra+ -
(K1)
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Additionally, in the case of a two-reactant, one-product reaction, the total mass of each
reactant, expressed as the mass of that species that would be present if the product
completely dissociated, is conserved at a given &, within Ate. Thus, the concentration of
species rl1 of component g that would be present if the product completely dissociated to

reactants can be expressed as

|VR, ,a, ,rllM ,rl
_ 9,49 g

_ |VR,g,a,g,r1|Mg,r1
Cga- Tt Cgr1- =

- |VP, ,a, ,alM ,a
g.a,9 g

C

gl Cg,a+ + Cg,r1+ )

Veg.0.9a|Mga
(K2)
and the concentration of species r2 of component q that would be present if the product

completely dissociated to reactants can be expressed as

_ |VR,g,a,q,r2 |Mq,r2 _ |VR,g,a,q,r2 |Mq,r2

Cq2 Cg,a- + Cqr2- Cg,a+ + Cqra2+ -

- |VP,g,a.g.a |Mg.a - |VP,g,a,g,a |Mg,a

(K3)
(See Equation K13.) Respectively, Equations K2 and K3 reflect the fact that cgiand cqz are

conserved at a given &, within Ate. The sum of Equations K2 and K3 yields ca/g = cg1+ cq2.

Finally, in the case of a two-reactant, one-product reaction, at a given &, the concentration

changes per At are

Acga = Cga+ — Cga->

(K4)

Acgr1 = Cgr1+ — Cgri-
(K5)
and

Acqrz2 = Cqr2+ — Cqra—>
(K6)

where, by conservation of mass,
Acgq +Acyrq +Acy,, = 0.
(K7)
Once cga+, Cgri+, Cqr2+ and all other species concentrations pertaining to the end of At have

been determined, they become, respectively, cga-, Cgr1-, Cqr2- and all other species

157



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

concentrations pertaining to the start of Ate+1, during which they are likely to change again
due, as in prior time increments, to mass flows and reaction flows.

In the following discussions of reaction flows, products are described as being formed from
the association of reactants, and reactants are described as being formed from the
dissociation of products. Such descriptions apply well to mass-action interactions, but are
not well suited for some other types of reactions, such as conformational changes. Once the
subject of two-reactant, one-product reactions has been thoroughly covered, however, the
application of the algorithms will be generalised to include one-reactant, one-product

reactions.
Algorithm for reaction flows that are slow, relative to At

When a reaction does not fully equilibrate within a given period of time, its net reaction
flow is nonzero for that time. Thus, if a reaction, a/g, is judged too slow to equilibrate within
some time increment of interest, its reactant and product concentrations can be calculated

on the basis of the product of the net reaction flow and At,

n Nk | | n Nk | |
VR g,ake Vp,gake
kf,g,a 1_[ H(Yk,eck,e) - kr,g,a 1_[ H(Yk,e Ck,e) At‘[ ’
k=1 e=1 k=1 e=1

(K8)

which is just Expression G17 multiplied by the reduced time increment, At; = Ate/Ttotal,
where Ttotal = ViotalRa/g, and T is an index for which 1 < t < twotal. Expression K8 describes the
flow of reaction a/g during Aty, and is applied Ttwta times per Ate, thereby yielding the flow of
reaction a/g during At.. Here, the concentration, cke, is that which applies to species e of

component k at the start of At.. (At the start of Ate, cke = Cke-.)

For reaction a/g, the portion of the products that dissociates to form reactants during Ats,

expressed as a concentration, is

n n

k
|VP,g,a,k,e|
Cr,g,a = kr,g,a 1_[ (Yk,eck,e) At,,
1

k=1 e=
(K9)
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and the portion of the reactants that associates to form products during At., expressed as a

concentration, is

n Nk | |
_ VR, g,ake
Cf,g,a - kf,g,a 1_[ H(Yk,eck,e) At‘t ’
k=1 e=1

(K10)
where the subscript r refers to the reverse reaction, and the subscript f refers to the

forward reaction.

The current algorithm is restricted to reactions in which 1 or 2 reactants form just 1
product. As there is only one product per reaction, it must consist solely of species a of
component g. Thus, the stoichiometry of the product species is vpgaga, and with vpgaga

being the only nonzero product stoichiometry of reaction a/g, Equation K9 simplifies to

|VP,g,a,g,a|
Cr,g,a = [kr,g,a(Yg,an,a) At

(K11)

where C;ga is the portion of the concentration of the product, species a of component g, that
dissociates to form the reactants, species rl of component g and species r2 of component q.
Here, the concentration, cg,, is that which applies to species a of component g at the start of

At.. (At the start of Ate, cga = Cga-.)

Of the reactant species, Vrgagri and Vrgaqr2 are the only nonzero stoichiometries of reaction

a/g, as a result of which, Equation K10 simplifies to

|VR,g,a,g,r1 | |VR,g,a,q,r2 |
Cf,g,a = [kf,g,a (Yg,rlcg,rl) (Yq,rz Cq,rz) At‘r )

(K12)

where Cgga is the portion of the concentration of the reactants, species r1 of component g
and species r2 of component g, that associates to form the product, species a of component
g. Here, the concentrations, cgr1 and cq,r2, are those which apply, respectively, to species rl
of component g and species r2 of component q at the start of At.. (At the start of Ate, cgr1 =

Cg,rl- and Cq,rZ = Cq,rZ-.)
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Given that
|VP,g,a,g,a|Mg,a = |VR,g,a,g,r1|Mg,r1 + VR,g,a,q,r2|Mq,r2 i
(K13)

the portion of Csga that consists of species rl of component g is given by

|VRg agr1|Mg rl
C = — —C
rort |VP.g,a,g.a |Mg,a hoe:

(K14)

and the portion of Crga that consists of species r2 of component q is given by

Cf,q,rz — |VR,g,a,q,r2|Mq,r2

| |M f.g.a = Cf.g,a - Cf,g,rl .
Vp.g,ag.alMg.a

(K15)

The change in cga per At is

(Acg.a)T = Crga = Crga>
(K16)
the change in cgr1 per At is

|VR, ,a, ,rllM 71
_ g.a.9 g

A = —(C —-C
( Cg,rl)T VrgagalMoa (Crga = Crga)

(K17)

and the change in cq,2 per At; is

v M
(Acq,rZ)T = —(Acg,a)‘t — (Acg,rl)T — <1 _ | R,g,a,g,r1| Q.T1> (Cr,g,a _ Cf,g,a)
|VP,g,a.g.a |Mg,a

|VR, ,a, ,T2|M , T2
_ g,a,4 q

= |VP,g,a,g,a|M a (Cr,g,a - Cf,g,a) .

(K18)

Equations K16 to K18 form the basis of a test to determine whether reaction a/g is slow
relative to At.. The test employs Crga- and Ctga-, which, respectively, are the values of C;ga

and Cgga at the start of At.. If

Yg,aCg.a- > Crga->
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(K19)
|VR,g,a,g,r1 |Mg,r1
Ygr1Cgr1— > Cf,g,a—
|VP,g.a.g,a |Mg.a
(K20)
and
|VR,g,a,q,r2 |Mq,r2
Yq,r2Cqr2- > Cf,g,a— ’
|VP,g.a,g,a |Mg.a
(K21)

from which it follows that

(Yg.aCga- + YgriCori- + Yar2Cara-) = (Crga- + Crga-) >0,
(K22)
then reaction a/g is judged to equilibrate slowly enough, relative to At;, that Equations K11
and K12, or more generally, Equations K9 and K10, can be used to calculate the changes in
the reactant and product concentrations. If, relative to At,, reaction a/g is slow enough that
Equations K19 to K21 hold, then, relative to At = TwraAty, reaction a/g is considered slow

enough that its product and reactant concentrations after At; can be calculated as

Ttotal

Cga+ = Cga- T Z (Acg,a)T = Cga- T ACga,
=1

(K23)
Ttotal
Cgri+ = Cqr1- t+ Z (Ac‘g,‘rl),E =Cqr1- t ACg,‘rl
=1
(K24)
and
Ttotal
Cqgr2+ = Cqra— T z (Acq,‘rz).E =Cgr2-t ACq,‘rZ .
=1
(K25)

The test (Equations K19 to K21) ensures that Equations K23 to K25 will not be applied if
their use would violate mass conservation. Essentially, Equations K19 to K21 test the
applicability of the slow equilibration method by testing whether the method conserves
mass.
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Algorithm for reaction flows that are fast, relative to At

When a reaction fully equilibrates within a given period of time, its net reaction flow is zero
for that time. If one or more of Equations K19 to K21 do not hold, then reaction a/g is
judged rapid enough to fully equilibrate within Ate, in which case, the product and reactant
concentrations of reaction a/g are iteratively recalculated until their values yield the
association constant of the reaction, within a chosen level of tolerance. Compared to the
method for a slowly equilibrating reaction, the method for a rapidly equilibrating reaction
is more computationally intensive, as it involves up to Nequil more iterations, where Negui, an
empirically determined parameter, may be a number in the low thousands. (At present, the
routinely used values of Nequit are 5,000 for the initial equilibration att = 0, and 2,500 for all

equilibrations after t = 0.)

During Ate, up to Nequil iterations take place within each of the previously discussed Ra/g
iterations, and those Ra/g iterations, in turn, take place within each of the previously
discussed viotal iterations. Thus, for reaction a/g, within Ate, the maximum number of
iterations is equal to ViotalRa/gNequil. (The main purpose of imposing a maximum of Nequil
iterations is to prevent the occurrence of infinite loops, but it is usually best to set Nequi
higher than necessary to ensure equilibration. Spurious spikes and dips in the
concentration data are evidence that Nequil is too low to consistently achieve equilibration,
but such low values of Nequii might sometimes be useful for quickly testing a complicated

model system.)

The innermost iterations are indexed by w, where 1 < w < Wrinal, and Weinal < Nequil. The last
iteration, wrinal, occurs when the equilibration criterion (Inequality K29) has been met, or
when w reaches Nequi,, Whichever comes first. Thus, for reaction a/g, within At,, the total
number of iterations is equal to ViotalRa/gWrtinal. At each of the wnal iterations, a

concentration-change factor,
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(K26)

is calculated, where ko is a real number greater than zero, and wo is a real number equal to
or greater than 1. Both ko and wo are empirically determined parameters. For wo = 1, at w
= 1, kw = 1, which is its maximum possible value. As w increases, kw decreases. The smaller
ko is, the faster kw decreases as w increases. The larger ko is, the closer kv is to zero at w =
1. (At present, the routinely used value of ko is 3, while the routinely used values of wo are 1

for the initial equilibration at t = 0, and 4 for all equilibrations after t = 0.)

As in the discussion of slowly equilibrating reactions (Algorithm for reaction flows that are
slow, relative to Atg), a minus subscript is used to indicate a concentration before
equilibration, and a plus subscript indicates a concentration after equilibration. Also,
henceforth, concentrations that are in use during iteration w are subscripted by w, and
further subscripted with a minus sign to indicate a concentration at the start of iteration w,
or a plus sign to indicate a concentration at the end of iteration w. Thus, cgaw-, Cgr1,w- and
Cqr2,w- are, respectively, the values of cga, cgr1 and cqr2 at the start of iteration w, and for w =
1, are equal to cga., Cgr1- and cqr2-, respectively. Likewise, cgaw+, Cgriw+ and cqr2w+ are,
respectively, the values of cga, Cgr1 and cqr2 at the end of iteration w, and for w = Wfina, are

equal to cga+, Cgr1+ and cqr2+, respectively.

At each iteration, two test parameters,

Qra = (VoaCoam-) """
(K27)
and
Qrw = Kaga(YgriCoriw-) Prgagri (Yar2Cqraw-) Mrgaar: )
(K28)

are calculated, where Qp,w derives from the product concentration (hence the subscript P),
and Qrw derives from the reactant concentrations (hence the subscript R). At chemical
equilibrium, Qpw = Qrw- To test whether Qp,w is acceptably close to Qrw, a tolerance level, (,
is chosen, where 0 < { < 1 in principle, though values as close to 1 as practical are

preferred. (At present, the routinely used values of ¢ are 0.999 for the initial equilibration at
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t =0, and 0.995 for all equilibrations after t = 0.)

If Qp,w < Qrw and {Qrw < Qpw, the reaction is considered equilibrated, and the new
concentrations are equated to the old concentrations: cga+ = Cga-, Cgri+ = Cgr1-, and Cqr2+ =
Cqr2-- Thus, the criterion for adequate equilibration of reaction a/g is

(YQ,an,a+)|vP-.g,a,g,a|

<
|VR,g,a,g,r1| |VR,g,a,q,r2 | -
(Yg,rl Cg,r1+) (Yq,rz Cq,r2+)

(KA,g,a < EKA,g,a ’

(K29)
where the central value of Inequality K29 has the form of the simplified association
constant of reaction a/g (Equation G13) that pertains to the case of 1 product species and 2

reactant species per reaction.

If (Qp,w > Qrw Or {Qrw > Qp,w, the reaction is not considered equilibrated, and to meet the
criterion for adequate equilibration (Inequality K29), the new concentrations must be
altered from their old concentrations, with the constraint that mass must be conserved. (If
¢Qp,w > Qrw, Cgaw+ must be made smaller than cgaw-, Cgr1,w+ must be made larger than cgr1,w-,
and cqr2w+ must be made larger than cqr2,w-- If (Qrw > Qp,w, Cgaw+ must be made larger than
Cgaw- Cgri,w+ Mmust be made smaller than cgr1,w-, and cqr2,w+ must be made smaller than

Cq,rZ,w—-)

The concentration changes per iteration w are defined as (Acga)w = Cgaw+ - Cgaw- (ACgr1)w =
Cgriw+ - Cgriw- and (Acqr2)w = Cqr2w+ - Cqr2w- Which, in this algorithm, are also subject to
mass conservation. Thus, (Acga)w + (Acgr1)w + (Acqr2)w = 0. The algorithm also enforces
mass conservation for cg1 and cq2 at each w. Thus, Equations K1 to K3, and Equation K7,
must hold when cga+, Cgr1+ and cqr2+ in those equations are replaced with cgaw+, Cgr1,w+ and

Cqr2w+ respectively.

For each iteration, w, the calculation of the concentration changes is divided into three
parts, the first of which yields the preliminary differences, (Acga)w*, (Acgr1)w+ and

(Acq,r2)w; the second of which yields the intermediate differences, (Acga)w*, (ACgr1)w* and
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(Acqr2)w+ and the third of which yields the final differences, (Acga)w, (Acgr1)w and (Acgr2)w.
The functions used to calculate the preliminary differences of iteration w depend on

whether {Qrw > Qp,w Or {Qp,w > Qrw- At iteration w, if {(Qrw > Qpw, the preliminary

concentration changes per iteration w are given by

(Acg,rl)w** = (Acg,rl)p,w = —kwCgri-,
(K30)
(Acq,rz)W** == (Acq’rz)F,W == _kwcq'rz_
(K31)
and
(Acg,a)w** = (Acg,a)plw == [(ACQ.TI)F,W + (Acqﬂ"z)p’w] = kw(cgr1- + cqr2-) -
(K32)
At iteration w, if {Qp,w > Qrw, the preliminary concentration changes per iteration w are
given by
|VR,g,a,g,r1 |Mg,r1
(Acg,rl)W** ) (Acg’rl)R'w ~ o |VP,g.a,g,a|Mg.a s
(K33)
|VR,g,a,q,r2 |Mq,T2
(Acq'rz)w** - (Acq'rz)R,w = ko |VP,g,a,g,a|Mg,a “ga-
(K34)
and
(Acg,a)w** = (Acg,a)R'W == [(Acg,rl)R'w + (Acq,TZ)R,W] = —kwCga- -
(K35)

The functions used to calculate the intermediate differences of iteration w are

~

1 M ]
(8c3r:),. = | Beard). + 22 (),
(K36)

1 M ]
(8care),. =] (Bcar),. + 2 0),..|
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(K37)

and

(Acg.a)w* == [(Acg.rl)w* + (Acq.rz)w*] :
(K38)

The final differences of iteration w are determined when mass conservation is enforced. If

|VR, ,a, ,r1|M , 1
_ 9,4.9 g

(Acg,rl)w* < (Acg,rl)max

- |VP.g,a,g.a|Mg,a s

(K39)
then (Acgr1)w is set equal to (Acgr1)w+, but if the condition described by Equation K39 is not

met, (Acgr1)w is set equal to (Acgr1)max. Likewise, if

v M
(Acq,rz)W* < (Acq,rz)max — | R,g,a’q'-r-2| q,r2

|VP,g,a,g,a |Mg,a s

(K40)
then (Acqr2)w is set equal to (Acqr2)w* but if the condition described by Equation K40 is not

met, (Acqr2)w is set equal to (Acgr2)max- Finally,

(Acg,a)w == [(Acg,rl)w + (Acq,rz)w] '
(K41)
At this point, it can be seen that Equations K32, K35 or K38, which are included for

completeness, are not needed to obtain the results given by Equations K39 to K41.

If w is less than Nequi, and if the criterion for adequate equilibration (Inequality K29) has
not been met, then the end of iteration w is the start of iteration [w + 1], in which case,
Cga[w+1]- = Cgaw+ = Cgaw- + (ACga)w, Cgr1,[w+1]- = Cgriw+ = Cgriw- + (ACgr1)w, and Corz fw+1)- =
Cqrzw+ = Cqrzw- + (Acqr2)w. If the criterion for adequate equilibration is met, or if w reaches
Nequil, then the end of iteration w is the end of the chemical equilibration process for
reaction, a/g within Ate, in which case, cga+ = Cgaw- + (Acga)w, Cgri+ = Cgriw- + (Acgr1)w, and

Cqr2+ = Cqr2w- + (Acq,rZ)w-

The iterative application of the second approximate solution
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As noted in Section C (Transport and reaction flows), the reaction flow and the mass flow
are calculated in separate, consecutive steps within a given time increment. Thus, the values
of cga+, Cgr1+ and cqr2+ obtained from the reaction flow calculations are used to re-initialise
Cga- Cgr1- and cqr2, respectively, after which, cga., cgr1- and cqr2- are subjected to the mass
flow calculations described in Section C. Following those mass flow calculations, mass
conservation is enforced, as described in Section L. Finally, if the convergence criterion
(Equation ]6) has been met, or a set limit on the maximum number of iterations has been
reached, the time is incremented by At, and the flow calculations for the next At are begun.
(Otherwise, without incrementing At;, the values of cken+ obtained, which pertain to
iteration m and are thus denoted as (Ckehn+)m, are used to calculate (cken+)m+1, which

denotes the next iteration of cken+ at the end of At..)

Limits

For a given chemical reaction, as the concentration of any of its reactants approaches zero,
the computational intensity of the reaction flow calculation rises, while the significance of
the information gained from the calculation falls. Avoiding such calculations, therefore,
reduces the time required to model a system, without adversely affecting the accuracy of
the results to a significant extent. To this end, two methods are used to place appropriate
limits on the application of the reaction flow algorithms. These methods employ two
dimensionless parameters, a and (3, that, when properly set, identify conditions in which

there is little or no need to calculate a reaction flow.

As with the flow calculations themselves, the methods to limit reaction flow calculations are
described in terms of a two-reactant, one-product reaction. In the inequalities used to limit
reaction flow calculations, Y represents the unit solute concentration (with dimensions

such as 1 g/cm3), just as it does in Equations G6, G7, G14, G15 and G20.

The first parameter, a, is used to test whether the concentration of one or both reactants is
approaching zero. If
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Ygr1€gr1,w— VR.gagril
( gritg ) > a

Yg,aCq,a,w- ve.g.ag.al Yq,r2Cq,r2,w— Vrg.agral
¢ (=) ()

Y Y

(K42)

or

Yq,r2Cq,r2,w- |vR'9'a'q'T2|
( qr2tq ) > a

Yg,aCg,aw- VP.g.ag.al Yg,r1Cq,r1,w— VRg.ag.r1l
¢ (=) () '

Y Y

(K43)

then the algorithm for a fast (relative to At¢) reaction flow is not used, even if one or more
of Equations K19 to K21 do not hold. If Equations K19 to K21 do hold, however, the
algorithm for a slow (relative to At¢) reaction flow is used, regardless of the test results
from Equations K42 and K43. At present, the routinely used value of a is (10-13 erg-s) /h,

where h is the cgs Planck constant.

The second parameter, 3, tests whether the concentrations of all reactant and product

species are approaching zero. If

YgaCgaw-)Pacae
(K44)
s> ()
(K45)
and
(K46)

neither the algorithm for a fast (relative to At¢) reaction flow, nor the algorithm for a slow
(relative to Ate) reaction flow, are used, regardless of the test results from Equations K19 to
K21. Instead, whenever Equations K44 to K46 prove true, any remaining product is

converted to reactants. At present, the routinely used value of 3 is h(1019/erg-s).

One-reactant, one-product reactions
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Expressions for one-reactant, one-product reactions are obtained by letting VR gaqr2 = 0,
Mgr2 =0, cqr2- = 0, cgr2+ = 0 and Acqr2 = 0, wherever they appear in Equations/Inequalities
K1 to K35. For one-reactant, one-product reactions, Equations/Inequalities K36 to K46 are

either superfluous or inapplicable, and are not used.

A special case of one-reactant, one-product reactions is that for which vrgagr1 = 1 and
Vpgaga = 1, wherein one species simply changes into another. Such reactions would include

conformational changes.

For all other one-reactant, one-product reactions, VR gagr1 > 1 and vpgaga = 1. Such
reactions would include any oligomerisation that can be described as an event in which
VRgagri monomers form 1 oligomer. A polymerisation, or complex formation, that must be
described by the successive addition of monomeric or oligomeric subunits, in which each
addition may have unique rate and association constants, would have to be modelled as

multiple reactions on a one-addition-one-reaction basis.
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Section L: Algorithms to conserve mass and adjust the time increment

Neither the finite-element approach of Claverie [Claverie et al., 1975; Cox and Dale, 1981],
nor similar numerical solutions to the t- and r-dependent or the t- and -dependent forms of
the continuity equation (Sections B, C, F and ]), conserve mass. Computational instabilities
appear to worsen the failure of such approaches to conserve mass. Thus, the severity of the
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mass-conservation failure can be exploited to measure computational stability. When
instabilities develop, as evidenced by severe deviations from mass conservation,
parameters, such as the time increment, can be adjusted to restore stability. Algorithms to
enforce mass conservation, and to decrease the time increment when computational
instability is judged to be excessive, are described here. The description of these algorithms
uses parameters and notation found in Sections C, ] and K. As in Sections C and ], the

subscript h corresponds to a spatial element, &.. (See Equation C17.)

The total mass, throughout the system, of species e of component k after the calculation of

all reaction flows (Section K), but prior to the calculation of the mass flows (Section C), is

N
Mg e = Z ViCr,en—»
h=1

(L1)

where Vy is the volume of spatial element h, and the minus subscript indicates a
concentration at the start of the time increment, At;, already used in the reaction flow
calculations, and yet to be used in the impending mass flow calculations. Thus, cken- is the
concentration of species e of component k at the start of Ate, after application of the reaction
flow algorithms described in Section K, but before application of the mass flow algorithms
described in Section C. Any mass of species e of component k that is associated with any

boundary of the system is included in cken-.

The total mass, throughout the system, of species e of component k after the calculation of

all reaction flows (Section K), and after the calculation of all mass flows (Section C), is

N
My e = Z VhCien+ »
h=1

(L2)

where the plus subscript indicates a concentration at the end of Ate. Thus, Cken+ is the
concentration of species e of component k at the end of At,, after application of the reaction
flow algorithms described in Section K, and after application of the mass flow algorithms

described in Section C. Any mass of species e of component k that is associated with any
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boundary of the system is included in cken+. If there is a flow of species e of component k
through the system during Atg, the set of all cxen+ accounts for any resulting change in the
mass of that species. Prior to calculating mye+, and prior to using the set of all cken+ in any
of the equations that follow in this section, any negative values of cken+ are set equal to

Zero.

As described in Section K (The iterative application of the second approximate solution),
within each iteration of the general solution of the continuity equation (Section |), the
reaction flow, mass flow, and mass-conservation algorithms are applied consecutively.
When the iterative solution of Section ] is applied, At; is not incremented until the
convergence criterion (Equation ]6) is met, or a set limit on the maximum number of
iterations is reached. Within Atg, at the end of each iteration, m, the values of cxen+ obtained,
which are denoted as (Ckeh+)m, are used to calculate (Cieh+)m+1, Which denotes the next
iteration of cken+ at the end of Ate. In this section, for simplicity, the subscript associated
with the iterative solution of Section ] is not appended to cken+ unless needed to distinguish

values pertaining to different iterations.

At the end of Atg, cien+ multiplied by a mass-conservation-correction factor, Ken+, to obtain

Ckens = Cken+Kken+ s

(L3)
where Cken* is equal to cken+ corrected for mass-conservation errors, and where Kieh+ is
given by
Kient =1 —=8xen+ -
(L4)

To define the fractional-change parameter, Sken+, the concentration-gradient parameter,

Akenh+, and the normalisation factor, Nke+, must first be defined.

For all h, the default value of Axen+ is zero. Nonzero values of Axen+ are obtained if ckent > 0
and |Ackeh+| > 0, where

_ Ckelht+1]+ ~ Cke[n—1]+
Ackens = >
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(L5)
for1<h <N,
Acke1+ = Che2+ — Che1+
(L6)
forh =1, and
Acgen+ = Crent — Cke[N—1]+
(L7)

for h = N. With Acken+ thus defined for all h, Axen+ can be defined as

Akent = |Ack,e,h+ |A ’
(L8)
where A, the exponential term of Aken+, is an empirically chosen parameter. As Equation L8
is only applied if |Acken+| > 0, A can be any real number. (If |Acken+| = 0, Akehn+ maintains

its default value of zero.)

The normalisation parameter,

N
Nier = Z VhCken+Di,en+ »
h=1

(L9)

must be greater than zero, as it is the denominator in the equation that defines Sk en-+-
Where Equation L9 yields a value of zero for Nie+, as it will if all cxen+ equal zero or all
Axen+ equal zero, Nke+ is set equal to 1. (As each Vi, must be greater than zero, there is no

set of Vi values that could cause Equation L9 to bring Nie+ to nought.)

Given the definitions and exceptions above, Sken+ can be defined as

5 _ (mk,e+ - mk,e—)Ak,e,h+
k,e,h+ - N .
k,e,h+

(L10)
When Aken+ = 0, Skent+ = 0. Thus, for |Acken+| = 0 or cken+ = 0, Sken+ = 0. For |Acken+| >0

and ckeh+ > 0, Skeht+ > 0 if (Myes+ - Mie-) > 0, and Sken+ < 0 if (Mkes - Mie-) < 0.
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For A > 1, as A increases, the difference between the highest and lowest nonzero values of
|8ken+| increases, while fewer cken+ values bear more of the concentration changes
required to enforce mass conservation, as more of the correction affects the nonzero cien+

values that correspond to the largest nonzero |Acken+| values.

As A approaches zero from above(A = 0) or below (A < 0), the difference between the
highest and lowest nonzero values of |6ken+| decreases toward zero, and at A = 0, the
concentration required to enforce mass conservation is the same for each nonzero cgen+

value that corresponds to a nonzero |Acken+| value.

For A < -1, as A decreases, the difference between the highest and lowest nonzero values of
|8ken+| increases, while fewer cken+ values bear more of the concentration changes
required to enforce mass conservation, as more of the correction affects the nonzero cien+

values that correspond to the smallest nonzero |Acken+| values.

At present, A is typically set equal to 1.

Adjustments of the time increment

If, at the end of Atg, each cken+ = 0 after the application of Equation L3, the system is
considered computationally stable, in which case, each cxen+ is equated to its corresponding
Cken+ value. If the convergence criterion (Equation J6) has been met, or a set limit on the
maximum number of iterations has been reached, the time is incremented by At, and the
flow calculations for the next At are begun. (Otherwise, without incrementing At;, the
values of cken+ obtained, which pertain to iteration m and are thus denoted as (ckeh+)m, are

used to calculate (cken+)m+1, which denotes the next iteration of cken+ at the end of At..)

If, however, at the end of At, one or more cren+ < 0 after the application of Equation L3, the
system is considered computationally unstable, in which case, each cken+ is equated to its
corresponding cken- value that pertains to the start of Ate. In that case, the time is not
incremented by Ate, At is halved, and the flows are recalculated using the shorter time
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increment.

Evidence of instability practically requires that At: be decreased. Evidence of stability does
not require that At be increased, but may justify testing whether At can be increased
without jeopardising stability. To that end, an algorithm has been implemented that can
raise At under conditions where it may be appropriate to do so. The evidence to raise At is
less definitive than the evidence to lower it, however. Thus, limiting parameters, such as a

maximum At value, are used to regulate the At.-raising algorithm.

If permitted by the relevant limits, At may be increased if the system is considered
computationally stable, provided that a computationally unstable condition has not
occurred within a specified time span. A judicious selection of various parameters, such as
Atg, A, the set of spatial elements, and the limits that govern reaction-flow calculations, can
minimise the occurrence of computationally unstable conditions while nearly maximising

computational speed.
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Section M: Effects of ionic strength on (apparent) reduced valence and zeta potential

The (apparent) reduced valence coefficient of solute component k is
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dincy Ck
_(C5) (65 i)
O = D, dcg
a=111, (af) Drea
dincy F Cx
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(M2)

where {is the magnitude of the downwardly directed spatial vector by which position is

measured in the MCE system, Ris the cgs ideal gas constant, 7'is the absolute temperature,
Fis the cgs Faraday, tis time, Pis the pressure of the system, @wis an electrical-potential
conversion factor, £'is the electrical field strength (assumed to be expressed in units of
volt/cm), v is the magnitude of the velocity of the solvent (component 0) in the system
frame of reference, nis the total number of solute components, uxis the (apparent)
electrophoretic mobility coefficient of solute component &, Dris the (apparent) diffusion
coefficient of solute component %; cxis the mass concentration of solute component & Mis
the molar mass of solute component %, z; is the valence of solute component g, ¢, is the
mass concentration of solute component g, M, is the molar mass of solute component g, y,
is the activity coefficient of solute component g, c» is the mass concentration of solute
component w; uxqis the coupled-flow-electrophoretic mobility coefficient of solute
component kas affected by solute component g, Diqis the coupled-flow-diffusion
coefficient of solute component kas affected by solute component g, Liqis the coupled-
flow-phenomenological coefficient linking the molar flow of solute component kto the
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conjugate molar force (Equations A2, A14 and 116) of solute component g, and where the
components are variously indexed by &, gor w; for whichl < k< n1<g<nand1< w<
n, respectively. The apparent charge of solute component kis equal to z; e where eis the

elementary charge.

For further information about the parameters in Equations M1 and M2, see Section A: An
application of irreversible thermodynamics to membrane-confined electrophoresis. (Further
information about R, £ @and eis also found in the second note following the List of
selected parameters, their indices, and their cgs, mks or other dimensions.) Most of the
details regarding z; and M,, two of the parameters of Equations M1 and M2, are presented
in Section I: Calculating valence, molar mass, chemical potential and partial specific volume
for a multi-species component. (Equation 119b describes (z;) 4 the gradient-modified-
average valence of component g, which is found (Equations A2 and 120) to be identical to z,
Likewise, Equation I19a describes (M) the gradient-modified-average molar mass of
component g, which is found (Equations A2 and 120) to be identical to M,.) Additional
details (Equations M21 to M25) regarding z; are presented in the last part of this section

(An examination of whether (zq)n and zq can be regarded as molecular parameters).

There are a number of obstacles to calculating z,, among which is the fact that each x4 of
Equation M2 is generally unknown. Onsager showed that the cross terms Lxgand Lgxare
symmetric in the absence of magnetic fields or Coriolis forces in the system, in which case,
the reciprocal relations provide Lixq = Lg«for all kand g [Onsager, 1931a; Onsager, 1931b;
de Groot and Mazur, 1962]. (In the presence of magnetic fields or Coriolis forces, resort
must be made of the more general form of the reciprocal relations mentioned in Section G:

The dissipation function and the Curie-Prigogine principle.)

Beyond the reciprocal relationships, the most that can be said in general is that each Lggis a
function of system properties (e.g. 7, P, and component concentrations), and that each Zxq
is independent of the magnitudes of any forces present, provided that those forces are
sufficiently small [Tanford, 1961]. For g not equal to & however, there is no equation that
describes Ligin terms of independently determinable parameters. Even for g = & Likis
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only calculable in the case given by

lim L Gk
m kk = )
Cq#k—>0 NyM, fi,

(M3 =A19)

where N4 is Avogadro's number and fis the frictional coefficient of solute component 4, but
this equation only applies in the limit as all solute concentrations other than that of solute
component kapproach zero. Nevertheless, if there are no solute components other than %;
and if £ cxand My are known, Lgis the one phenomenological coefficient that can be

calculated.

Of all the parameters needed to calculate Lgy fxis the most challenging to determine. In the

absence of solute components other than %, fi can be calculated from the Stokes equation,
fr = 6mNRy,

(M4 = A20)

if Ry, the Stokes radius of an equivalent sphere of solute component k; and 7, the solution

viscosity, are known. The applicability of the Stokes equation, however, is questionable

except as cxapproaches zero, at which point, 7becomes identical to the solvent viscosity.
Reduced valence as a function of ionic strength

In special cases, z;, or a related parameter can be calculated, and one such case is used here
to examine the trends exhibited by z, as the ionic strength of the solution approaches its
extrema. Toward that end, an applicable model system is first defined, and the calculable
parameters of that model system are then compared with the most closely related

parameters of Equation M1.

Equations M5 to M20 will apply to a model system in which a macro-ion shares its counter-
ion with an electrolyte in solution. The model system comprises a solvent component, k=1,
plus two ionic components, k= 2 and k= 3. Component k= 1 is assumed to be water, the
ionic species of which need not be specified explicitly in this case. Component k= 2

comprises two ionic species, both of which are small. Component A= 3 comprises two ionic
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species, of which one is large and the other is small. As in Equation H1, the valence of

species e of component kwill be denoted as zge.

Component 2 is assumed to be a uni-univalent electrolyte of the sort discussed following
Equation H7. The large species of component 3 is the macro-ion of the system, and is
defined as species 1 of component 3, so that its valence is denoted as z3 1. The small species
of component 3 is the counter-ion of the system, and is defined as species 2 of component 3,
so that its valence is denoted as z32. With the counter-ion of the system so defined, one
species of component 2 must be identical to it. Defining species 2 of component 2 as
identical to the counter-ion of the system, its valence, z; 2, must be equal to z3, and as
component 2 is uni-univalent, the counter-ion must be univalent. Species 1 of component 2
is thus identified as the co-ion of the system, and as the co-ion is univalent, its valence, 2,1,
must be equal to -z2. In terms of magnitude, | z,1| = | z22| = |z32] =1, and |z,1| = 1. In
terms of signed quantities, z31 = -| 231|232 = -| 23,1| 22,2 = | 23,1| 22,1. To conform to the
constraints of the Debye-Hiickel-Henry model applied below, the macro-ion is assumed to

be a spherical molecule with a centrosymmetric charge distribution.

In Equations M5 to M20, the system can be considered identical to that just described. For
example, when the valence of the macro-ion is written as z1, it can be assumed that k= 3.
Likewise, the counter-ion of the system will be univalent, and will be a species of both
component k= 3 and component k= 2, the latter component being identified as the uni-
univalent electrolyte. Furthermore, except where it is taken to the limit of zero
concentration, the electrolyte is assumed present in sufficient excess that it alone
determines the ionic strength, 7; of the system, and as the electrolyte is uni-univalent, its
molar concentration is identical to /- (Where the electrolyte approaches zero concentration,
it is also assumed that the concentration of the macro-ion component is infinitesimally low,

in which case, /"can still be equated to the molar concentration of the electrolyte.)

According to the Debye-Htickel-Henry model [Henry, 1931], in the absence of ion
relaxation, z; ;, the reduced valence of a spherical macro-ion with a centrosymmetric
charge distribution, is given by
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Ziy = Zia —H(KF/iTlakjl),
’ 1+ Ky JT%%1

(M5)
where zx1 is the valence of a macro-ion of solute component kwithin its surface of shear,
a1 is the cgs radial distance to the surface of shear of a macro-ion of solute component %,
K,?/lT is the cgs inverse Debye length for the system, and H(KF}T,ak,l) is Henry's function. The
sum of the Stokes radii of the equivalent spheres of a macro-ion of solute component kand
its counter-ion can be used to approximate ax1. The cgs inverse Debye length for the system

is given by

_ 2r 110001/ 1m

Krjr = F ( ),

/ eggRT .| m3 \100 cm

(M6)
where Fis the mks Faraday, Ris the mks ideal gas constant, & is the mks permittivity
constant, ¢is the dielectric constant (the relative permittivity) of the solution (the
applicable dielectric material), and /"is the mol-per-litre ionic strength. For K;/lT ax1 <
200,000, Henry's function can be approximated by

5 _ -
5—erf (Z [KO + K1{10g(K,~/1Tak,1)} + Kz{log(Kr/lTak,l)}Z])
4 )

H(K;/lTak,l) =
(M7)
where Ao = 0.99302, K1 =-1.10094 and A> = 0.10392 [Moody et al, 2005]. For K,?/lTak_1 >
200,000, Henry's function can be equated to 1.5, which is the value that the precise form of
Henry's function approaches as KF/IT ax1 approaches infinity. (Further information about the
parameters in Equations M5 and M6 is found in the second note following the List of

selected parameters, their indices, and their cgs, mks or other dimensions.)

Atagiven 7> 0 and a given £for which 1 < £< oo,

limk-+ =0cm™?
-0 F/T

(M8)

and
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- -1 _ -1
1111_r)1(r)10 Krjp =o0cm™ -,

(M9)

Equations M8 and M9 show the behaviour of the cgs inverse Debye length for the system

(Equation M6) at the hypothetical extremes of 7.

Atagiven ax1 > 0,agiven T > 0 and a given £for which 1 < £< oo,

}i_r)r(g H(K;}Tak,l) = _1lim0 H(K;}Tak,l) =1
Kr/r~cm
(M10)
and
lim H(krjray:) = im H(xrjray:) = 1.5.
Krir~cm
(M11)

Equations M10 and M11 show the behaviour of Henry’s function (Equation M7) at the
hypothetical extremes of /-

It is not possible to achieve the upper extreme of ionic strength applied in Equations M9
and M11. Nor is it possible to perform an MCE experiment at the lower extreme of ionic
strength applied in Equations M8 and M10. Despite their hypothetical nature, however,
these extremes of ionic strength, when applied to Equation M5, reveal the trends sought

regarding z, ; as a function of /7

At a given zx1, a given ax1 > 0, a given T > 0 and a given sfor which 1 < £< oo,

e «
Ilﬂlm Zp, = lim o Zk1 = Zka
-0 -1
“r/T~cm
(M12)
and
e «
lim z,; = lim_ z,, =0.
'—>oo -1 _
“r/T7cm
(M13)

It is now argued that as z;, ; of Equations M12 and M13 goes, so goes z; of Equation M2.

That is, to the extent that |z, |, the magnitude of z;, can be nonzero, |z, | will be greatest
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when /"reaches its lowest practical value, while |z, | will be smallest when /"reaches its
highest practical value. According to Equation M2, the extent to which |z;| can be nonzero
will partly depend on whether z; is nonzero for at least one of the n solute components. An
examination of whether (zq)n and zq can be regarded as molecular parameters, which is the
last part of this section (see Equation M21 to M25), addresses the question of whether z;

can be nonzero.

Zeta potential as a function of ionic strength

In a typical MCE experiment, the signal is proportional to the concentration of the
membrane-confined species, of which there may be just one in a system like that to which
Equation M5 is applied above. In such cases, when Equation M2 is used to calculate z; from
ok the result may be equivalent to z; ; of Equation M5. The ability to make such selective

measurements is exploited in the following consideration of the zeta potential.

Smoluchowski [1903] defined the zeta potential as the electrical potential at the surface of
shear of an individual macro-ion. With respect to the macro-ion of solute component %; the
zeta potential, {x1, can be related to the coupled-flow-electrophoretic mobility coefficient,

ui1 (Equation A16), via

_nuk,l( 1 kg )( 1m )
Sk = gg, \1000 g/ \100 cm/’

(M14)
where it is assumed that 77and ux1 are cgs quantities while & is an mks quantity. To
proceed, it is now necessary to propose that, qualitatively at least, ux can substitute for ux1

and z, can substitute for z ;.

As arearrangement of Equation M2 shows,
FDkZ;((
U, = .
T @RT

(M15)
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Equating ux1 to ux (Equation A22) and combining the previous two equations yields

NnFDkZ,’f;< 1kg )( 1m )
~ wRTegy \1000 g/ \100 cm/’

Ci1

(M16)
Next, z,, is equated to z; ; of Equations M5 to M13, the corresponding results from which
are used to determine {j ; at the limits of interest. For z; = z; ; of Equation M5, at a given

Zk1, a given ax > 0,a given T > 0 and a given £for which 1 < £< oo,

. NFDyz, 1/ 1kg 1m
lim {q = . ( )( )
K p=0 wRTegy \1000 g/ \100 cm
(M17)
and
lim ¢, =0.
KI:/IT_’°°

(M18)

From the relationship (Equations M6 and M7) of K,?/lT to 7, then,

) nFDyz, 1/ 1kg 1m
lim ), ; = . ( )( )

r-o°’" @wRTeegg \1000 g/ \100 cm
(M19)
and
}1_{130 Cka = 0.
(M20)

According to these hypothetical limits, {1 exhibits the same trends as z; ; with respect to a
dependence on /% The dependence on /"'shown by both {1 and z; ; renders them system

parameters, rather than molecular parameters.

Where data have been obtained from MCE experiments in which the signal was
proportional to the concentration of a single membrane-confined species, and during which
v was negligible, z; (Equation M2) may be equal to z, 1, in which case, ux (Equation M15)
should be equal to ux1. Where the experimental arrangement would yield z, = z; ; upon
application of Equation M2, the subsequent application of Equation M16 would yield a valid

measure of {x 7 and the two sides of each equation from M16 to M20 could be fully, rather

182



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

than approximately, equatable. To the extent of such equatability, z; is shown to be a

system parameter by the same evidence that shows z ; to be a system parameter.

An examination of whether (zq)n and zq can be regarded as molecular parameters

The number average of the valence, (z;) 5, is given, as in Equation [17, by

n
q
—1NgaZga

X,
VA =
( Q)N Zzil Nq’a

(M21)

where the n, species of component g are indexed by g, so that, for species a of component g,
Zg4a1s the valence and NV, is the number of molecules (Equation I1). Each z;, can be
considered independent of system properties by definition, as z;. is a defining molecular
parameter. (For a given species, valence cannot change. Within a component, a change in
valence requires an association of more than one species, or a dissociation into more than
one species.) In the absence of an electrical field, each ;. may change with such system
properties as 7, Pand solute concentrations, but each V., should be such that Equation

M21 yields (z;) = 0 at any given point in the system. Thus, in the absence of an electrical

field, (z;) ¥ could be viewed as a molecular parameter.

In the presence of an electrical field, the gradient of the total molar potential of solute
component g (Equation 120) includes an electrical contribution (Equation [15 to [19b).
Division of that electrical contribution by Fyields

(zq)gvsv = (24) V¥ +¥V(z,)
(M22)
where (z;)is the gradient-modified-average valence for all species of component g, ¥is

the cgs electrical potential, and V ¥is proportional to the electrical field (Equations A3, H6
and H7). (The equation for the electrical field can be written as E = —wV¥. Thus, where

IV¥Z| >0, |E| > 0, and where |E| > 0, an electrical field is present.)

Dividing both sides of Equation M22 by V ¥yields
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(), = (o), + )y
(M23)
where
(), = [ Beplter) Eeeoltas ) T P
Ya=1Nga Ya=1Nga Ya=1Nga
(M24)

Equation M23 is an alternative form of Equation [19b. As a comparison of Equations A2 and
120 shows, (z;)¢is identical to z; As such, Equation M23 shows that | z;| > 0 where |(zy) ] >

0 only, and z, = (z;) »where V(z,)»= 0.

In what follows,

(720), - z;‘i; :vq,aqu,a _ ZZ% Naa(®) _

2g=1Nga Yg=1Nga

(M25)

is the number-average gradient of the valence for all species of component g, and (Vzy))y= 0

because each Vz,,= 0.

For a system at steady state, in the absence of an electrical field, each N;,would be
invariant with space. If each N,;,were invariant with space, each VN,, of Equation M24
would equal zero everywhere, in which case, throughout the system, V(z;) y would equal
(Vzgy)n= 0. This result holds for any value of n, For the special case of n; =1, at each point
in space, there is only one VN, and regardless of whether VAN, ,equals zero, V(z;)) v =

(Vzy))n= 0. When ny = 1, charge neutrality also requires that z; = 0.

Where an electrical field is present, an electrical current flows through the system. Thus,
the presence of an electrical field drives transport processes in an MCE system. Where such
transport processes result in the development of concentration gradients, diffusion will also
contribute to the net transport process. As noted with respect to Equation H3, the minimum
volumes that are charge-neutral in the absence of transport processes can become

electrostatically polarised in the presence of transport processes. Such polarisation gives
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rise to the electrophoretic/asymmetry effect, and it is argued here, without proof, that
where the electrophoretic/asymmetry effect is present, it is possible that |(z;)) M > 0. The
electrical field and the flow of electrical current would produce the polarisation that gives
rise to the electrophoretic/asymmetry effect that, as argued here, can render |(z;)» > 0. By

Equation M23, | z,| > 0 where |(z;)n] > 0.

Regardless of whether a system is at steady state, in the presence of an electrical field, some
Ng2might not be invariant with space. Wherever N, varies with spatial position, the
corresponding VA, , of Equation M24 will be nonzero, and wherever VN, is nonzero, V(z;) »
will be nonzero, provided that the electrophoretic/asymmetry effect can render |(z;)»] > 0.
According to Equation M23, z, will differ from (z;) v where V(z,) ydiffers from zero.

Compared to (z;) s, then, z; is especially dependent on electrical field.

Equation M21 is now reconsidered for a system in which an electrical field is present. In the
presence of an electrical field, each V,;, may change with such system properties as 7, Pand
solute concentrations, and each N,;, may be such that Equation M21 yields (z;))¥# 0 at
some or all points in the system. Thus, in the presence of an electrical field, (z;) vis best
viewed as a system parameter. Given the relationship (Equation M23) of (z))nto z;= (29) o

in the presence of an electrical field, z; is also best viewed as a system parameter.

The discussion surrounding Equations M21 to M25 constitutes the argument that, where an
electrical field is present, (z;) yvand z; = (z;)care system parameters, in that they depend on
system properties, such as 7, £, component concentrations in general, and component
concentrations that contribute to /"in particular. In the absence of an electrical field, (z;) ¥
and z; both equal zero regardless of the system properties. Thus, (z;) yand z; can be

regarded as molecular parameters in the absence of an electrical field.
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Section N: A simple coupled-flow equation for MCE

Equation A24 can be expressed as

14+ X0 c 14+ X" ¢, \ /0lnc
Ik = ¢y lu]?c( Za—l pk,a a>E _ D;?( Za—13’k,a a>( k) l
t

1+ ZZ=1 hy,aCa 1+ ZZ=1 hi aCqa ¢
or
0 1+ ZZL:l yk,aca 0 1+ ZZ:l pk,aca alnck
Iy = ¢, Dy n Ok n - )
1+ Za=1 hk,aca 1+ Zazl yk,aca af
(N1)

where the expressions for o Drand uy,

186



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

o O' 1+2a 1pkaca
e Tk 1+Za 1ykaca

(N2)

1+>n. c

Dk — D]?( ZZ—1Yk,a a>

1+ Za=1 hk,aca
(N3)
and

" = 0 Dy Uka 1+ Ya-1Praa\ _ _ 0 1+ Ya=1PraCa
kKT E E \1+3X"_, hgaCa 1+ Y7 heaCa)

(N4)

respectively, were obtained by applying the truncated linear equations (3, 10 and 12) of
Section D to Equations D5, D6 and D7, respectively. In contrast to Equation D7, however,

o. D /Ehas been defined as up in Equation N4.

Equation N1 does not account for coupled flows, but can be used as the basis for an
equation that does. Multiplying Equation A18 by M, which is equated to (M);in Section I

(Calculating valence, molar mass, chemical potential and partial specific volume for a multi-

alncq
w0 (222 |}
t
(N5)

For g = k the right-hand-side of Equation N3 can be used to approximate Dy, and the right-

species component), yields

n
vock q
JkMy = I, = My §—— ZM_

hand-side of Equation N4 can be used to approximate ux4 More generally, Dy, can be

approximated as

1+ Zgzl Yq,aca>

D, =XP DO
o foa =k <1 + ZZ:l hk,aca

(N6)

and uy4 can be approximated as

_X 1+2a 1pqaca
bata \ T hg.aCa)’

(N7)
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where X,Qq and X}, are constants. Thus, Equations N6 and N7 become equivalent to the
truncated forms ofX,Qq times Equation D6 and X}/, times Equation D7, respectively, when g

= k Applying Equations N6 and N7 to Equation N5 yields

n

Vock z Cq 1+Za 1pqaca D 0 1+Za 1anca alncq
L, =M, {———+ XH E—-X/.,D
e Tk M, l g™t q<1+z BEHENL+ 30 hiaca) \ 08 ),

a=1 qaca
n n
— Uock Z_q +Za 1pqaca
M 1+ X0 1hgaCa
q:
n
Z (6Cq> Xk qu <1 + Za 1yq aca>
q=1 q 1+ Za=1hk,aca

(N8)
For n= 2, Equation N8 yields

oC 1+ ¢+ C 1+ ¢+ c
I, = M, 1 L E X1 u P1,1C1 T P1,2C2 + X1 Ju P2,1€C1 T P22C2
M1 M1 1+ hyq61 +hysc, M, 1+ hyqic1 + hypc;

— i(%) xD. po 14+ Y1161+ Y120
M; \ 9¢ ¢ L1 1+ hyqic1 + hyyc,

1 s0c 1+ ¢ + c
+—<—2> szDg Y2,1€1 T Y2,2C2
Mz af t ’ 1 + hz’lcl + h2’2C2
and

oC 1+ ¢+ c c 1+ ¢+ c
I, = M, 2 LE X21 P1,1€1 T P1,2€C2 L2 2 X% u P2,1€C1 T P2,2C2
MZ Ml 1 + h1,1C1 + h1'2C2 MZ 1 + h2,1C1 + h2,2C2

— i(%) XD DO 1 +YI,1C1 +y1,2C2
Ml af t 2171 1+ h1,1C1 + h1,2C2

aCz 1+ Y21C1 +Y2,.2C2
6{ 1+ hyqc1 + hypc;

(N9)

The coupled-flow analogue of the (apparent) reduced valence coefficient (Equation A23a)

is defined as

188



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

F

_Euy EZZ

Orq = = ,
’ D dln
Y4 RT|1+c 1(aCW) ( 7h)
a Zuw= deq dcy tT\P,Casw

(N10)

where Diqand uigare defined by Equations A17 and A16, respectively, and are
approximated by Equations N6 and N7, respectively. This result is noteworthy for the lack
of a viscosity term in gy 4, presumably because Ly , from uxq cancels Ly , from Dig. (See the
discussion following Equation A20.) Using Equations N6 and N7 to express Dxqand uxg,

respectively, and introducing a set of constants denoted by X}/ ;, 04 can be approximated as

1+ X5=1 Pg,aCa
Euk.q Equ 1 (1 + Zazl q,aca>

o (1 + Zg 1Pq, aca>

g = =
o Dy.q XD DO(1 + Y= 1yq aca> o 1 +Za 1Yq,aCa
kaZa\1+ Y51 hgaCa
(N11)
where, by virtue of X7, X,gq, Xi 4 08, DY and uJ being constants,
s o EX}(‘qug
Xk'qo-q = XD DO
k.q~q

(N12)
is a constant to the extent that £is constant. Thus, Equation N11 becomes equivalent to Xg

times the truncated form of Equation D5 when g = & Using Equation N10, Equation N5 can

dinc
o= (%3 |
t

For g = k the right-hand-side of Equation N2 can be used to approximate ox,and the right-

be rewritten as

vock q
Ik =Mk -_— ZM Dkq

(N13)

hand-side of Equation N3 can be used to approximate D4 More generally, Dx4 can be
approximated by Equation N6, and gx4 can be approximated by Equation N11. Applying
Equations N6 and N11 to Equation N13 yields

n
Vo C 1+ c 1+ c dilnc
Ik :Mk 0%k Z—qXEqu Za 1Yq,aCa qu ; Za 1pqa a q
=] M 1+ Xa-1hgata 14+ X8-1YqaCa ¢ .
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(N14)
For n= 2, Equation N14 yields

VoCq 1+ pi161 + P10 l
L, =M XP x99 DO ’ .
1 1 < Ml {[Ml L1711 1 (1 + h1'1C1 + h1'2C2>

aCl 1+ y1161 + Y126
1+ hyqc1+hyp0,

1+ pyqi61 + 0220
1 + hz’lcl + h2’2C2

_ i aCz 14+ y1¢1+ Y226
| 1 + hz’lcl + h2’2C2

+ _M X12X12D202 (

and
Vo2 1+ pi1610 + 126
I =M + X2, x3,D)o : :
=y (6 {[Ml pugotop (L2 P
— i (%) xD. po 14+ Y1161+ Y1202
¢ 14+ pyic1+ P22
+ _XD XO' DO 0 , )
_MZ 22022 202 1+ h2,1C1 + hz,zcz
— i (%) xD. po 1+yz101 + 220
_MZ af t 2272 1+ h2,1C1 + hz'zcz )
(N15)

Re-evaluating ux Drand ok

In terms of Drand uy, or Drxand ox, the mass flow of solute component 4 can be written as

dincy
Iy = JiMy = ¢ ukE_Dk( )
t

3
(N16)
or
al
Iy = JiMy = ¢ Dy IO'k - ( ;;k> l
t
(N17)

both forms of which are shown in Equation A24.
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Replacing Drand ux of Equation N16 with

D - M, ic_q dlnc, XD, D2 1+ 26-1Yg,aCa
k__ck(ahu%) Mg\ 9§ ), "7 I\1+ X0  hgata
t

Gl a=1
(N18)
and
M, +yn
c c v
uk=_k quq q( a=1Pq.a a>+—0,
Cx = My 1+ 301 hgaCa E
(N19)

respectively, yields Equation N8. Equations N18 and N19 approximate Equations A21 and
A22, respectively.

Replacing Drand ok of Equation N17 with

Z (acq>thq ( + Xa=1Yq, aca>

( ) — 1+3X0-1hgaCa
(N20)
and
1+Za 1Pq,a€a Ck
_Euk_<alnck) E Y- 1M qu q(1+2 -1 ,aca>+ oM,
*7 o T\Tag (%2)
n LX D0<1+ZZ 1anca>
=1 Mg, “kaT4\1+ X7 _ hgacq
1+ X0 1PgaC c
n 0ono a=1Fq,a*a Lk
<alnck) a= 1M X{aXqa9qDq (1+Za 1 qaca>+v°Mk
s (3)
n 1 af th DO<1+ZZ 1yqaca>
=1 M, a7aN1L + 3" aCa
+ X4=1DPq.aC c
n 0ono a=1Fq,a*a Lk
_<alnck) q= 1M qu 9qDq (1+Za 1 qaca>+v°Mk
R (3)
n 0§ 2>/t yD D0<1+ZZ 1yqaca>
=1 M, “kaT4\1+ X7 _ hgacq
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(N21)

respectively, yields Equation N14. Equations N20 and N21 approximate Equations A21 and
A23a, respectively. Multiplying both sides of Equation N12 by X, D? yields X X7 .Ddog =
EX}chug, the left-hand side of which is used to replace EX}(fqug in the numerator of Equation
N21.As Dgog = Eug (Equations A21, B23F, C34F), Xiq = X,qu,gq, in which the derived
parameter is actually

u
o _ Xiq
kq — XD '
k,q

(N22)
Provided that X,’gq is not equal to zero, X}/ ,can be calculated using Equation 26. Where X,Qq
=0, X,‘c"q is undefined, except that the product, X,qu,gq, is nevertheless treated as being

equal to X/ ,.

When all X,’gqik values are equal to zero, Equation N20 reduces to Equation N1. Similarly,
when all X,?,qik and X ;. values are equal to zero, Equation N21 reduces to Equation N2.
As shown by the inability to eliminate the (1 + ¥-1 hy 4C,) terms from Equations N21
when not all X,?‘qik and X}(‘,qik values are equal to zero, however, hq,a values, which are the
second virial coefficients of the viscosity of the system, can wield some influence on oy,
values, even at equilibrium, unless all X,?,qik and X}éqik values are equal to zero. This
residual influence of h , is a flaw of the approximation of ox by Equation N21, as the
equation (A23) that defines oxis devoid of any viscosity-related terms such as hy 4, which

represents the species-g-applicable transport coefficient that links c, to the viscosity of the

system (Equations D6, D9 D12 and D13).

Re-evaluating the &independent coefficients of the basis functions indexed by j

Equations 33-, 33+, 34- and 34+ of Section C (A solution to the # and é&dependent
continuity equation for MCE in terms of species) show the functions used to approximate the

concentration-dependent transport coefficients of each species, ¢ of each solute
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component, & To render those functions &independent, the solute concentrations at each
explicitly included spatial element, & were replaced by the corresponding &independent
concentration coefficients of each species of each solute component at each of two times, ¢

or [+ At], of which, all of the time-dependent parameters at time ¢are known, while all of

the time-dependent parameters at time [+ A{] are in the process of being determined.

To include the effects of coupled flows when solving the # and &dependent continuity
equation in terms of species (Section C), Equations C33- and C33+ can be replaced by ¢

independent diffusion coefficients in the form of

Ae. . dcy, P
My e n "q qa] Yh=12w 1211 1ybqawuﬁ
i _
Dk,e,j— Acke]— Z Z kella, ]Dq a,j- dcwu]—b
g=1a=1 IR NIAD N hbqawum/
(N23-)
and
Ac . dc b
M n Mg qa1+ =1 2w 1Zu 1ybqawudcw¢
D, ., =—1¢ X0 D? —
ke, j+ Acke1+ kellg.al”aq.a,j+ n dCW“f+b ’
q=1a=1 Y1 =122 hb'q'a'w'”m/
(N23+4)

which are based on the &dependent function given by Equation N20, while Equations C33-

and C33+ can be replaced by &independent reduced valence coefficients in the form of

Euke]_
er]— Dk
e j—
b
/Z Zn an dCWu]— \
M c b=14w=1 1pbqawu dC
ke an q,a,j— XU DO w,u,j—
Cre i S971 [k.ellq.al9 qa}- q,a,j- dc b
,e,] a Zoo Zn Zn h Wu]—
b=14w=14y=1""b,q,a,w,u dcwu]—
Dy e j—
(N24-)
and
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_Euk,e,j+
O—k.e:j"' - Dk i
,€,]
b
M c . b=14w=1 u=1pb,q,a,w,u dc ]
ke yn an Q.a.J+Xu g° .. po . w,u,j+
Cr . : q=14ig=1 M [kellgalYq.a,j+Yq.a,j+ dc )
ke, j+ q.a Zoo Zn an h w,u,j+
b=1 4w=14y=1""b,q,a,w,u dc ]
w,u,j+
= )
Dk,e,j+
(N244)

which are based on the &dependent function given by Equation N21.

To define the parameters of Equations N23—-, N23+4, N24- and N24+, it is convenient to let
arepresent component & gor w; let frepresent species ¢ aor u, and let /+ represent j- or
J+, where jrefers to spatial element ¢; the minus sign refers to time ¢ and the plus sign
refers to time [¢+ A{]. As such, in Equations N23-, N23+4, N24- and N24+, n.is the number

of species that constitute solute component &, ¢, g is the concentration of species £ of
component &, D, g is the diffusion coefficient of species fof component &, D, g is the
diffusion coefficient of species £ of component &, g, g is the reduced valence coefficient of
species fof component a, ngﬁ equals D, g in the limit as capproaches 0, 6°; g equals g, g
in the limit as capproaches 0, ¢, g ;- at all {equals the concentration of species fof solute
component aat §at time ¢ ¢, p ;4 at all {equals the concentration of species fof solute
component aat §at time [+ Af], Dy p ;- atall {equals D, g at Gattime 4 Dy g ;4 atall &
equals D, g at attime [+ A, 0,5 ;- atall {equals g, p at &at time ¢ 0,4 ;4 atall fequals
Oqp at Gattime [+ Ad], Daolﬁ'j; equals Dg g j3 in the limit as capproaches 0, 0°, g j+ equals

Oqp,jF in the limit as capproaches 0, X[L;{,e]'[ 1 is the coefficient that couples D°; 4 ;5 to

q.a
Dye,j%r X[k e1,[q.a] IS the coefficient that couples 6°  jD° 4,5 t0 Oy e, j3, Mieis the molar
mass of species e of solute component £, u, . is the electrophoretic mobility coefficient of
species e of solute component &, Euy . ;— atall {equals Euy . at at time £ and Euy j, at all
fequals Euy . at &at time [£+ A#]. (See the various forms of Equation N25 for the
definitions of Acy ¢ j_ /A&, Acy e j4+/AE, Acg q,j—/AE and Acy g j4+/AE.) The b of up to an

infinite number of coefficients of proportionality for the electrophoretic/asymmetry,
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thermodynamic nonideality, and viscosity effects are py g o w,u» Yb,q,a,w,u a0d hp g w
respectively.

. s n n n
By defmltlon, Z&zl Zu‘21 P1q,aww &zl Zu:1 Yiqawu and Z$=1 Zu‘i1 hl,q,a,w,u are each
equal to 1. Each of the py, 4 4 ww Yb,q,awuaNd Rp g,q.w coefficients is a constant that couples
the concentration of species uzof component wto an effect on the transport of species a of
component g. (See Section D for the component-based equivalents of these virial

expansions.)

Provided that (0D°, , /ag)t =0and (0D°;,/0t) ¢ = Oatall fatall times, D°gq- = D°,q
and D°; 4 j+ = D°; 4 atall {atall times. Provided that (aa°q,a/65)t =0and (60°q,a/6t)f =

0 at all §at all times after a change in the electrical field is complete, 6°; 4 ;- = 0°; 4 and

0°gaj+ = 0°qq atall fatall times after a change in the gravitational field is complete.

With arepresenting component kor g, frepresenting species eor a, and /4 representing j-
or j+, the approximated derivatives, Acy o i— /AS, Acy ¢ ;1 /AE, Acq q j—/AE and Acy 4 ;1 /A, in
Equations N23- and N23+, are calculated as

Acapjz  Capl2]F — CaplilF

AS $121 — S
(N25a)
forj=1,
AcapiF _ 1<Ca,ﬁ,[j+1]¢ ~ CaplilF | CaplilF ~ Ca,/z,[j—1]¢>
AS 2 SLi+11 ~ SU] $u1 — $ui-1]
(N25b)

for1 <j< N and

Acyp iz CapNF — CapN-1]F

A $iny — $iv-1]

(N25¢)
for j= N. Provided that A£/Aj = 0, Equations N25a, N25b and N25c, respectively, are

equivalent to
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Acap iz  Capl2]F — CaplilF

AS AS
(N25d)
for j=1,
ACapF _ Capli+1lF ~ Capli-117
AE 208
(N25¢)

for1< ;< N and

AcopjT  CapNIT ~ CaBIN-11F

A¢ A¢

(N25f)
for j= N. Thus, for A /Aj = 0 (as in Equation B37 and B38), it can be argued, given the &
independence of cxef, Ckej+, Cgar Cqar and A that each form of Equation N25 yield a &

independent result.

Equations N23+ and N24+ can be used in place of Equations C33+ and C34+, respectively,
where the minus/plus sign refers the equation at either time tor time [+ A{f]. Eliminating
the indices eand a, which apply to species, and the summations with respect to species,
yields the component-equivalents of Equations N23+, N24+ and N25. The component-
equivalents of Equations N23+ and N24+ can be used in place of Equations B22+ and
B23+, respectively.

Evaluating X}, and X7,

Solving Equations A16 and A17 of Section A (An application of irreversible thermodynamics

to MCE) for Ligyields

L, = CqUlk,q CqDiq
k,q -

B F 9 aln '
M z — n Cw Yq
aqagm  MyRT |1+c Z — (—) ( ) l
q l q &w=1 acq . acw TP

(N26)

Using Equations N6 and N7 to approximate Dxqand uxg respectively, results in
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14 Y5=1PgaC 14 Y5-1Yq.aC
c Xu uo ( a=1Fq,a a) c XD DO < a=1.q,a a)
L _ q k'q q 1 + Z:ll:l hq’aCa _ q k'q q 1 + Zg:l hq’aca
a F - ol ’
Mgz, — n (9cw) (9Wq
e MqRTll-l-CqZW:l(va)t(an t,T,P,cqx
(N27)
and division by cq/(Mq [1 + -1 hq'aca]) yields
X,ﬁ“qug(l + Ya=1 pq,aca) _ Xlqui(I)(l + Ya=1 Yq,aca)
F B ac dlny, .
24 RT [1 +c Y0 (—W) (—q)
@ 1ew=t va t aCW t,T,P,Cazw
(N28)
Thus, as the total solute concentration, ¢ approaches zero,
mX,ﬁ“qug(l + ZZ:l pq,aca) = lim XI?,ch?(l + ZZ:l yq,aca)
c=0 F T >0 dc alny ’
L RT (14 ¢4 X0 - (—W)( q)
o l 1Ew=INdcq )\ 0w ) i1 con

(N29)
the result of which is

XiqUq _ XioqDq
RT '’

Shie

0
Zq

(N30)
where Zg is equal to z;in the limit as capproaches zero. Solving for X,Qq yields
YD = X qugRT
o 0o 0F "
D;zy, —
-9 o
(N31)
Applying the limit as capproaches zero to Equation M2, and multiplying the result by F/ @,
shows that
ugRT _ | F
p? Mg
q
(N32)
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Thus,
D __
Xk,q - Xlict,q'

(N33)
Applying this result to Equations N12 and N22 shows that X} ; should be equal to 1.
Although this result shows that X ,2 ¢ should always have the same value as X, it may be

convenient to treat them as independent variables in a simulation program, so that the

coupled-flow effects on u, can be evaluated separately from the coupled-flow effects on D,
In the limit as tapproaches o

Over time, an MCE system approaches steady state. Thus, any MCE system can be deemed
to achieve steady state as tis considered to approach infinity. As partial derivatives at
constant time become ordinary derivatives at steady state, the steady-state form of

Equation N21 can be written as

n 1+ZZ 1pqaca)+v Cr

dlnc, <97 1M 1+ X4-1hgaCa 0 M,
¢ n qu = _xD D0<1+Za 1anca>
G117, XEa P (T3S0 Ryt

Xitqo2D3 (

O =

(N34)

Equation A36 applies to the system at steady state, and dividing both sides of that equation

by ckin the case of Iy .= (Ik'oo)mc: 0 (where the subscript mcindicates that component kis

membrane-confined) yields

alnck) _dlncy
0§/, d§

lim o, = lim (

t—oo t—oo
(N35)
Applying this relationship to Equation N34 results in
1+ 25 1pqaca> + v, Ck

n qu OD(?(

O . 1= 1M 1+Za 1 qaca M
m-———= lim =1,
t oo(@lnck> t—oo (aCk>
a¢& . n aé £ yD D0(1+ZZ 1yqaca>
=1 My, “ka74\1+ Y72 _ hgacCq
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(N36a)

or equivalently,

14+ Y7 _1PgaC c

n a°p0° a=1Fq,ata k

O qa= 1M qu Dq (1+Za 1 qaca)+ OM 1
dincy 2 deg 1 1y D0(1+Za 1yqaca) ’
dé 9=1°d¢ My “a”a \1 4+ ¥7_ hy qCq

(N36b)

at each spatial position, £ in the system at steady state.

The more general equation, A23a, can be written as

1 Ck
o (alnck) EZQ:lM_C‘?u"'q t Yoy,
Y =

aé— n 6Cq D ,
q=1M 98 ), Tha
(N37)
n. ic o.,D, +v Sk
_<alnck) TIM, 1R TR T O M,
O = 0¢ n 1 va D
9=1M, 9 ) “ka
(N38)
or
F Ck
O = (alnck) E G 2a=1 LiaZa + Yo M,
k )
FH . dinc dc diny,
RTY"_,L (—q> ll“ w= (_W) ( q>
Zq_l k.q af t 1 4w=1 acq t aCW t,T,P,Cqzw
(N39)

which, in the limit as zapproaches oo, yield

O . EZq 1M Cqukq+v0M
lim ———— = lim =1,

t—oo <Olnck> t—oo n 6c
% ) A IR

(N40)

1 c
n ___ ~k
o a=177, “a%q Dica T Vo 7
k . q k
= lim =1

th—g}) (alnck) t—oo n acq
% ), a=1 70, (as) Dicq
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(N41)

and

F C
Oy . E523=1 Lk‘qu + UOM—I;
lim ———— = lim =1,

t—o0 (alnck) t—o0 dinc dc dlny,
RT Tl_ L ( q) 1 + n _ <_W> <_q)
af t Zq—l k. af t Cq w=1 va t aCW t,T,P,Cqzw

(N42)

d al :
respectively, at each spatial position, & Assuming that ( Cw) (ﬂ) is zero for all w
0cq) ¢ N 0w St TP cps

# g, Equation N42 further simplifies to

Ck F
. M—kUO + Eazgzl Lk,qu
lim = 1.

t=oo dlnc dlny,
n q — 14
E,Cazq
(N43)
6lnyq> .
Thus, at steady state, Wlth( 2t ) being equalt E , (—alncq s being equal
dinyq
dincg’
dinc diny,
—< L — RT—-(1 L) =
”°+'§Z RQ[ dg < _Fdhuh>l
(N44)

at each spatial position, & in the system.

Neglecting vector notation (see the discussion following Equation A3), in an MCE system,
au,
V U, can be reduced to ( ) (Equations A2, A14, and 116 to 120), and at steady state, ( ot )

d d d
can be expressed as dL;. In Equation N44, L, is the coefficient ofdi; = %difq

N44 can be written more compactly as

_UO Zqu df 0,

. Thus, Equation

(N45)

where Uy is the total molar potential of solute component g (Equation [17). Provided that
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aug | : .
each d—; is not equal to zero at steady state, Equation N45 can be used to determine Liq

values. In the discussion that follows, it is assumed that C;—L? # 0 holds for all values of gat

steady state if Zk vy # 0 at steady state.
My

Determining Li4 values

To use Equations N44 and N45 to determine Lgg values, all the other parameters in
Equation N44 must be known. The spatial parameter {can be determined with
considerable accuracy and precision. The parameters that can be measured include £, 7, M,
¢q Zgand v,. Of these, ¢, the concentration of explicit solute g, will tend to vary greatly with
& Thus, at each spatial position, & each of the nvalues of ¢, would need to be determined

from the various sets of MCE data collected while the system was at steady state.

As z; (see An examination of whether (zq)n and zq can be regarded as molecular parameters
in Section M) and £ (see Section H: Factors affecting the electrical field in MCE) are functions
of the concentration of each solute, explicit or otherwise, they too will tend to vary with &
Given each of the nvalues of ¢;and all other solute concentrations at each spatial position &
the values of z;and £'at any position £should be measurable with appropriate
instrumentation, albeit at the expense of much time and materials. The activity coefficient,
Yoo of each explicit solute, g, is also a function of the concentration of each explicit solute,
and given each of the nvalues of ¢; at each spatial position ¢ its value at any position ¢

should also be measurable. It might, however, be more practical to largely rely on estimates

dlnyg

of each thermodynamic nonideality term, 1 + using applicable functions. (For

dincg’
examples, see Equations D1 and D3.) Applicable functions (such as Equations D5 and D10)
could also be used to approximate the electrophoretic/asymmetry effect. (See Equation

M23 and the surrounding discussion.)

Though invariant with £at steady state, v, could be challenging to determine. As the last in

each set of steady-state measurements, v, could perhaps be measured using a membrane-
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permeant component with distinguishing optical characteristics and a net charge of zero.
(See Section E: Presenting concentration data from calculations as optical density data.) If
such a membrane-permeant component could be found, it could be repeatedly injected as a
narrow band next to the upper or lower membrane (depending on the direction of v,), and
t;, the time of its passage across the length of the system, Z, could be measured. Dividing L

by ¢, would yield an estimate of v,.

The remaining parameters of Equation N44 are the 72 phenomenological coefficients, of

which, at each spatial position ¢in the system at steady state, there would be n Ly ;- values
and (7% - n)/2 Ly g+x = Lg=kx values to determine. (Regarding such reciprocal relations as
Ly g2k = Lqzk,k, See Section G: The dissipation function and the Curie-Prigogine principle.)
Assuming that the n2 Ly ;- values of Equation N44 can be calculated, at each position, §
there would be nlinearly independent equations and (72 - n)/2 unknowns in the form of
the Ly g+ = Lq+1 i pParameters. Equations from different spatial positions in the system
cannot be used to augment the number of linearly independent equations because the

Ly g=r and the Ly g2, = Lz parameters, being dependent on all properties of the system,
are not constant with spatial position. Thus, the (2 - 7)/2 unknown values of Ly ., =
Lgzkk could not be solved if n were greater than 3, as for n> 3, n< (12 - n) /2. Furthermore,
membrane-permeant components, at least one of which must be present to carry the
electrical current through the system, would have to be included when counting the

number of components of the system.

As stated in Equation A19, in the limit as ¢z=xapproaches zero, the coupled-flow-
phenomenological coefficient linking the molar flow of solute component k4 to the conjugate

molar force of solute component kis given by

Ck
lim L,, =————
k,k )
Cq::k_)o NAMkfk

(N46 = A19)
and as stated in Equation A20, the frictional coefficient of solute component kis given by

fk = 6mNRy.
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(N47 = A20)

As Equation N46 (A19) only applies in the limit as the concentrations of all components
other than component kapproach zero, its usefulness is limited to the case of n= 1, unless
great, and probably misleading, liberties are taken when defining the implicit solvent. With
respect to MCE, those liberties would include defining the implicit solvent as comprising all
but one of the components that form significant concentration gradients. Troublingly, such
a definition would result in different implicit solvents being applied to different spatial
positions in the system. Furthermore, at each spatial position, a different implicit solvent
would be defined for each choice of the sole explicit solute. Despite any doubts that such
creative accounting should raise, this is exactly the approach taken here to make use of

Equations N46 (A19) and N47 (A20).

Calculating f by means of the right-hand side of Equation N47 (A20) requires the
measurement of 7, the solution viscosity, and the determination of Ry, the Stokes radius of
an equivalent sphere of solute component & The viscosity of the implicit solvent, which
comprises all components save the one that is treated explicitly, is 70. With cxbeing the
concentration of the sole explicit solute, 7 becomes identical to 7 in the limit as cx
approaches zero. With 7o defined as lim,, o 1, R defined as limg, o Ry, and £0 defined as
lim, ¢ fi, it follows that

fko = 67'”]0ng;
(N48)
but it does not necessarily follow that £ would equal 6mnR} if the concentration of
component kwere to rise to experimentally relevant values. Thus, to use Equation N47
(A19) in Equation N46 (A20), R, would need to be determined in the solution used to
measure 7. Of more concern, given the spatial redistribution of components at steady state
in an MCE experiment, in each determination of R;, and measurement of 7, the implicit
solvent, by being defined as comprising all components other than component & would
need to reflect the composition of the so-defined implicit solvent at specific spatial

positions in the system.
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In all, to create the correct solutions in which to determine R, and measure 7, it would be
necessary to reproduce the composition of the solution at each selected spatial position, &
in the MCE system being analysed. (Additionally, the determination of R, and the
measurement of 7 would need to be conducted at the same temperature at which the MCE
data were collected, but this requirement, at least, could easily be met.) Going to such
extremes would allow Equation N46 (A19) to be used to calculate the n Ly ;- values
needed in Equation N44. The confidence in those values might not be great, but with them,
the remaining unknowns, which are the (122 - n)/2 Ly g+ = Lq+i i values, could, for better

or worse, be calculated for any part of the system in which ndid not exceed 3.

For n= 3, solving Equation N45 for L, , = L, 4, L, 3 = L3, and L; 3 = L3, yields

dU, dU, dUs, g dU; ¢ dU, | ¢ dUs
Lll(dg) LZZ(dg) +L33(d§) M, dE M, di T M; dt
Li,=L,; = +v
12 =t au, ab, ’ au, aU, '
dé dé d§ d¢
(N49a)
dU;\? dU,\> dUs\* ¢ dU; ¢ dU,  c3 dUs
~Lia(Gg) + Loz (R) —Las () M, Y™, dz M, &
Liz=L;, = v
b au, dUs ° au, dUs
dt dt d¢ d¢
(N49b)
and
dU, % dU, ¢ dU; ¢ dU,  ¢3 dUs
L Lll(d{) L“(df) L33(d§) M, dZ M, dZ M; di
dé di dé dé
(N49¢)
respectively.

For n= 2, solving Equation N45 for L, , and L, ; yields

dau c
—Li1 d{l ﬁllvo
L1,2 - dUZ
g

(N50a)
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and
du, S,
L22 df M
Loy = v,
3
(N50b)
respectively, of which the sum divided by 2 is
L (&)2 _1 (&)2 & dU, ¢, dU,
Lo, —katlen N >2\ d§ . M, d§ M, d§
e du, v, 0T d0,du,
d§ dg dé d§
(N50c¢)
Setting Equations N50a and N50b equal to each other results, after some rearrangement, in
U, _ & dly | ¢ dU,
LZZ(dE) M, ¢ T M, ¢

1,1 =

@y @y
dz dz

(N51a)
and
L (dUl) 6 dU; ¢ dUy
M\dg) My df M, dg
Oy @y
ag dé
(N51b)

which, assuming that Equations N50a and N50b are valid, show the relationship between
L1, and L, , at steady state in the case of n= 2. Thus, for n= 2, Equations N46 (A19) and
N47 (A20) need only be used to determine either L, ; or L, ,, as once one is known, the
other can be calculated using one or the other form of Equation N51. Given the doubts
raised regarding their applicability , however, it might be better to first obtain results using
Equations N46 (A19) and N47 (A20), and then use Equation N51 as a test of those results,
with the caveat that Equation N51 might hold despite both L; ; and L, , being invalid.

Taking the limit of Equation N49a as czapproaches zero yields
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limL,, = 11m Ly,
C3—>

dU > dU,\* dUs\*
_ [‘Lm (G2 — 12 (GR) +12a ()
o C;r—{}) dUl dUz
212
ds d¢
¢ dU; ¢, dU, 4+ & dU;
M d§ M, d§ " M; di

e av, U,
d¢ dg
dU, du, ¢ dU; ¢ dU,
L“(df) LZZ(dE) M, dZ M, &
+ v
dU, v, 0T AU,
d¢ dg d¢ d§

(N52)
which is identical to Equation N50c.

At steady state in the case of n= 1, Equation N45 yields

158
Li1 =19 c?/lllll
dg
(N53a)
and
M; dU,
vy = ZLM d_f
(N53b)

The two forms of Equation N53 show that, for n= 1 5 1 cannot be zero unless v, is equal to

zero, and that L, ; cannot be calculated if v, is equal to zero. With n = 1, however, the sole
component is either a membrane-permeant current carrier or a membrane-confined
component that cannot carry a current through the system. Both possibilities will be

considered shortly.

Solving each form of Equations N49 and N50 shows that, for n= 2 or n= 3, no more than

au . .
one value ofd—; can zero unless v, is equal to zero. The three forms of Equation N50 show
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that L, , = L, ; can be calculated if either 22 = %1 alone or ddg alone is zero. Equation N49a
shows that L, , = L, ; can be calculated if‘%,3 alone is zero, Equation N49b shows that

Li3 = L3, can be calculated if &z pr: %2 alone is zero, and Equation N49c shows that L, 3 = L3,

can be calculated 1f pr: alone is zero.

A consideration of v

The presence of;l—"vo in Equation N45 stems from Equation A1, which expresses the molar
k

flow of solute component kin the system frame of reference as

- Ck—\

]k_]k+ Vo— qu q+_v0
(N54 = A1)
The second term on the right-hand side of this equation can be expressed as
n+Nmp
Cr - N
= ) brake
K
qg=n+1

(N55)
where 11, is the number of membrane-permeant components that give rise to v,, which is
the velocity with which the solvent flows through the system. Applying Equation N55,

Equation N45 becomes

du, N
ZLk,q T LigX, =0
q=1 qg=n+1
(N56)
Thus,
n+ny,
ZPL au, 0
k,q d{: - Y
q=1
(N57)

which, if the system were closed, could generally be true only if each value of% were equal
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to zero for 1 < ¢ < n+ nmp. Equations N55 to N57 show, then, that if;l—k v, were equal to
k

du . . .
zero at steady state, each value of d—; would be equal to zero, in which case, Equation N44

could not be used to determine any Ly , values. Equations N55 to N57 also show that 7+
Nmpis the number of components that should be counted when trying to determine Ly 4

values.

. . . dinc
For n+ nmp =1, if the sole component is a membrane-permeant current carrier, pT: L=0

at steady state, and if there is no pressure gradient that could drive the flow of solvent

through the system, Equations N44, N46 and N47 can be applied to obtain

2 _ oy TV
Ry = T OmRal g

(N58)

Assuming only that R} and 7 have values that are physically plausible for a system of the
sort encountered in MCE, this equation states that, in the absence of a pressure gradient
that could drive the flow of solvent through the system, if z, is equal to zero, v, will be equal
to zero when |E| is greater than zero. This result perhaps addresses the definition of the
valence of a component, as distinct from the definition of the valence of a species. (These
definitions are pondered in Section I (Calculating valence, molar mass, chemical potential
and partial specific volume for a multi-species component) and the latter part of Section M

(An examination of whether (zq)n and zq can be regarded as molecular parameters)).

Denoting the valence of species a of component 1 as z, 4, denoting the stoichiometry of

species a of component 1 as v; 4, and denoting the total number of species of component 1

as m,
ny
Z Vl,azl,a 0
a=1

(N59)

describes the net valence of stoichiometric amounts of the species of component 1. For

n+ nmp: 1,
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ny
vo =F z U1,aV1,aM1,a

a=1

(N60)

where Eu, 4 is the electrophoretic velocity of species a of component 1, and 7, 4, which has
the same dimensions a 77 (unit mass divided by the product of unit distance and unit time),
is the mass of solvent that a particle of species a of component 1 carries for some distance
through the system in one unit of time. For a current to be maintained through the system,
both z; ;, and Eu, , must be nonzero for two or more of the species that constitute
component 1, and when |E| is greater than zero, each such species will probably carry some
amount of solvent through the system, but v, will be zero if the amount of solvent that the
anionic current-carrying species carry through the system in one direction is exactly
counterbalanced by the amount of solvent that the cationic current-carrying species carry
through the system in the other direction. Thus, for 7+ n,p =1, a v, of zero at |E| > 0
means that z, is zero, but a z; of zero does not mean an absence of electrophoretic
transport at |E| > 0. In fact, if |E| is greater than zero, there must be electrophoretic
transport through the system, in which case, a z; of zero cannot mean an absence of

electrophoretic transport at |E| > 0 for a system in which n+ 1y, = 1.

For n+ nmp =1, if the sole component is a membrane-confined component that cannot

carry a current through the system, |E| = 0, and if there is no pressure gradient that could

drive the flow of solvent through the system, v, will equal zero and ‘Z—l? will equal zero

(Equation N44). This situation raises the possibility that if a time-invariant pressure
gradient were applied to drive a steady flow of solvent through the system, the MCE

instrument could be used to determine L , values in the absence of an electrical current, in

which case, Equation N44 would reduce to

Cx dinc, diny,\ _
V0 RTE:“ﬂcﬁ G+dm% =0

(N61)

at each spatial position, £ in the system at steady state.
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With respect to determining Ly , values via Equations N49 to N53, the use of Equation N61
would only require a knowledge of 7’and v, plus the value of each M, (along with M), plus
the value of each ¢; (along with ¢x) at each spatial position § plus the parameters needed to
calculate the n Ly 4—i values. (See the discussions following Equations N45, N46 and N47.)
To ensure that the maintenance of charge neutrality did not prevent the formation of
concentration gradients in the membrane-confined components, a supporting electrolyte
would need to be included as a membrane-permeant component. Thus, the solution
compositions could be such that any one system could be used to acquire both steady-state

pressure-gradient and steady-state electrophoretic measurements.
Membrane-confined gravitational redistribution

In an extremely tall MCE system submerged from top to bottom in a single, temperature-
controlled reservoir containing the same implicit solvent as that found within the system,
there would be no net flow of solvent through the system in the absence of that carried by
membrane-permeant solutes that enter or leave the system under the influence of gravity.
By virtue of the system being submerged in a single reservoir, there could be no electrical
current through the system, because the top and bottom of the system would be at the same
electrical potential. The height of the system would be such that there would be a significant
difference in the gravitational potential from the top to the bottom, however. In such a

system, rather than Equation N44,

n
c dinc dln
—kvo+z Liq |My(1—5,0)gr — RT—2( 1+ a)l = o
Mj, . dé

q:

dlncq

(N61a)
would apply, as shown by Equation Al4a. If the full form of Equation A9 were applied,

n
Ck Z _ (6,0) vE dinc, diny,
k. Lo M, |(1- —(£) 2| -rT—=(1 =
w0t L ""’[ q[( %ap)9z ~ (3¢ 2 iz \' taine, )] =°
q:

(N62b)

would be obtained. For n+ n,, = 1, if the sole component were membrane-permeant, both
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% and (Z—g) would equal zero at steady state, and in the hydrostatic case, which is
t

marked by the absence of a pressure gradient that could drive a flow of solvent through the

system, Equations N62, N46 and N47 can be applied to obtain

M,(1-7v v
1( _ 1P) _ —67TNA77—0.
Ri IE

(N63)

A comparison of Equations N58 and N61 shows that M, (1 — ¥, p) is the gravitational
analogue of z,. Equation N61 states that, in the hydrostatic case, if M; (1 — 7, p) is equal to
zero, v, will be equal to zero. Except for the trivial case of (1 — #;p) = 0 for each species of
component 1, this result addresses the definition of the molar mass of a component, as
distinct from the definition of the molar mass of a species. (See Section I: Calculating
valence, molar mass, chemical potential and partial specific volume for a multi-species
component.) In a case analogous to that discussed with respect to N58, an M; (1 — v;p) of
zero need not mean an absence of gravitational transport, as component 1 could comprise
both species that float and species that sink, with those that float having (1 — ¥;p) < 0 and
those that sink having (1 — ¥;p) > 0. The sum total of the solvent that these species
transported through the system would be zero, and thus v, would be zero, if the species

that floated carried the same amount of solvent as the species that sank.
An additional flaw

As noted with respect to Equations N46 and N47, the above methods for determining Ly ,
require multiple abuses of the definition of the solvent. To that flaw can be added another,

which is that v, only appears in the expression offk, which is the molar flow of solute

component kin the system frame of reference. Solving Equation N54 (A1) for]Tf, the molar

flow of solute component kin the solvent frame of reference, yields
— N Ck .
];f =Jk — M_kvo .

(N64)

Thus, if Ly 4 = Lg x only holds in the solvent frame of reference, then v, must vanish from
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Equations N44 to N63, with the result that the L , values could not, in fact, be calculated as

shown because, except for the 7, membrane-permeant components that give rise to v,,

d

U . :
each value of —* would be zero in the solvent frame of reference at steady state (Equation

N57).

3

List of selected parameters, their indices, and their cgs, mks or other dimensions

r
M1
C1

C1,2

D1

symbolingices parameter index 1
radial vector
molar mass component
mass concentration component
mass concentration component
electrical field strength
diffusion coefficient component

ui,2

uq
o1
D12
ui,2

01,2

electrophoretic mobility coefficient component
diffusion coefficient component
electrophoretic mobility coefficient component
reduced valence coefficient component
diffusion coefficient component
electrophoretic mobility coefficient component
reduced valence coefficient component
radial position
electrical potential
Y -space parameter

Y -space parameter

angular velocity

time

partial specific volume component
solution density

activity coefficient component

Avogadro's number
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index 2

spatial element

component

component

spatial element
spatial element

spatial element

spatial element

spatial element

dimensions
cm

g/mol
g/cm3
g/cm?
volt/cm
cm?/s
cm?/volt-s
cm?/s
cm?/volt-s
cm-l
cm?2/s
cm?/volt-s
cm-l

cm
statvolt
cm

cm

g1

s

cm3/g
g/cm?

dimensionless

mol-1



Irreversible thermodynamics of MCE, copyright December 12,2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

f1
n

P12

V1,2
hi1

L1,2
ga
Lp'g

g,.a
LR P

%1

>

frictional coefficient

solution viscosity

component

Stokes radius (equivalent sphere) component

basis function

pressure

cgs ideal gas constant

mks ideal gas constant
absolute temperature
asymmetry effects coefficient
nonideality coefficient
viscosity coefficient

total molar potential

chemical potential
conjugate molar force

mass flow vector

mass flow

phenomenological coefficient
phenomenological coefficient
phenomenological coefficient
molar flow vector

molar flow

molar reaction flow

conjugate molar affinity
magnetic field

Coriolis force

free energy dissipation function

outward-normal surface vector

current density
cross-sectional area

current

spatial element

component
component
component
component
component
component
component
component
component

products
reactants
component
component

reaction

reaction
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component
component

component

component

reactants

products

g/s
g/s-cm

cm

dimensionless

dyne/cm?
erg/mol-K
J/mol-K

K

cm3/g

cm3/g

cm3/g
erg/mol
erg/mol
dyne/mol
g/s-cm?
g/s-cm?
mol?-s/g-cm3
mol2-s/g-cm5
mol?-s/g-cm>
mol/s-cm?
mol/s-cm?
mol/s-cm?3
erg/mol
tesla, or
dyne/g
erg/cm3-s
cm?
ampere/cm?
cm?

ampere
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-

21 velocity vector component

V1 velocity magnitude component

é; unit vector direction (+z-axis)

K conductivity of the solution

z12  valence component species

T transference number

71 valence component

z; reduced valence component

gk gravitational acceleration (See note 1.)  Earth
Faraday (See note 2.)

C] Faraday conversion factor (See note 2.)

(0} electrical-potential conversion factor (See note 2.)

& permittivity constant (See note 2.)

£ dielectric constant

krr  Debye length

a12  radius of shear surface component species
H(K;}Tallz) Henry’s function component species
(12  zeta potential component species

Parameters that include non-cgs, non-mks dimensions

r mol-per-litre ionic strength

01 1st coefficient of the Onsager equation
02 2nd coefficient of the Onsager equation
Notes

cm/s

cm/s
dimensionless
siemens/cm
H* equivalent
dimensionless
H+ equivalent
H+ equivalent

cm/s?

statcoulomb/mol

statcoulomb/coulomb

volt/statvolt
C2/]'m
dimensionless
cml

cm

dimensionless

volt

mol/]

siemens/cm-[mol/I]

siemens/cm-[mol/1]3/2

1. The cgs standard acceleration due to gravity, gg, is approximately 981 cm/s? (for the

Earth at sea level).

2. The cgs Faraday is equal to N4e where Ny is Avogadro’s number (6.0221413-1023 mol-1)

and e, the cgs elementary charge, is equal to 4.8032354-10-10 statcoulomb. Thus, the cgs

214



Irreversible thermodynamics of MCE, copyright December 12, 2011 (CIPO 1091881), Thomas P. Moody,
moodybiophysicalconsulting.blogspot.com

Faraday is F'=2.89253-1014 statcoulomb/mol. With Fand Rin cgs units,
F/@R=11604.5 K/volt. This is also equal to the mks Faraday (96484.56 coulomb/mol)
divided by the mks ideal gas constant (8.31441 J/mol-K). The electrical-potential
conversion factor between cgs and mks dimensions is @ = 299.7925 volt/statvolt. The
charge conversion factor between cgs and mks dimensions is &= 299.7925-107

statcoulomb/coulomb. The mks permittivity constant, &, is equal to 8.85419-10-12 C2/]-m.
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